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1 Introduction

Flight level measurements suggest that hurricanes have low vorticity eyes surrounded by
high vorticity eyewalls (Kossin and Schubert 2001). The rearrangement of such high vor-
ticity annular rings is an important factor in hurricane dynamics. In this study, I use a
barotropic nondivergent model to investigate the evolution of a set of high vorticity annular
rings with Þxed circulation and scales similar to hurricanes.

The initial radial proÞle of vorticity is given by

ζ = ζ0


0, 0 ≤ r ≤ r1,
S ((r2 − r)/(r2 − r1)) , r1 ≤ r ≤ r2,
S ((r − r2)/(r3 − r2)) , r2 ≤ r ≤ r3,
0, r ≥ r3,

(1)

where S(x) = 1− 3x2 +2x3, r2 is Þxed at 60 km, r3 − r1 ranges from 4 km to 116 km with
an increment of 4 km, and the constant ζ0 is chosen so that all the rings have the same
circulation for r ≥ r3. Sample initial vorticity and aximuthal wind proÞles are shown in
Fig. 1.

Figure 1: Sample radial proÞles of the initial vorticity and tangential wind.
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After introducing the numerical model, I describe the simulated evolution of represen-
tative narrow, wide, and very wide annular rings. I then compare the initial wavenumber
with the published results of linear stability analysis, and investigate the history of the
domain-averaged enstrophy for different rings. I apply the minimum enstrophy theory to
predict the Þnal states, and investigate the advantages and disadvantages of the theory. I
also compare the results for these rings with two sets of skewed rings.

2 Numerical Model

An adaptive multigrid barotropic nondivergent model (Fulton 2001) was used to simulate
the evolution of the annular rings. This model solves the modiÞed barotropic vorticity
equation in Mercator coordinates
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where q = ζ−γ2ψ is the potential vorticity anomaly, ζ is the relative vorticity, f = 2Ω sinφ
is the Coriolis parameter, β = df/adφ = 2Ωa−1 cosφ, m = cosφ0/ cosφ is the map factor,
γ−1 =

√
gH/f is the Rossby radius of deformation, ψ is the stream function, and ν is the

constant viscosity.
In this study, I ran the model in the pure barotropic, f -plane mode by setting γ = 0,

m = 1, and β = 0, so that the actual equations solved become
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Associated with this model are the kinetic energy and enstrophy equations

dE
dt
= −2νZ, (6)

dZ
dt
= −2νP, (7)

where E = '' 1
2∇ψ ·∇ψ dxdy is the energy, Z =

''
1
2ζ
2 dxdy is the enstrophy, P = '' 1

2∇ζ ·
∇ζ dxdy is the palinstrophy.

The numerical model uses the 4th order Runge-Kutta scheme to advance in time and has
the option of 2nd or 4th order Arakawa Jacobian technique to approximate the advection
terms. It has multiple movable or adaptive nests within the base grid. In this study, most
of the simulations are run on a base domain of size 4096 km × 4096 km with 128 × 128
grid points. There are 4 subsequent nests within the base domain, each of which has half
the domain size and mesh size of its mother domain, so that the Þnest resolution is 2 km.
In a few runs, the resolution was increased to 256 × 256 grid points for the base domain
and all the nests.
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3 Ring Evolution

Representative examples of the evolution of thin (12 km), wide (60 km), and very wide
rings (108 km) are shown in Figs. 2�4. The rotational timescale τ = 2πr2/v(r2) for these
three rings is about 2 hr.

Thin rings (r3 − r1 ≤ 20 km, Fig. 2) initially break up into many vortices (≥ 6) that
rapidly merge into several vortices (4-5) as they rotate around. The resultant vortices persist
for tens of rotational timescales before subsequent merger takes place. Such a conÞguration
can be referred to as �mesovortex� or �vortex crystal� stage. Thin rings eventually evolve
into monopoles.

For wide rings (24 km ≤ r3 − r1 ≤ 104 km, Fig. 3), initial instability takes longer to
grow and shows lower wavenumbers. The few (2-5) resulting vortices gradually relax to a
monopole.

Very wide rings (r3 − r1 ≥ 108 km, Fig. 4) show wavenumber two structures initially,
but they never break up into individual vortices. The central low vorticity remains until
the last timestep, which corresponds to about 80 rotational timescales.

4 Initial Wavenumber

Simulation results show that the initial instability wavenumber tends to decrease with in-
creasing ring thickness (Fig. 5). For thin rings (r3−r1 ≤ 20 km), this decrease is very sharp.
For wide rings, there is usually a thickness range that corresponds to the same wavenumber,
and the range appears to increase with decreasing wavenumber.

Schubert et al. (1999) performed a linear stability analysis for annular rings with piece-
wise constant radial proÞles. Their Fig. 2 shows the unstable regions for wavenumbers 3�8
in δ−γ space, where δ is the ratio of the inner and outer radii and γ is the ratio of the inner
vorticity and average vorticity. For the rings I study, γ = 0. Converting into this notation,
the initial wavenumber of my simulations agrees well with Schubert et al.�s linear stability
results (Fig. 6).

5 Enstrophy History

The evolution of different rings is studied by plotting the normalized enstrophy as a function
of time (Fig. 7). For thin rings (r3−r1 ≤ 20 km), the rapid merger of initial vortices results
in a sharp decrease of enstrophy early in the evolution. The enstrophy levels off with
time during each mesovortex stage. Each subsequent merger leads to a rapid decrease of
enstrophy and thus a stairstep pattern in the enstrophy history.

For wide rings (24 km ≤ r3 − r1 ≤ 104 km), the early stage enstrophy decreases more
slowly, consistent with the slower growth of initial instability. Subsequent relaxation to
a monopole is gradual, without the transitional mesovortex stage. For very wide rings
(r3− r1 ≥ 108 km), consistent with the central low vorticity remaining unmixed during the
entire simulation, the slope of the enstrophy curve does not change much with time.
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Figure 2: Evolution of thin ring: r3 − r1 = 12 km.
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Figure 3: Evolution of wide ring: r3 − r1 = 60 km.
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Figure 4: Evolution of very wide ring: r3 − r1 = 108 km.
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Figure 5: Initial wavenumber as a function of ring number. Ring width = ring number ×
4 km.

Figure 6: Initial wave number as a function of δ with γ = 0 for comparison with the linear
stability analysis of Schubert et al. (1999).

6 The Minimum Enstrophy Theory and Final State

6.1 The Minimum Enstrophy Theory

Consistent with Eq. (6), simulations show that the enstrophy decays much faster than the
energy for small diffusivity ν. Based on this result, a minimum enstrophy theory has been
applied to predict the Þnal states for annular rings (Schubert et al. 1999). The idea is to
maximize the enstrophy deÞcit, i.e. to minimize the Þnal enstrophy, under the constraint
of constant energy or angular momentum.

In the case of minimum enstrophy with constrained energy and circulation, I vary the
mixing radius b and the wind proÞle v(r) in the variational problem

0 = δ
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where µ2 is the Lagrange multiplier, v0(r) and ζ0(r) are the initial wind and vorticity
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Figure 7: Simulated enstrophy normalized by initial enstrophy as a function of time for the
set of rings.

Figure 8: Comparison of theoretical and numerical values of the Þnal enstrophy. Solid line
is the prediction of a minimum enstrophy theory with constrained energy. Dashed line is the
prediction of a minimum enstrophy theory with constrained angular momentum. Dotted
line is the numerical result for runs with 128 × 128 resolution. Stars are the numerical
results for runs with 256× 256 resolution.
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Figure 9: Theoretical and numerical Þnal radial vorticity proÞle comparison. Numerical
results are plotted as scatter plots, Predictions of the minimum enstrophy theory with
constrained energy are plotted in dashed lines.
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proÞles, v(r) = v0(r)forr ≥ b. Upon solving the Euler-Lagrange equation resulting from
the Þrst term, I obtain the Þnal wind and vorticity proÞles

v(r) =

-
v0(b)J1(µr)/J1(µb) if 0 ≤ r ≤ b ,
v0(r) if b ≤ r <∞. (9)

ζ(r) =

-
v0(b)µJ0(µr)/J1(µb) if 0 ≤ r ≤ b,
0 if b ≤ r <∞. (10)

Requiring ζ(b) = ζ0(b) = 0 yields

J0(µb) = 0, (11)

so that µb must be a zero of the J0 Bessel function. The Þrst zero yields the lowest en-
strophy, so that µb ≈ 2.4048. Substituting Eq. (9) into the energy constraint ' b0 v20(r)rdr =' b
0 v

2(r)rdr yields

8π2
( b

0
v20(r) rdr = C

2, (12)

where C = 2πbv0(b) is the circulation. Given the initial tangential wind v0(r) and the
associated initial vorticity ζ0(r), µ, and b can thus be determined from (11) and (12).

Similarly, the Þnal enstrophy can be minimized under the constraint of conservation of
angular momentum. This leads to the Þnal wind and vorticity proÞles

v(r) =

-
v0(a)(r/a)[2− (r/a)2], if 0 ≤ r ≤ a ,
v0(r), if a ≤ r <∞, (13)

ζ(r) =

-
[4v0(a)/a][1− (r/a)2], if 0 ≤ r ≤ a,
0, if a ≤ r <∞. (14)

6.2 Final Enstrophy Comparison

Integrating the square of the predicted Þnal vorticity proÞle Eq. (10) and the square of
the initial vorticity proÞle Eq. (1), I obtained the Þnal and initial enstrophy for each ring.
Comparing the ratio between the Þnal and initial enstrophy with the enstrophy ratio be-
tween the last and Þrst time step of the simulation (Fig. 8), I Þnd that the predicted Þnal
enstrophy agrees well with numerical results for wide rings. The deviation for very wide
rings is related to the persistence of the central low vorticity in the simulation and the
relaxation to monopole predicted by theory. The deviation for thin rings can be greatly
improved by running the model at higher resolution, as shown by the stars in Fig. 8. A
high-resolution simulation is expected to produce a larger differences for thin rings because
more grid points are needed to resolve the initial vorticity proÞles properly. So, the mini-
mum enstrophy theory is able to predict the Þnal enstrophy of both the thin and the wide
rings in my study.
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Figure 10: Final vorticity as a function of stream function for thin ring (r3 − r1 = 16
km). Black line is scatter plot from the Þnal time step. Green line is the prediction of the
minimum enstrophy theory with constrained energy. Blue line is a 3rd order polynomial Þt
for the black scatter plot. Red line is a 5th order polynomial Þt for the black scatter plot.

6.3 Final Vorticity ProÞle Comparison

For wide rings, the vorticity proÞle predicted by theory, as expressed in Eq. (10) captures
most of the features of the simulated Þnal vorticity proÞle (Fig. 9a). However, for thin
rings, the simulated Þnal vorticity considerably overshoots the theoretical prediction at
small radii (Fig. 9b). This deviation for thin rings can be viewed in the stream function-
vorticity perspective, as shown in Fig. 10. The numerical curve is a scatter plot produced
from the vorticity and stream function at every grid point in the output domain at the
last time step. Such scatter plots at early times show many fat bands that collapse onto
each other with time and eventually become the thin line in Fig. 10. Solving the stream
function from (5) with the boundary condition that the Þnal stream function matches the
initial stream function at the mixing radius b, I obtain the green line in Fig. 10. This linear
relationship is expected from a slight modiÞcation of the argument given in (8). If, when
proceeding from the second line in (8), we integrate the vδv term by parts instead of the
ζδζ term, we obtain

0 = 2

( b

0

+−ζ − µ2ψ, δζ rdr + 2µ2bψ(b)δv(b) + )ζ20 (b)− ζ2(b)* bδb, (15)

so that ζ = −µ2ψ for 0 ≤ r ≤ b. Minimum enstrophy theory approximates the numerical
curve by a line, though this curve can be better Þt by a 5th order polynomial. This suggests
the possible existence of a better variational principle, but I will not pursue this further
here.

7 Comparison with Skewed Rings

Two sets of experiments with skewed initial vorticity proÞles have been performed to com-
pare with the symmetric rings investigated before. One set has a sharper inner edge, while
the other has a sharper outer edge. Sample initial conditions are shown in Fig. 11. All the
rings have Þxed r2 = 60 km and Þxed circulation, as before. The evolution of the enstrophy
for the thin and wide rings of the three sets of rings is similar, and the Þnal enstrophy can
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Figure 11: Example initial vorticity proÞles for three sets of rings. Exp2: symmetric rings;
Exp4: rings with sharper inner edge; Exp5: rings with sharper outer edge.

be predicted by the minimum enstrophy theory. Rings with a sharper inner edge usually
have higher initial wave numbers than the others (Fig. 12), and even the widest such ring
collapses into a monopole.

8 Conclusion

I have investigated the rearrangement of annular rings of high vorticity in this study. Thin
rings initially break up into many vortices that subsequently merge. They often come into
a conÞguration where several vortices rotate around for many rational timescales. Such
�mesovortex states� correspond to the �stairs� in the enstrophy history plot. Wide rings
have lower initial wavenumbers that take longer to grow, and they gradually evolve into
monopoles. Very wide rings usually have low central vorticity throughout the simulation.
However, all the rings with sharper inner edges evolve into monopoles. The minimum
enstrophy theory is useful for predicting the Þnal enstrophy for both thin and wide rings.
Although it does an adequate job of predicting the Þnal vorticity proÞle for wide rings, it
fails for thin rings. Skewed rings with sharper inner edges usually have higher initial wave
numbers than other rings with the same width, and this might be predicted by a more
sophisticated linear theory than that of Schubert et al.
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Figure 12: Initial wavenumber as a function of ring number for three sets of rings. ( Exp2
symmetric rings, ) Exp4 rings with sharper inner edge, ∗ Exp5 rings with sharper outer
edge.
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