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1 Structure based scaling theory

In this lecture, we revisit the structure based temporal scaling theory for two-dimensional
turbulent fluids. Scaling theory involves characterising the vortex population in terms of
some of its properties; here, the total number of vortices N , vorticity ω, and vortex radius r
are considered. The scaling behaviour of other vortex properties can be defined in terms of
these quantities. We relate the three quantities to the scaling exponent ξ. Our assumptions
from yesterday are that both energy and peak vorticity is conserved over the domain (note
that this is only expected to be valid as Re →∞), that all vorticity is contained within the
vortices themselves, and that the probability distribution functions (PDFs) of the vortex
properties evolve self-similarly. Note that the latter assumption implies that averages of
powers of quantities scale the same as powers of averages, for example:

< rn > (t) = cn < r >n (t), (1)

where cn is independent of time and < . > denotes an averaged quantity.

1.1 Scaling of vortex properties

1.1.1 Circulation

Circulation Γ can be expressed in the following form

Γi =
∫

vortex i

ω d2x ∼ ωir2i , (2)

where constant relating Γi to ωir2i depends on the specific shape of the vortex. Hence, the
evolution of the average circulation can be expressed as follows

< |Γ| >∼< ω >< r >2 . (3)
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1.1.2 Energy

In 2D fluids, energy can be expressed in the following form

E =
1
2

∫
|u|2d2x =

1
2

∫
|∇ψ|2d2x. (4)

We integrate the above expression by parts, and since

ω = ∇2ψ, (5)

the energy can be expressed as

E = −1
2

∫
ωψd2x. (6)

Here, we’ve assumed that either ψ goes to 0 at infinity, for an infinite domain, or that the
domain has periodic boundaries.

By inverting ω = ∇2ψ, the streamfunction becomes

ψ(x) =
1

2π

∫
ω(x′) ln |x− x′|d2x′. (7)

It is important to recognise that the vorticity generates the streamfunction; the streamfunc-
tion is not a locally derived property, but rather depends on the vorticity at near and far
scales.

Substituting (7) into (6), we obtain

E = − 1
4π

∫
ω(x)ω(x′) ln |x− x′|d2xd2x′. (8)

Now, considering isolated vortices, we sum over the domain to obtain

E = − 1
4π

[
N∑
i=1

∫
vortex i

ω(x)ω(x′) ln |x− x′| d2xd2x′

+
∑
i 6=j

∫
vortex i

d2x
∫

vortex j

ω(x)ω(x′) ln |x− x′| d2x′
]
. (9)

The first part of equation (9) describes the energy induced by self-interactions and the
second part of the equation describes the energy induced by vortex-vortex interactions.
The logarithmic term is the Green’s function. For the purposes of scaling E, in what
follows logarithmic corrections are ignored. Further details regarding the accuracy of this
omission are discussed in [1].

From the interaction energy part of equation (9), it might be assumed that the energy of
interaction scales like N2Γ2; however, this result disagrees with turbulence simulations [2].
To derive the scaling expression for E, we consider the numbers of same-sign and opposite-
sign interactions between pairs of vortices from equation (9) above. The total vorticity is
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zero so that we have an equal number of vortices with positive and negative vorticity (note
that we assume that all vortices have approximately the same magnitude of vorticity)

number of same-sign pairs = 2
N

2

(
N

2
− 1
)
, (10)

number of opposite-sign pairs = 2
(
N

2

)2

. (11)

It is clear that we get cancellation from the contribution of same-sign and opposite-sign
pairs, so that E scales like the number of vortices rather than the number of pairs, i.e.

Einteraction ∼ Eself ∼ N < Γ >2 . (12)

This scaling now represents the combined effect of all vortices, rather than including them
one at a time.

1.1.3 Enstrophy

The enstrophy equation can be expressed in the following form

Z =
1
2

∫
|ω|2d2x, (13)

from which, the scaling Z ∼ N < ω >2< r >2 is obtained.

1.1.4 Final scalings

We have derived the scaling of Γ, E and Z as follows

< Γ >∼< ω >< r >2, (14)

E ∼ N < Γ >2, (15)

Z ∼ N < ω >2< r >2 . (16)

Using these three quantities it is possible to express the scaling behaviour of the other vortex
properties of the fluid field.

Now, our underlying assumptions that E and ω are conserved properties, namely

E ∼ t0, and (17)

< ω >∼ t0, (18)

along with the evolution of the vortex number N observed in turbulence solutions

N(t) = N(T0)
(
t

t0

)−ξ
, (19)

provide the necessary closure to the theory. Empirically, we find that N ∼ t−ξ, where
ξ ∼ 0.72.
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It is possible to express the time-evolution of all quantities in terms of scaling exponent
ξ. For example,

E ∼ t0 ∼ N < Γ >2, (20)

< Γ >∼ N−1/2 ∼ tξ/2, (21)

< r >∼ tξ/4. (22)

Experimental studies have employed a range of numerical techniques to evaluate the
evolution of vortex properties, as proposed by the scaling theory, and the value of the
exponent ξ. These include direct numerical simulations (DNS) of 2D turbulence, point
vortex models and laboratory experiments (e.g., that examine electrically excited vortices
in a thin electrolyte). There is reasonable agreement between most experimental studies on
the robustness of the scaling relationships and most studies estimate a value of ξ close to 0.7
[3, 4]. For example, Bracco et. al. [9] found good agreement between numerical simulations
of decaying 2d turbulence and scaling theory for the vortex properties N , r, ω Γ and the
scaling exponent ξ (figure 1). These agreements are relatively consistent between low and
high resolution simulations (figure 2). However, some studies estimate slower or faster
decays (table 1 from [3]). These differences may be due to the choice of analysis technique
used, lateral dissipation and initial conditions such as the initial number of vortices (for
example, all of the studies estimating a value of ξ much different to 0.7 had less than 100
vortices initially, which decreases the statistical significance of the results [3]). Whether
experiments were run for a sufficient period of time to resolve the scaling regime has also
been questioned [3]. Finally, despite reasonable agreement with experimental studies, there
remains no convincing theory for the value of ξ.

2 Point-vortex model of 2D decaying turbulence

One of the primary goals of the point-vortex model was to construct the simplest model
capturing the scaling regime of two-dimensional decaying turbulence [1]. In this model,
2D decaying turbulence is described by a “vortex gas” with circulations that determine
the velocity field. Vortex same-sign merger is the dominant dissipative mechanism. The
point-vortices are Hamiltonian, and hence, conservative, and each vortex has a position
and circulation. Under this framework, same-sign pairs rotate without merger. However,
given that when two point-vortices approach, the dissipation becomes important, we require
a modification of the dynamics: when two same-sign vortices approach within a critical
merger distance, they merge instantaneously, and are replaced by a single new vortex. The
Hamiltonian dynamics then continues with this new vortex set. So, the new point-vortex
dynamics is conservative everywhere in time except for a set of measure zero. This is a new
class of dynamical system, which has been called punctuated Hamiltonian dynamics, and
is neither conservative nor smoothly dissipative. This class of dynamical systems captures
the intermittency of high Reynolds number turbulence.

2.1 Merger rules

When two same-sign vortices approach within a critical merger distance, determined to
be less than approximately 3.3 times the vortex radius, the Hamiltonian dynamics are
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Figure 1: A comparison of average vortex numberN(t), vortex radius r(t), vortex circulation
magnitude Γ(t), and peak vorticity ω (denoted by ζ in the figure) from a 2d decaying
turbulence simulation (symbols) and scaling theory (solid lines) with ξ = 0.72. The model
was of 40962 resolution. Each of the quantities has been multiplied by a suitable constant
for graphical representation purposes. Note the logarithmic x- and y-axes. From [9].

interrupted and the two vortices merge into one new vortex. To capture this merger, we
must modify our point-vortex model so that each vortex carries a dynamically inactive
size. During the merger, the energy and peak vorticity are conserved, as in scaling theory.
We further assume that the initial vortices have uniform peak vorticity, ωi = ±ωa for all
i, and that the newly formed vortex also has the same vorticity (i.e. ωnew = ω1 = ω2).
Furthermore, we derive the following rules for the size and circulation of the new vortex
based on the conservation of E

Γ2
new = Γ2

1 + Γ2
2, (23)

r4new = r41 + r42. (24)

An interesting experiment would be to trace the linear momentum as two vortices merge.
Since the circulation of the new vortex is not identical to the sum of the circulations of the
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Figure 2: A comparison of average vortex number N(t) estimated from decaying 2d tur-
bulence simulations at high resolution (circles) and low resolution (triangles). Evolution
predicted by scaling theory with ξ = 0.72 is represented by the solid line. Note the loga-
rithmic x- and y-axes. From [9].

merging vortices, we would expect a change in linear momentum over the simulation.

2.2 Results of Punctuated model

Long integrations of the punctuated point-vortex model are obtained through renormaliza-
tion, whereby the final state of an integration is used to initialise a new simulation with
many more vortices, allowing us to reach the asymptotic scaling regime more quickly and
to obtain sufficient data to reduce the sampling error. The model reproduces the vortex
number N , vortex radius ra, circulation magnitude Γ, enstrophy Z and kurtosis Ka pre-
dicted from scaling theory very well (figure 4). Figure 5 shows that the punctuated model
produces scaled distributions that, within sampling variability, are constant in time and
hence evolve self-similarly, although the model contains a higher number of small vortices
than the turbulence solution.

3 Forced 2D turbulence

Forcing can be included in the 2D Navier-Stokes equations as follows
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Figure 3: table from [3]

∂tu + u · ∇u = −∇p+ ν∇2u− αu + f , (25)

where ∂t denotes a partial derivative with respect to time, u is the 2D fluid velocity, p
is pressure, ν is the viscosity, α is a linear frictional damping term and f is the forcing
term [5]. The evolution of fluid properties (e.g. energy, enstrophy, vorticity) depends on
the details of the forcing. The forced state produces an inverse energy cascade to larger
scales, which arises primarily from the interaction of strain and vortices of different sizes,
without requiring vortex merger or growth as in the non-forced simulations [5]. Forced 2D
turbulence also produces a direct enstrophy cascade to smaller scales. We direct readers to
[5] for a more comprehensive review of forced 2D turbulence.

4 Summary of 2D

We have considered the properties and evolution of coherent structures under decaying and
forced 2D turbulence. 2D vortex dynamics can be modelled by both point vortices and
elliptical vortices, where decaying turbulence acts like a “vortex gas”. By implementing
structure based scaling theory, we can represent all vortex properties in terms of a few
quantities, such as vortex number N , vortex radius r and vorticity ω. Furthermore, the
time-evolution of all vortex properties can be expressed in terms of the vortex exponent ξ.
Numerical and experimental studies show a reasonable agreement of values of the exponent;
disagreements on the value of ξ can be attributed to different lateral dissipations or initial
conditions. The punctuated point vortex model is a Hamiltonian point vortex model that
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FIG. 8. Probability distribution functions p(r,t’), t’=O, from the modi- 
fied point-vortex model for several different renormalization cycles, la- 
beled by the numbers on the right. Each distribution is an average over 
the five independent trajectories. The delta-function initial condition is 
indicated symbolically by the arrow. 

we thus use data from cycles 7-12 from each of the five 
trajectories, resulting in a total of 30 cycles. 

The initial condition for each cycle is defined to occur 
at t’=O, but it is to be considered a state within the scaling 
regime at some time t= t’ + to = q,. The hypothesized scal- 
ing behavior is (4)-( 6). In terms of t’, the equation for 
vortex number, for example, is 

t’+to -6 
N(t) =N(to) - 

( ) to * (20) 

The unknown parameters are thus the exponent c, the time 
to, and the values of the average vortex properties at to. The 
only parameter that is relevant for comparison with the 
turbulence solution in Sec. III is g. 

The individual cycles exhibit significant variability, 
both within a single cycle and between cycles, as can be 
seen in p( r,t) (Fig. 8) and N(t) (Fig. 9). To test scaling 
theory we consider average quantities, denoted by a sub- 
script a. We shall need two different averages: an average 
over all vortices iti a single cycle at a single time, denoted 
by an overbar; and an average over all cycles at a single 
time; denoted by angular brackets. Furthermore, the quan- 
tities of interest can all be expressed as averages over vor- 
tex number and radius: 

N,(t) = (N(t) >, 
r&>=(W), 
r,(t) =4b?(t)), 

Z(t) =; (N(t)<(t)), 

K”‘t)=4?i( N(t)&, * 

(21) 

FIG. 9. Vortex number N(t), t>te, te=O.O50, for 30 cycles from the 
modified point-vortex model. 

The values of to, c, and N( to) are obtained by perform- 
ing a least-squares fit of the logarithm of (20)) 

lnN,(t>=A-gln(t’-i-to), (22) 
where ‘4 =ln[N(to)t$]. One can analytically obtain a fit for 
A and g as functions of to. A numerical search for the to 
that minimizes the error completes the fit. Uncertainties 
are obtained by approximating the fitting error near the 
minimum as a quadratic function of to, and finding the At, 
which increases the error by 20%. The results are 
to=0.050*0.003 and ~=0.72*0.02. 

The fit of N,(t) to scaling behavior, shown in Fig. 10, 
is excellent, indicating that the vortex number does indeed 

4x102 , . . . . . I 1 

.I.\,..- 
. . . . . 102 * 

FIG. 10. A comparison of average vortex number N,(t), vortex radius 
r,(t), vortex circulation magnitude I,(t), enstrophy Z,(t), and kurtosis 
K,(t) from the modified point-vortex model (solid lines) and scaling 
theory (dotted lines). In the model, to < t < to + t&,,, where fc=O.O50 and 
&d = 0.14 is the earliest time for one of the 30 cycles to reach N= 100. 
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Figure 4: A comparison of average vortex number Na(t), vortex radius ra(t), vortex circu-
lation magnitude Γa(t), enstrophy Za(t), and kurtosis Ka(t) from the modified point-vortex
model (solid lines) and scaling theory (dotted lines). In the model, t0 ≤ t ≤ t0 + t′end, where
t0 = 0.050 and t′end ≈ 0.14 is the earliest time for one of the 30 cycles to reach N = 100.
From [1].

has been modified such that vortices carry a size that is dynamically-inactive except during
close approaches, when dissipative vortex merger occurs. This modified model captures the
main features of 2D decaying turbulence well. According to [4],

Concerning the decay problem, we are thus left at the present time with an
elegant phenomenological theory (“universal decay theory”), which turns out to
represent consistent sets of numerical and experimental observations.

However, there remains disagreement, particularly observable at Walsh Cottage, whether
decay theory is truly “universal” and whether the numerical and experimental observations
that underlie the theory are truly “consistent”. Finally, it is possible to observe inverse en-
ergy cascades in forced 2D turbulence, although the properties and evolution of the coherent
structures in this framework will depend on the mechanism of forcing.
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FIG. 11. Probability distribution functionsp(x) (9) at six different times 
from the modified point-vortex model calculated by averaging over the 30 
cycles. 

evolve algebraically. Furthermore, the value. of g found 
here fits the turbulence solution extremely well (Fig. 1) . 

A comparison of the other quantities with the scaling 
theory predictions (6) is also shown in Fig. 10. The values 
of to and c used in the scaling theory predictions are from 
fitting N, while the initial values [I( to), etc.] are chosen by 
requiring the data to match scaling theory at a single in- 
termediate time. The quantities exhibit algebraic evolution, 
with the exponent well predicted by scaling theory. 

The scaling behavior can be interpreted using (21)) 
together with the fact that the transformation rule (18) 
requires N( t)r:( t) be strictly constant for all t and all 
cycles. Thus, one concludes that (Naz) - (N) “( c),>p, 
from which we infer self-similar evolution of the distribu- 
tion function, as in (7)-(g). Because all quantities are 
related by (21) to the vortex number and radius, we focus 
on the vortex size distribution p (r,t), and test the inference 
that p(r,t) evolves as (9). 

The distributions at six different times, each obtained 
by averaging over- the 30 cycles, are plotted in Fig. 11. The 
distributions are, within sampling variability, identical, and 
one concludes that the hypothesis (9) is true. 

The best estimate for p(x) is obtained by averaging 
over the 30 cycles and several times within each cycle. The 
behavior of fluctuations leads us to conclude that the cor- 
relation time is less than half a cycle. Thus we average over 
three times: at the beginning, near the middle, and near the 
end of each cycle. The best estimate for p(x) and its un- 
certainty are piotted in Fig. 12. 

Figures 6 and 11 show that both the modified point- 
vortex solution and the turbulence solution evolve self- 
similarly according to (9). Comparison of Figs. 7 and 12, 
however, shows that the actual shape of p(x) differs sig- 
nificantly between the two, with the point-vortex model 
containing significantly more small vortices than the tur- 
bulence solution. Differences in the large vortex portion of 
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“a 
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X 
5 

FIG. 12. Best estimate for p(x) (9) from the modified point-vortex 
model, obtained by averaging over the 30 cycles and over three times 
within each cycle. The dotted lines indicate the uncertainty estimated by 
the standard error of the mean, assuming the 90 measurements are inde- 
pendent. 

9 are small enough to be accounted for by sampling vari- 
ability. 

V. ENERGY PARTlTlQN 

The transformation rules for the modified point-vortex 
model are based on conservation of energy, up to a possible 
logarithmic correction. Figure 4 shows that the turbulence 
solution conserves energy extremely well. In this section, 
we investigate energy conservation in the point-vortex 
model. In doing so, we formulate an energy partition ap- 
plicable to any structured flow. 

When the vorticity field is structured, one can partition 
the energy E into three components: the self-energy E, the 
configuration energy EC, and the background energy EJ,. 
Here E,, the energy due to self-interaction of the struc- 
tures, is independent of their positions, while EC, the inter- 
action energy of the structures, is a function of their spatial 
configuration. Here Eb is the. energy resulting from the 
nonstructured part of the vorticity, and contains both the 
interaction between the structures and the background and 
the self-energy of the background. 

The partition is accomplished by rewriting the energy 
(2) in terms of a Green’s function: 

dx’ S‘(x)G(x-x’){(x’), 

(23) 
where G is defined by 

dx’ G(x-x’)c(x’), (24) 

and translation symmetry requires G( x,x’) = G( x-x’). 
Periodic boundary conditions require that the total circu- 
lation in the (27~L)’ domain be zero. The relation V2$=g 
then determines the differential equation which G satisfies: 
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Figure 5: Probability distribution functions p(x) at six different times from the punctuated
point-vortex model calculated by averaging over 30 cycles. From [1].

5 Structures in 3D Quasigeostrophic Fluid Dynamics

5.1 Quasigeostrophic equations

We relax the 2D assumption and again consider the case of Ro � 1 (rapid rotation, i.e.
scales slower than a day) and F � 1 (strong stratification). We assume the system is
hydrostatic,

∂p

∂z
+ ρg = 0, (26)

so vertical gravity is balanced by the vertical pressure gradient, and that the fluid is thin, so
the vertical dimension is much smaller than the horizontal dimensions. The 3D momentum
equation is

∂u
∂t

+ (u · ∇)u = −∇p+ ν∇2u− f × u, (27)

and the fluid is incompressible
∇ · u = 0. (28)

The equation for conservation of mass is

∂ρ

∂t
+ (u · ∇)ρ = 0, (29)
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and the vertical density gradient is given by

∂ρ

∂z
= −N

2

g
, (30)

where N = N(z) is the buoyancy frequency, which we assume to be horizontally uniform.
An asymptotic analysis of the 3D equations, with Ro � 1, results in the quasigeostrophic
equations.

At lowest order in Ro, we obtain

0 = −∇p− f × u, (31)

where the leading order velocity field is

u(x, y, z, t) = (u, v, 0), (32)

and f is the Coriolis parameter defined in lecture 1. Therefore, to leading order, the Coriolis
force balances the horizontal pressure gradient. This is called geostrophy. The leading order
velocity field is called the geostrophic velocity. The geostrophic velocity is 2D, so using
incompressibility we can write the geostrophic velocity in terms of a streamfunction ψ:

(u, v) =
(
−∂ψ
∂y
,
∂ψ

∂x

)
. (33)

The next order in the asymptotic analysis gives the time dependence of u and the
vertical velocity. Taking the curl of the next order of the momentum equation (27) and
using incompressibility gives

Dω

Dt
− f ∂w

∂z
= ν∇2ω, (34)

where we define the material derivative as

D

Dt
≡ ∂

∂t
+ u · ∇. (35)

Using (29) and (30) we find an equation for the vertical velocity

w = − f

N2

D

Dt

∂ψ

∂z
. (36)

We then combine this with (34) to obtain

D

Dt

(
ω +

∂

∂z

(
f2

N2

∂ψ

∂z

))
= ν∇2ω, (37)

or
Dq

Dt
= ν∇2q, (38)

to leading order, where q is the potential vorticity

q = ω +
∂

∂z

(
f2

N2

∂ψ

∂z

)
. (39)
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The first term in this equation is the relative vorticity obtained from the curl of the
geostrophic velocity, ω = ∇ × u = ∇2

2Dψ, and the second is the ‘stretching term’. The
vertical velocity causes stretching, which causes ω to change over time.

If N is constant, N 6= N(z), then let z′ = Nz/f , and the potential vorticity is given by
the isotropic 3D Laplacian,

q = ∇2
3Dψ. (40)

Equations (38) and (40) are the 3D quasigeostrophic (QG) equations for constant N . The
3D Laplacian in (40) indicates that the velocity field depends on the global 3D vorticity
distribution.

We can compare the 3D QG equations with constant N to the 2D equations found
previously:

2D 3D QG, constant N

Inviscid vorticity equation: Dω
Dt = 0 Dq

Dt = 0

q − ψ relationship: ω = ∇2
2Dψ q = ∇2

3D′ψ

The similarity of the QG equations to the 2D vorticity equations leads to the same
turbulent cascade theory as 2D. If ν = 0, the potential vorticity q is invariant, so as in 2D
there is no stretching of potential vorticity in QG. The energy

E = −1
2

∫
q(x)ψ(x)d3x (41)

is conserved, as in 2D, although there is now a contribution from potential energy. Thus the
analysis of the 2D equations gives some insight into a fully 3D, asymptotic ( Ro� 1, F � 1)
regime.

5.2 QG decaying turbulence

Isotropy of the q − ψ relation (q = ∇2ψ) and Taylor-Proudman ideas led to predictions
of 3D isotropic spectra [7] and vertical barotropic (depth-independent) columns. However,
numerical simulations (3203 resolution) by [6] with random homogeneous and isotropic
initial conditions show otherwise. The simulations use the dynamical QG equation

Dq

Dt
= −D, (42)

with q defined in (39). The dissipation operator D = ν∇4q represents the effects of the
smaller scales of motion (ν is a small hyperviscosity). Figure 6 shows results of the sim-
ulations at four different times. The simulations show the formation of roughly spherical
vortices (in stretched coordinates z′ = Nz/f). The vortices are advected by the velocity
field caused by the other vortices. The two primary interaction mechanisms that transform
the vortex population are between same sign vortices: nearly horizontal merger, as we have
already seen in 2D, and vertical vortex alignment, which is a new phenomenon to QG.
Unlike vortex merger, the vertical alignment process is at least partly reversible (in that
aligned vortices can move out of alignment) and the vortices remain distinct. The number
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resembles vertically uniform columns of
potential vorticity, which would have ac-
companying depth-independent (barotro-
pic) motion. Such an outcome has been
seen in simulations with very coarse vertical
resolution (14). However, the actual end
state is significantly different from barotro-
pic motion and, because there is no inviscid

mechanism for vertical homogenization of
the potential vorticity, will remain so.

Coherent vortices occur abundantly in
nature, and the particular examples men-
tioned in the introduction are known to
contribute significantly to the dynamical bal-
ances of the global circulations. The turbulent
vortex dynamics shown here must, in nature,

compete with other influences such as global
circulations, small-scale forcing, inhomoge-
neities in N and f, and anisotropic domains.
Nevertheless, our idealized model exhibits the
fundamental phenomena ofvortex emergence
and evolution and allows us to study their
roles in the statistical dynamics of planetary
turbulence.

Fig. 4. Potential vorticity q(x,yz) at (A) t = 5.0, (B) t = 10.0, (C) t transparency (left) (larger values are less transparent) and hue (right) as
= 25.6, and (D) t = 72.1. The z' axis is up. The data are displayed a function of q, centered about q = 0. Thus, for example, a large
by a volume-rendering technique: Each grid value is assigned a color positive q is purple and opaque, whereas a smallish negative q is yellow
and degree of transparency affecting light rays that pass through the and fairly transparent. Very small lqj is completely transparent, hence,
volume to the viewer. The curves beneath the images show the invisible.
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Figure 6: Potential vorticity q(x, y, z′) at (A) t = 5.0, (B) t = 10.0, (C) t = 25.6, and (D)
t = 72.1. Taken from [6].

12



(a) (b)

Figure 7: (a) Wavenumber spectra of potential vorticity S(κ) at t1 = 2.2, t2 = 5.0, and
t3 = 10.0. (b) Spectrum anisotropy A(κ) at t1, t2, and t3. Taken from [6].

of vortices decreases with time due to vortex merger, and the end result is of two columns
of vertically aligned same-sign vortices, with the appearance of ‘beads on a string’. This
two column system is an analogue of the final vortex dipole in 2D. Similarly to 2D, the
spectra are steeper than cascade theory predicts. In addition, there is significant spectral
anisotropy,

A(κ) =
3Sz′(κ)

Sx(κ) + Sy(κ) + Sz′(κ)
6= 1, (43)

where Si(κ) are the directionally weighted wavenumber spectra of q

Si(κ) =
∫
|κ|=κ

(κi
κ

)2
|q̂|2dκ, (44)

i = x, y, z′, q̂(κ) is the 3D Fourier transform of q(x), and κ = |κ| is the magnitude of
the 3D wavenumber. Note that

∑
i Si = S(κ) which is the spectrum of q̂ averaged over a

shell of constant κ. Graphs of S(κ) and A(κ) are shown in figure 7. A(κ) 6= 1 indicates
an anisotropic potential vorticity distribution at wave number κ. Due to this anisotropy
(which is perhaps not surprising since D/Dt is not isotropic), the vortices are broader in
the horizontal than the vertical.

5.3 QG vortex census ([8])

With the idea that ‘geostrophic turbulence is controlled by the self-, pair-, and collective-
dynamics of its coherent vortices’, [8] did a vortex based statistical analysis of the results
from the numerical simulations described above. This describes the structure and evolution
of the vortex population in QG turbulence. A subjective automated algorithm is used
to perform a vortex census to identify vortices and to measure their size, strength and
shape. The result of this census is that the number of vortices decreases over time, which is
expected from vortex merger. The mean enstrophy and mean circulation both increase over
time. The mean of the peak vorticity, qp, is approximately constant after an initial time
(when the number of weak vortices appears to decrease faster than the number of strong
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(a) (b)

(c) (d)

Figure 8: Graphs of the QG vortex census results: (a) number of vortices; (b) Γ and Z; (c)
maximum of qp and mean of qp; (d) height h, radius R and aspect ratio. Taken from [8])

vortices), while the maximum of qp decreases due to dissipative effects. The mean radius
and height both increase over time, but the aspect ratio remains approximately constant
(≈ 0.8). However, this constancy is not yet well understood. All these quantities appear to
be described relatively well by power laws in t (see figure 8), which indicates the possibility
of a scaling theory. Since there are no vertical velocity dynamics in the potential vorticity
q, which is only advected horizontally, a scaling theory for QG can be derived in a similar
way to the 2D scaling theory above.

5.4 QG scaling theory

The scaling theory is derived similarly to 2D (see section 1), with an additional empirical
constant of the vortex aspect ratio. The assumptions are

• qp ∼ constant

• Aspect ratio ∼ constant

• N ∼ t−ξ

• E conserved

• All vorticity is within vortices (this assumption turns out to be less valid than in 2D,
because there are more background vorticity effects)

Following the same arguments as in the 2D scaling, we find scaling exponents for the
different quantities in terms of a single exponent ξ. Empirically, from the results of the
vortex census, ξ ≈ 1.25, which is higher than for 2D. Therefore the number of coherent
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vortices decreases more rapidly in 3D QG than in 2D. The assumption of constant aspect
ratio gives

< h >∼< R >, (45)

where < h > is the average vortex height and < R > is the average vortex radius. Similarly
to 2D, the circulation and enstrophy scale as

< Γ >∼< q >< R >2, < Z >∼< q >2< R >2, (46)

where q is potential vorticity (39). The energy is given by

E ∼
∫

d3x
∫

d3x′q(x)q(x′)G(x,x′), (47)

where G is a Green’s function. In 2D, the Green’s function ∼ ln |x−x′|, and we ignored the
log terms in the scaling theory (see section 1.1.2). However, in 3D QG, the Green’s function
∼ 1/|x− x′|, so we must pick a length scale L ∼ |x− x′|. This introduces some ambiguity.
Considering the interaction energy between vortices, we choose L ∼ N−1/3, which is the
typical vortex pair separation distance. This gives scalings of

< R >∼< h >∼ t2ξ/9 = t0.28, (48)

< Γ >∼< Z >∼ t4ξ/9 = t0.55. (49)

Considering the self-interaction energy, we choose L ∼ R, which is the vortex size. This
gives scalings of

< R >∼< h >∼ tξ/5 = t0.25, (50)

< Γ >∼< Z >∼ t2ξ/5 = t0.50. (51)

For both choices of L, the scalings of < R >, < h > and < Γ > agree well with the
vortex census results (< R >∼ t0.29±0.05, < h >∼ t0.28±0.05, < Γ >∼ t0.45±0.10). There
is more discrepancy in the exponent of < Z >, which is smaller in the vortex census
results (< Z >∼ t0.34±0.10) than in the scaling theory. This indicates that there is greater
dissipation of vorticity q within the vortices in the numerical simulation than assumed in
the scaling theory.

5.4.1 QG column waves

Another interesting observation from the numerical simulations in [6] is the appearance of
vertical helical and planar waves on the vortex columns. These are shown in figure 9, but
have not yet been studied.
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