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1 Introduction

1.1 Problem Background

Thanks to the recent success of the astroseismology component of the Kepler mission,
renewed attention has been given to the mechanism that causes time-varying luminosity,
or pulsations, in β-Cepheid stars. The pulsation mechanism for regular Cepheids is well-
understood in terms of the kappa-mechanism. The pulsations are dependent on the opacity
κ of the ionized layers of a star. This opacity is controlled by radiative processes, namely the
absorption and re-emission of photons as they move away from the stellar core. However,
the electrons in an ionized layer block photons and prevent radiative heat transport through
the layer. From Kramer’s Law, the opacity of an outer layer is found by: κ = ρ/T 3.5, where
ρ is the density in the layer and T is the temperature. If the outward pressure beneath
the layer decreases, then the layer contracts inwards, and its volume decreases. The energy
that is released upon contraction of the layer partially ionizes the helium atoms, rather than
increases the temperature of the layer, thus increasing the opacity. Heat is then transported
through the layer less efficiently, so pressure builds up beneath the layer. This pressure is
eventually enough to push the layer outward, thus increasing its volume. As the layer
expands, the electrons recombine with the ions, and the density within the layer drops,
such that the opacity consequently decreases, allowing greater heat transport through the
layer. Eventually the pressure beneath the layer drops again, and the cycle repeats, resulting
in periodic variations in the star’s luminosity [3, 9].

However, the role of helium partial ionization zones, as presented in the standard kappa
mechanism, is sensitively dependent on the temperature of the star. For a hot star with
effective temperature greater than 7500 K, the partial ionization zones are located too close
to the star’s outer surface, and they are unable to drive significant pulsations. For cooler
stars with effective temperature less than 5500 K, the partial ionization zones are too close
to stellar core, and heat can be transported by convection rather than by radiation, and
does not build up beneath the partial ionization zones. The regular Cepheids, which are
located on the instability strip, are within the perfect temperature range to exhibit these
pulsations described by the kappa mechanism. The β-Cepheids, on the other hand, have too
high temperatures to have helium partial ionization zones, so one would not expect them
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to pulsate. However, these stars do exhibit pulsations. It has been recently thought that
they may have iron partial ionization zones that could explain their periodic pulsations
in a similar way [4]. These stars are larger and brighter than regular Cepheids, so it is
important to understand the mechanism that drives their pulsations for other astrophysical
applications as well.

If such iron partial ionization layers could be responsible for pulsations in β-Cepheids,
how can these layers form and is there evidence that such iron layers exist in stars? To
see how iron layers may form, note that there are two opposing forces that act on atoms:
radiative levitation and gravitational settling. The radiative levitation acts away from the
stellar core due to the upward momentum on atoms exerted by photons that are emitted
from the core, while the gravitational settling acts toward the stellar core. The total settling
velocity, V , of an atom can be expressed as:

V = (grad − g)
mD

kT
(1)

where grad is radiative acceleration (away from the core), g is the gravitational acceleration
(toward the core), m is the element mass, D is the molecular diffusion coefficient, k is
the Boltzman constant, and T is the stellar temperature [8]. The force balance is element-
dependent, not only because of the element mass, but also because the radiative acceleration
depends on the chemical species in question. Therefore, the sign of the total settling velocity,
which is determined by the sign of grad − g, is element-dependent. This dependency is
illustrated in the work of [7], where profiles for selected chemical species are shown (see
Figure (1)). For each element, Figure (1) shows log(grad/g) as a function of the distance
away from the stellar core, such that -6 on the x-axis indicates outer layers, and 0 indicates
proximity to the stellar core. For certain elements, such as Mg, log(grad/g) < 0 in all
regions, so the radiative levitation is less than the gravitational settling, and the total
settling velocity is always toward the core. For other elements, such as Mn, Ca, and Fe,
there are regions where the radiative levitation exceeds the gravitational settling. The case
of iron is particularly interesting because there is a region where log(grad/g) > 0, with
regions where log(grad/g) < 0 both above and below it. As a result, there is a zone where
the iron atoms converge in a ”pinched layer”, as shown in Figure (2). It is due to this
mechanism that iron layers could exist near a stellar photosphere.

In this study, we attempt to describe several characteristics of iron ”pinched layer”, such
as the thickness of the layer, iron profile, and maximum iron concentration. Additionally, we
show that depending on the system parameters and the mass of iron, the layer may be either
double diffusively or fully convectively unstable, which would alter the iron concentration
profile. Note that the analysis in this project is not specific to iron atoms, and the results
can be generalized to any system that fits the formulation described above.

1.2 Governing Equations

Here, we consider a domain that is thin compared with the local system scaleheight and
assume that both the background temperature and adiabatic temperature gradients are con-
stant within that region. In astrophysical systems, the background temperature decreases
away from the stellar core toward the outer layers, thus the background temperature gradi-
ent is negative. However, because the fluid is not incompressible, the adiabatic temperature
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Figure 1: Profiles of radiative acceleration of selected elements normalized with respect to
local gravity as a function of distance from the stellar core for a main sequence star. For
certain elements like Mg, gravitational settling exceeds the radiative levitation. For some
other elements, there are layers where radiative levitation exceeds gravitational settling [7]).

Figure 2: Model of a system with an iron converging zone based on a profile from Figure
(1). In this ”pinched” layer, total settling velocity is positive (radiative levitation exceeds
gravitational settling) for z < 0, and total settling velocity is negative (gravitational settling
exceeds radiative levitation) for z > 0.
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gradient is nonzero. Since the difference between background and adiabatic temperature
gradients is positive, the combined effect of the temperature gradients makes the fluid stably
stratified . The governing equations for the system are ([5]):

∂~u

∂t
+ ~u · ∇~u = −(1/ρ0)(∇p− ρ~g) + ν∇2~u, (2)

∂T

∂t
+ ~u · ∇T + w

(
∂T̄back
∂z

− ∂T̄adiab
∂z

)
= κT∇2T, (3)

∂C

∂t
+ ~u · ∇C +

∂

∂z
(VsC) = κC∇2C, (4)

∇ · ~u = 0 (5)

where ~u = (u, v, w) is the velocity field, T is the temperature, C is the iron concentration, p
is the pressure, κT is the thermal diffusivity, κC is the diffusivity of the iron atoms, ν is the
molecular viscosity, T̄back is the background temperature and T̄adiab is the adiabatic temper-
ature. The only change to the original advection-diffusion equations is the added ”settling”
velocity term Vs for the iron, which depends on the vertical position z. These equations are
then non-dimensionalized with the following length and time scales, as described in [6]:

d = [l] =

(
κT ν

gαT̄z

)1/4

, (6)

[t] =
d2

κT
, (7)

[u] =
κT
d
, (8)

[T ] = T̄zd, (9)

[C] =
αT̄zd

β
. (10)

where we have defined for simplicity T̄z = ∂T̄back
∂z − ∂T̄adiab

∂z , α is the thermal expansion co-
efficient, and β is the compositional contraction coefficient. In this non-dimensionalization,
the length scale d corresponds to the typical horizontal length scale of a finger, and the
time scale is the thermal diffusion time scale. From non-dimensionalization, the governing
equations can be re-written as follows with 2 non-dimensional parameters:

1

Pr
(
∂~u

∂t
+ ~u · ∇~u) = −∇p+ (T − S)k̂ +∇2~u, (11)

∂T

∂t
+ ~u · ∇~T + w = ∇2T, (12)

∂C

∂t
+ ~u · ∇~C +

∂

∂z
(VsC) = τ∇2C, (13)

∇ · ~u = 0 (14)

where Pr is the Prandtl number, defined as Pr = ν/κT, and τ = κC/κT is the ratio of the
diffusion coefficients. Here, Vs(z) is the non-dimensionalized settling velocity. For double
diffusive convection to occur, it is important that τ � 1. When a warm fluid parcel with
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Figure 3: An example of fingering convection, a type of double diffusive instability (left)
for a system with τ = Pr = 0.1, s = 0.001, C0 = 466, and an example of full convection
(right) with τ = Pr = 0.1, s = 0.01, C0 = 4500. Warm colors show fluid parcels with
higher iron concentration, cooler colors with lower concentration. Fingers with higher iron
concentration extend downward, and the ones with lower iron concentration extend upward.

high compositional concentration is moved downward into cooler ambient fliud, it naturally
rises because it is more buoyant. However, if the thermal diffusion time scale is less than
the amount of time it takes the parcel to move back to its original position, then the fluid
parcel loses its heat, but retains its concentration. As a result, it becomes heavier than the
ambient and sinks, forming a downward finger. Equally, a cool parcel with low composition
concentration would form an upward extending finger when perturbed into a warm layer.
The result of such double diffusive instability is fingering convection, an example of which
is shown in Figure (3). An example of a fully-convective system is shown to the right for
comparison.

2 Evolution of the Background Profiles

We begin our investigation by considering the evolution of the iron concentration, assuming
there is no fluid motion. Thus, we seek solution to a one-dimensional advection-diffusion
equation with respect to the iron concentration C:

∂C

∂t
+

∂

∂z
(VsC) = τ

∂2C

∂z2
. (15)

Here Vs(z) is the iron settling/levitation velocity, defined as Vs = −sz where s is a constant.
Indeed, from the schematic of the iron ”pinched layer” in Figure (2), we see that we can
approximate Vs(z) near the center of this layer (z = 0) with a linear function. We model
Vs(z) such that the downward gravitational settling dominates in the upper half of the
domain (z > 0), and the upward radiative levitation dominates in the lower half of the
domain (z < 0). Therefore we choose Vs = −sz with s > 0.
An analytical solution to this equation is a Gaussian in the form:

C(z, t) =
C0√

2πf(t)
e
− z2

2f(t) , (16)

where
√
f(t) is the width of the Gaussian at time t. C0 is a non-dimensional term that is

related to total column density of iron, such that Cdim = C0[C] and
∫
Cdimdz is the column
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density of iron in the layer,Σ0. This implies that C0 = αT̄z
βΣ0

d.
Plugging in (16) into (15), we can solve for f(t):

f =
τ + b̃e−2st

s
, (17)

where b̃ is some initial width of the Gaussian at time t0. Note that f(t) → τ/s = f∞ as
t→∞. Therefore, in absence of instabilities the ultimate laminar steady state concentration
profile is in the form:

C(z) =
C0√
2πf∞

e
− z2

2f∞ . (18)

3 Stability of Double Diffusive Convection with Particle Set-
tling

As the width of the Gaussian decreases and the iron concentration in the ”pinched layer”
increases, the concentration profile becomes steeper and steeper at a certain place in the
layer, and the system may eventually become double diffusively unstable. In order to
study the stability of the iron layer to double diffusive convection one must analyze the
problem allowing a spatially-varying background that also evolves in time. However, as
such formulation is not trivial, we begin by approaching the problem in a simpler way.

3.1 Stability of a system with linear gradients

The Gaussian concentration profile from (16) has maximum gradient at the inflection points
that occur at z = ±

√
f . Further, it is most unstable where the maximum concentration

gradient is positive, at z = −
√
f . In this approach, we perform a local stability analysis

near this most unstable point z = −
√
f to determine whether the system becomes double

diffusively unstable or not. Near this point, the background temperature and concentration
profiles can be approximated by linear functions with constant gradients T̄z = ∂T̄back

∂z −
∂T̄adiab
∂z

and ∂C̄back
∂z . We also assume that the time scale for the development of the instabilities is

much less than the time scale for the evolution of the background. We can then apply the
”frozen-in” approximation, which assumes that the background temperature and concen-
tration gradients are constant not only in space, but also in time. These simplifications
recover the approach from [1], but the equations contain an additional settling term in the
iron concentration equation. We then apply the linear stability theory by linearizing the
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governing equations, such that:

1

Pr

∂u

∂t
= −∂p

∂x
+∇2u, (19)

1

Pr

∂v

∂t
= −∂p

∂y
+∇2v, (20)

1

Pr

∂w

∂t
= −∂p

∂z
+ (T − C) +∇2w, (21)

∂T

∂t
+ w = ∇2T, (22)

∂C

∂t
+

w

R0
+ V

∂C

∂z
= τ∇2C, (23)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (24)

Here, we have defined another nondimensional parameter, R0 = 1/(∂C̄/∂z), where ∂C̄/∂z
is the non-dimensional gradient of iron concentration at z = −

√
f . In the dimensional sense,

R0 is the ratio of the stabilizing temperature gradient to the destabilizing compositional
gradient, such that R0

dim = (αT̄z
dim

)/(βC̄z
dim

). At the point where the Gaussian is most
unstable (z = −

√
f), C̄z is maximum and R0 is minimum, so we have:

C̄z =
C0

f
√

2πe
, (25)

and

R0 =
f
√

2πe

C0
. (26)

Note how in the linearized equation for particle concentration, we have also assumed that
the settling velocity is locally constant at value V . Expressing the quantities u, w, p, T ,
C in the form Q = Q̂eilx+ikz+λt, where Q̂ represents the mean quantity, we obtained a
cubic for the growth rate λ, which is similar to the original cubic of [1], but has additional
imaginary terms in the coefficients that are associated with the particle settling.

λ3 + a2λ
2 + a1λ+ a0 = 0, where (27)

a2 = ikV +K2(τ + 1 + Pr) (28)

a1 = K2(ikV )(Pr + 1) + K4(τPr + τ + Pr) +
Pr(m2 + l2)

K2
(1− 1

R0
) (29)

a0 =
Pr

K2
(ikV )(K6 + (m2 + l2)) +K6Prτ +

Pr(m2 + l2)

K2
(τ − 1

R0
) (30)

(31)

where K2 = l2 +m2 + k2. However, after examining the solutions to the cubic for different
l and k values, we find that the fastest growing mode is still k = 0, as in the case without
settling. This means that the added settling term, ikV , does not impact the initial devel-
opment of the instabilities.
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Given the nondimensional parameters Pr, τ , and R0 of the system, one can determine
the maximum growth rate of the instability λmax and its associated horizontal wave number
lmax. We then take k = 0 and maximize λ with respect to l, resulting in a quadratic:

b2λ
2 + b1λ+ b0 = 0, where (32)

b2 = 1 + Pr + τ (33)

b1 = 2l2(τ + Pr + τPr) (34)

b0 = 3τPrl4 + Pr(τ − 1

R0
); (35)

λmax and and lmax can be found by solving (27) and (32) simultaneously, using a Newton
method for instance.

3.2 Estimation of width of the Gaussian at the onset of instability

[1] showed that the stability of the system depends on R0. A system is double diffusively
unstable when 1 < R0 < 1/τ . If R0 > 1/τ , then the system is stable, and as R0 becomes
less than 1, the system becomes fully convective. We can therefore use these criteria to
determine whether an iron layer is stable, double diffusively unstable, or fully convective.
In the early stages of the evolution the iron layer is mostly likely stable, but as the Gaussian
concentration profile contracts with time, C̄z increases and R0 decreases at the point of
maximum instability, z = −

√
f . We can then estimate the width of the Gaussian profile

when a system first becomes marginally unstable to double diffusion. This happens when
R0 = 1/τ , which from (26) corresponds to:

f(t∗) = fcrit =
C0

τ
√

2πe
. (36)

We see that whether an iron layer, with given input parameters τ , Pr, and s, ever be-
comes unstable and at which width the instabilities occur, depends on the total surface
density of the system. Figure (4) shows

√
fcrit/f∞ as a function of C0. If fcrit < f∞, the

evolving concentration profile would reach a steady state laminar solution before attaining
the width at which double diffusive instabilities appear. However, if fcrit > f∞, then double
diffusive instabilities appear when the concentration profile reaches the width

√
fcrit. We

define Ccrit as the input mass for which fcrit = f∞: Ccrit = τ2
√

2πe
s . For systems with

C0 < Ccrit, double diffusive instabilities are not predicted to occur, and the concentration
profile should relax to a laminar solution. Conversely, for systems with C0 > Ccrit, the
system is predicted to be double diffusively unstable. The subsequent evolution of the con-
centration profiles for such systems are analyzed in the next section.

4 Simplified model for the long-term evolution of the system

In order to study the evolution of layers that become double diffusively unstable, we need to
consider the turbulent transport of iron in addition to diffusion and to the settling/levitation
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Figure 4: Diagram of stable regions and double diffusively unstable regions with respect to
input mass C0. The system is stable if fcrit/f∞ ≤ 1. Therefore, if C0 < Ccrit and the initial
concentration profile has width greater than

√
f∞, the steady state concentration profile

will converge to a laminar Gaussian solution of (18) and the system is stable. However,
if C0 < Ccrit, double diffusive instabilities will develop before the system converges to a
laminar solution.

balance. The 1D advection-diffusion equation used contains an additional term to model
this effect:

∂C

∂t
+
∂Fs
∂z

+
∂

∂z
(VsC) = τ

∂2C

∂z2
, (37)

where Fs is the turbulent flux, which can be defined in terms of a Nusselt number, Nu as:

Fs = −τ ∂C
∂z

(Nu− 1). (38)

Therefore, (37) can be re-written as:

∂C

∂t
+

∂

∂z
(VsC) = τ

∂

∂z

(
∂C

∂z
Nu

)
. (39)

[2] proposed a new turbulent transport parametrization for double diffusive convection,
which takes the form:

Nu = 1 + Ĉ2 λ2

τ l2(λ+ τ l2)
(40)

where Ĉ = 7 is an empirical constant, and where λ and l, the growth rate and the wavenum-
ber of the fastest growing mode respectively, are found from the linear stability analysis
described in Section 3.1. Note that if the layer is stable and λ = 0, Nu = 1, so Equation
(39) recovers the original advection-diffusion equation (15).
At steady state, we must solve:

VsC = −szC = τNu
∂C

∂z
. (41)
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Figure 5: Time evolution of the iron concentration from numerical solution with the fol-
lowing parameters: τ = Pr = 0.1, s = 0.001, and C0 = 466. The concentration profile is
initially stable, but becomes double diffusively unstable after contraction, and is no longer
of Gaussian form.

We wish to find an analytical expression for this steady-state solution. The difficulty
arises because Nu is a function of λ and l, which depend on R0 = 1/Cz, so Nu is a function
of C̄z as well.

We first solve (39) numerically to observe the time evolution of the iron concentration.
Figure (5) shows the iron concentration profiles in the layer at different time steps. The
concentration profile initially takes a stable Gaussian form, but eventually contracts enough
to become double diffusively unstable. Once this happens, Nu becomes larger than 1 and
turbulent fluxes become significant. After a while, we observe that the concentration con-
verges to a steady-state, but it is no longer Gaussian. Figure(6) shows ∂C

∂z as a function of
z in this steady-state solution. The profile has 3 parts: above z1 and below z2, Cz < τ , so
the system is stable to double diffusion and Nu = 1. Between z1 and z2, τ < Cz < 1, so the
layer is double diffusively unstable. Since at z1 and z2 the instabilities are just triggered,
λ = 0 and Nu = 1, the steady-state at those two points implies (see Equation (41)):

−sz1C(z1) = τCz(z1) = τ2, (42)

−sz2C(z2) = τCz(z2) = τ2. (43)

Here we find that C(z1) = −f∞τ/z1 and C(z2) = −f∞τ/z2. For z > z1 and for z < z2,
the system is stable and the concentration profile is Gaussian. Therefore, these parts of the
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Figure 6: Schematic of the theoretical approach to a steady state concentration profile.
The plot shows the derivative of steady state concentration profile from 1D simulation, ∂C∂z .

The parts where ∂C
∂z < τ are stable, while the parts where ∂C

∂z > τ are double diffusively

unstable. The two points, z1 and z2 are located where ∂C
∂z = τ .

concentration profile are expressed as:

C(z ≥ z1) =
Cu√
2πf∞

e
− z2

2f∞ , (44)

C(z ≤ z2) =
CL√
2πf∞

e
− z2

2f∞ . (45)

where Cu and CL are two constants to be determined. Using the expressions for C(z1) and
C(z2), Cu and CL can be expressed as:

Cu = −
√

2πf∞e
z1

2

2f∞
f∞τ

z1
, (46)

CL = −
√

2πf∞e
z2

2

2f∞
f∞τ

z2
. (47)

In the region where z2 < z < z1, Cz > τ . We approximate Cz using a parabola:
Cz = τ + k(z1− z)(z− z2) for some value k. The concentration profile in this region is then
approximately:

C(z2 < z < z1) = C(z2) +

∫ z

z2

(τ + k(z1 − z)(z − z2)) dz =

C(z2) + τ(z − z2) +
k

2
(z1 − z2)(z − z2)2 − k

3
(z − z2)3. (48)
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Plugging in z1 for z and the fact that C(z1) = −f∞τ/z1, we obtain an equation relating k,
z1, and z2.

Finally, we assume that at ẑ = (z1 + z2)/2 there is a balance between the advective flux
VsC and turbulent flux Fs, such that:

−sẑC(ẑ) = τNu(Cz(ẑ))Cz(ẑ). (49)

As a result of these assumptions, we obtain 3 equations for 3 unknowns: k, z1, and z2.
Equation (50) is obtained from mass conservation by integrating the piecewise concentration
profile. Equation (51)is found from plugging in z1 for z in the cubic equation for C(z2 <
z < z1). Equation (52) incorporates the advective and turbulent fluxes at ẑ.

C0 +
τf∞
z1

e
z1

2

2f∞

√
πf∞

2

[
1− erf

(
z1√
2f∞

)]
+
τf∞
z2

e
z2

2

2f∞

√
πf∞

2

[
1 + erf

(
z2√
2f∞

)]
= 0 (50)

f∞τ − z1z2

[
τ +

k

6
(z1 − z2)2

]
= 0 (51)

(τz1 + z2)2

4z1z2
−Nu(Cz(ẑ))

[
τ +

k(z1 − z2)2

4

]
= 0 (52)

These 3 equations can be solved for k, z1, and z2 using Newton’s method for a given
set of input parameters: τ , Pr, s, and C0. Once these are known, piecewise steady state
concentration profile C(z) is:

C(z > z1) = −f∞τ
z1

e
− z2−z1

2

2f∞ , (53)

C(z2 ≥ z ≤ z1) = −f∞τ
z2

+ τ(z − z2) +
k

2
(z1 − z2)(z − z2)2 − k

3
(z − z2)3, (54)

C(z < z2) = −f∞τ
z2

e
− z2−z2

2

2f∞ . (55)

For example using τ = Pr = 0.1, s = 0.01, f∞ = 10, Figure (7) shows the solutions for
z1, z2, and k as functions of C0. The value for z1 approaches zero as C0 increases, while z2

decreases nonlinearly. The value of k decreases sharply and approaches a constant. These
patterns are true for any choice of different input parameters of τ , Pr and s.

Furthermore, in Section 3.1 we defined R0 = 1/Cz and stated that double diffusive
instabilites occur for 1 < R0 < 1/τ . For R0 < 1, the system is predicted to become
fully-convective. In the unstable region z2 < z < z1, we approximated Cz as a parabola,
which has a maximum at ẑ = (z1 + z2)/2, such that Czmax = τ + (k/4)(z1 − z2)2. From
R0min = 1/Czmax, for a given set of τ , Pr, s, we can find Cconv, the value of C0 above
which the layer is predicted to become fully convective. Figure (8) shows an example for a
system with τ = Pr = 0.1, s = 0.01, f∞ = 10. For this example, the theory predicts that
the system will be fully convective if C0 > Cconv = 4600.
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Figure 7: Plot on the left shows z1 and z2 as functions of input mass C0; z1 approaches
zero, z2 decreases nonlinearly as C0 increases. Plot of the right shows k as a function of
C0; k rapidly decreases and approaches a constant as C0 increases. Both of the plots are
examples for a system with input parameters: τ = Pr = 0.1, s = 0.01, f∞ = 10.

Figure 8: A plot of maximum ∂C
∂z as a function of C0 for a system with τ = Pr = 0.1,

s = 0.01, f∞ = 10. The piecewise steady state theory predicts Cconv, the input mass
enough to make the system fully convective for which maximum ∂C

∂z = 1.
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5 Results of Numerical Simulations

In order to evaluate the theoretical predictions for the onset of the double diffusive in-
stabilities, the steady state concentration profiles, and the surface densities above which
double diffusive instabilites or full convection may occur, we have ran several 3-D numerical
simulations.

5.1 Set-up of the 3D code

Our code solves equations (11) - (14) in a triply-periodic domain. The temperature pertur-
bations are initialized with random noise. The initial concentration profile is a Gaussian of
a form:

Cinit(z) =
C0

2πfinit
(56)

where finit > fcrit, chosen such that the iron layer is initially stable. This way we can
determine whether the concentration profile will converge to a laminar solution, or whether
double diffusive instabilites or full convection develop. To save computational time, finit
was typically taken to be 1.1− 2fcrit, where fcrit is given in Equation (36).

The typical width of a double diffusive finger being 7 − 10d, the width of the domain
(x-direction) was chosen as 100d to allow at least 10 fingers to develop in the system. From
preliminary computations in a 2-dimensional domain, we have also that found artificial
shear develop in the solutions. Therefore, we ran 3D simulations in a domain with a depth
of 15d which is thick enough to allow the fluid motions to be 3-dimensional (to avoid this
problem), but also thin enough to decrease the computational cost of the simulations.

The height of the domain (z direction) depended on the input parameters of the sim-
ulation. For most of the simulations, the vertical velocity was prescribed as a sine func-
tion of the form V (z) = −Ksin((2πz)/Γz), where Γz is the height of the domain and
K = (sΓz)/(2π). Note that V (z) must be a periodic function in order to maintain the
periodicity of the domain. However, since we have assumed that vertical velocity decreases
linearly with height in the system, the initial Gaussian profile had to be contained within
the linear part of the sine function as shown in Figure (9a). Therefore, the height of the
domain had to be chosen large enough. The vertical extent of the domain was on the order
of 1000d, and had to be increased with higher C0 since fcrit increases with C0. To reduce
the computational cost, some of the later simulations at very high C0 were performed with a
high-order polynomial function for settling velocity of the form V = −sz(m20− z20)/(m20),
where m = Γz/2. This formulations allowed the vertical extent of the domain to be smaller,
since the linear part of this function encompasses a greater fraction of the domain than that
of the sine function. Figure (9) shows the comparison of the proportion of the linear part of
two functions with respect to an initial concentration profile. The polynomial formulation
can reduce the required height of the domain by a half.

5.2 Low input mass regime

This section compares the theoretical predictions of the concentration profile to the 3D
numerical simulations. From the analytical analysis, it is predicted that a system with
C0 < Ccrit will converge to a laminar steady state solution given by Equation (18). However,
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Figure 9: Initial condition Cinit(z) and two expressions for settling velocity: sinusoidal (left)
and polynomial (right). The red dashed lines indicate the region where the settling velocity
functions are linear. The polynomial function is linear for a greater fraction of the domain
than the sinusoidal function.

for a system with an input mass Ccrit < C0 < Cconv, then the system is predicted to develop
double diffusive instabilities, and a steady state profile can be, in theory, approximated by
the piecewise profile from Equations (53) - (55). In this study, we fixed τ = Pr = 0.1
and varied f∞ from 10 to 100 (corresponding to settling velocity gradients s = 0.01 and
0.001 respectively). We examined systems with C0 = 0.5Ccrit and C0 = 2Ccrit to determine
whether the double diffusive instabilities occured. For the system with f∞ = 10, we find
that Ccrit = 4 and for f∞ = 100, Ccrit = 46. Figure (10) shows horizontally-averaged
concentration profiles Cinit(z) at steady state, with f∞ = 10 in the upper panel and f∞ =
100 in the lower panel. The systems with C0 = 0.5Ccrit are on the left side, and the systems
with C0 = 2Ccrit are on the right side. Each plot shows the theoretical prediction for the
steady state profile from piecewise theory in blue, using a laminar Gaussian solution in
green, and finally, the actual 3D horizonatally-averaged concentration profile in red dots.
When C0 < Ccrit, the theory predicts that the system should be stable. The results from
3D simulations and the theoretical prediction overlay the laminar Gaussian steady state
solution, showing that the system is indeed stable. When C0 > Ccrit, the theory predicts
that double diffusive instabilities will develop. The 3D simulation results deviate from the
laminar Gaussian steady state solution due to the effects of double diffusive instabilities
in the region where z < 0. Furthermore, the steady state concentration profiles calculated
from (53)-(55) fit the 3D simulation results extremely well. This shows that our estimates
of the steady state profile of low-mass iron-rich layers are good predictors of the actual
results.

5.3 Higher input mass regime

We have also investigated whether the theoretical approximations are valid for systems with
higher input C0. For τ = Pr = 0.1 and f∞ = 10, 100, we ran simulations for C0 = 100Ccrit.
To verify that the theory is valid for different values of τ , we also ran a simulation with
τ = 1/30, Pr = 0.1, f∞ = 10, s = 1/300. Figure (11) shows the concentration profiles C(z)
for τ = 0.1, f∞ = 10 on the left and f∞ = 100 on the right, and the simulation with τ = 1/30
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Figure 10: Steady state concentration profiles as a function of z-direction for systems with
low input mass. The figures in the upper panels are from simulations with f∞ = 10, and the
figures in the lower panels with f∞ = 100. The figures on the left side are from simulations
with input mass below Ccrit, such that C0 = 0.5Ccrit, and the figures input mass above
Ccrit, such that C0 = 2Ccrit. The blue line indicates concentration profile from piecewise
analytical theory, green line is Gaussian laminar solution, and red dots show horizontally-
averaged concentration from 3D simulations.
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Figure 11: Concentration profiles as a function of z-direction for systems with higher input
C0 = 100Ccrit. The figure on the left is from simulations with f∞ = 10, τ = 0.1, the figure
on the right has f∞ = 100, τ = 0.1, and the figure on the bottom has f∞ = 10, τ = 1/30.

on the bottom. In the first two cases, the 3D simulation results and theoretical piecewise
concentration profile agree very well. The last 3D simulation took a long time, and we were
unable to reach a steady state in a given time frame. Therefore, for the f∞ = 100 simulation,
a 1D simulation based on Equation (39) with the same input parameters was run to steady
state, and the results from the 1D simulation were compared with the results from the
3D simulations as well as the theoretical piecewise steady state concentration profile. The
figure shows an agreement between 1D simulation and 3D horizontally-averaged simulation
results at the same time t = 1600, and an agreement between the steady state concentration
profiles from 1D simulation and the piecewise analytical formula. Therefore, the transient
solutions of the 3D problem can be well-approximated by solving Equation (39), and the
steady state concentration profiles are given by analytical piecewise approximation (53)-(55)
even for systems with higher input mass.

5.4 Fully-convective regime

Finally, we tested the theoretical prediction for the input mass criteria for the transition
from double diffusively unstable to the fully convective regime. Because the simulations with
high input mass and large f∞ values are computationally expensive, we ran simulations with
f∞ = 10, τ = Pr = 0.1, s = 0.01. For these input parameters, Cconv = 4400, so we ran
simulations with greater input mass, C0 = 4500, for which the system is predicted to be fully
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Figure 12: Vertical profiles of density deviations from background density, compositional
concentration, and temperature deviations from background temperature for a fully con-
vective simulation with input parameters: f∞ = 10, τ = Pr = 0.1, s = 0.01, C0 = 4500.
The density and temperature profiles appear fully mixed within the convective layer.

convective, and with lower input mass, C0 = 4000 and C0 = 3500, which are predicted to
be only double diffusively convective. However, the results from the 3D simulations showed
that all three systems were fully convective, making the prediction for Cconv inaccurate.
Such results may be due to the limitation of the validity of assumptions in the theory for
the prediction of a steady state profile, as described in Section 4. A better estimate for
Cconv needs to be derived in the future.
Figure (12) shows the vertical profiles of the density deviations away from background
density ρ0, from the compositional concentration, and the temperature deviations away
from the background temperature T0, from the simulation with C0 = 4500. Both density
and temperature profiles appear to be well-mixed in the fully convective region, while the
concentration profile is not as well mixed by convection. As a system becomes closer to being
fully convective, the background temperature gradient is no longer maintained constant,
violating one of the assumptions of the piecewise theory. What determines the thickness
of the fully convective layer as a function of C0, τ , Pr, and s remains to be determined.
In addition, we observed gravity waves generated in 3D simulations with high input mass,
which could also alter the transport in and out of the ”pinched” layer. The generation of
the waves can be observed from the horizontal velocity field, as shown in Figure (13).

6 Discussion

In this work, we modelled the distribution of iron in the outer layer of a star, assuming that
it settles from the top and is levitated from the bottom. We found that the laminar steady
state solution, in absence of convective instabilities in the system, approaches a Gaussian
distribution, which is dependent on 3 parameters: the total amount of iron, the ratio of
thermal diffusivity to particle diffusivity, and the slope of the settling velocity profile.

We also studied the iron concentration profiles in systems which become double diffu-
sively unstable. In particular, we found an analytical prediction for total mass of iron in
the system, for a given Prandtl number, diffusivity ratio, and settling velocity slope, above
which the system becomes double diffusively unstable rather than approach the laminar
steady state solution. We also developed a semi-analytical piecewise concentration profile
that approximates the steady state solution for systems that are double diffusively unsta-

18



Figure 13: Horizontal velocity field for xz-plane from a fully convective 3D simulation. Pos-
itive velocity is in warm colors, negative in cool colors. The 45-degree alternative pattern of
velocity field indicates gravity waves travelling toward the ”pinched layer” (super-saturated
region).

ble. Our theoretical predictions agreed well with the vertical concentration profiles from
3D simulation runs for several values of input masses, Prandl numbers, diffusivity ratios
and settling velocity slopes. In addition, we found that the transient concentration profiles
obtained from a 1D code that solves (39) agree with the vertical concentration profiles from
3D simulations at the same time steps. These conclusions are important for the develop-
ment of the stellar evolution models, especially if iron layers do play a role in the pulsations
of certain stars. These models are complex, and the incorporation of a 1D approximation
or a piecewise theoretical solution into the model is more suitable than running a full 3D
simulation for the double diffusive process.

Since this work developed tools to approximate steady state and transient solutions for
systems that are either stable or double-diffusively unstable, the next step is to develop a
theoretical model for the concentration profiles in a fully convective system. However, as
the system becomes fully convective, the underlying assumption of constant background
temperature gradient is violated. In addition, as the fluid is continuously mixed in such
system, defining a steady state or reaching a steady state through simulations may be diffi-
cult. In the 3D simulations with full convection, we observed gravity waves that transport
material into and out of convective layer. The influence of these waves most likely also
needs to be taken into consideration when developing a model for a fully convective layer.
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