
Traversing the edge:a study of turbulent de
ayMatthew ChantryAdvisor: Tobias S
hneiderAbstra
tIn this work the �edge of 
haos� is studied to in
rease our understanding ofturbulen
e in shear �ows. The �edge� is a hypersurfa
e in phase spa
e whi
hseparates 
onditions whi
h return to the laminar state from those whi
h engage inturbulent dynami
s. We ta
kle the subje
t of the geometry of the edge, and itsinvolvement during the return to the laminar state. Here studying plane-Couette�ow we observe the death of the self-sustaining pro
ess during de
ay and identifythe pro
esses whi
h govern the de
ay rate. The report 
on
ludes with tests on thevalidity of edge geometry observed in low dimensional models.1 Introdu
tionThe study of Newtonian �uid �ow through through a straight 
ir
ular pipe was �rst
arried out in the 19th 
entury, where Hagen [1℄ and Poiseuille [2℄ separately studied thelaminar �ow whi
h now 
arries both their names. This work was 
ontinued by Reynolds[3℄ who studied the transition from laminar �ow to �ow whi
h is both temporally andspatially disordered, 
alled turbulent �ow. The Reynolds number Re := UD/ν governsthis transition, where U is the mean speed, D the diameter and ν the kinemati
 vis
osity.The laminar Hagen-Poiseuille �ow is linearly stable for all values of Re, meaning thata �nite amplitude disturban
e is required to generate turbulent behaviour. The energythat the disturban
e requires to trigger turbulen
e has been studied for many years,and depend sensitively upon the shape of the disturban
e and the Reynolds number.The minimum value of the Reynolds number at whi
h turbulen
e is seen varies betweenexperiments but appears to lie in the range 1750-2300. It is thought that in this range of
Re that there exists a 
haoti
 saddle responsible for the dynami
s, whi
h may transitionto a 
haoti
 attra
tor for larger Re [4℄. In this regime the lifetime of turbulen
e 
an varystrongly, so mean dynami
s des
ribed by probability fun
tions are used to demonstratethe behaviour. Faisst et al. [4℄ amongst others showed that probability of turbulen
esurviving depends exponentially on the ratio of time, t, to a mean lifetime whi
h dependsupon Re. The relationship between Re and the mean lifetime is still a subje
t of resear
h,both experimental and 
omputational. In that work the dis
ussion 
entres around theexisten
e of a �nite Re for whi
h the probability of de
ay ba
k to the laminar state iszero.Pipe �ow is one member of a 
lass of shear �ows whi
h also in
lude plane Couette�ow, Taylor-Couette �ow and boundary layer �ow. Plane Couette �ow (PCF) is the �owbetween two in�nite plates, whi
h are driven at 
onstant speed in opposite dire
tions.The �ow shares all of the features dis
ussed about (although with di�erent 
riti
al Re),but for resear
h has two advantages over pipe �ow. The symmetry of the system allowsthe existen
e of �xed points solutions, whereas the simplest stru
ture in pipe �ow aretravelling waves. The Cartesian geometry of PCF is 
omputationally simpler than the
ylindri
al 
oordinate system of pipe �ow. 1



The linear stability of the laminar states makes �nding new solutions to the Navier-Stokes equations 
hallenging, however re
ently new solutions have been found ([5℄, [6℄,[7℄, [8℄, [9℄, [10℄, [11℄, [12℄). These solutions are �xed points (in PCF only), travellingwaves whi
h are steady under a translating referen
e frame and periodi
 orbits, manyof whi
h exhibit symmetries. These solutions are unstable but have both stable andunstable manifolds and are therefore saddle points in phase spa
e. Kerswell [13℄ andothers propose that these, and more solutions form a �skeleton� for the dynami
s whi
h
an guide traje
tories around the turbulent portion of phase spa
e.Within the last 10 years a new method has been implemented to �nd solutions inboth pipe �ow and PCF. The method, pioneered by Itano et al. [14℄, is to tra
k the�Edge of Chaos�, the hyper-surfa
e surfa
e whi
h separates separates 
onditions whi
hsimply relaminarize from those whi
h are subje
ted to turbulen
e. The edge thereforeprovides a minimum on the energy required to trigger turbulen
e, however there is noknown method to use the edge to �nd this minimum energy point. By redu
ing thedynami
s to only evolve along the edge, new stru
tures have been found in both pipe�ow and PCF ([15℄, [16℄, [17℄). By evolving along the edge only, one unstable dire
tionis removed, meaning solutions embedded in the edge with just one unstable dire
tion inthe full dynami
s be
ome lo
al attra
tors within the dynami
s of the edge. As dis
ussedearlier, at low Reynolds number turbulen
e is transient and initial 
onditions experien
esudden de
ay ba
k to the laminar state. The edge 
an therefore not be 
onsidered aboundary for the basin of attra
tion of the laminar state, as 
onditions either side of theedge will de
ay. This therefore raises a question into the understanding of phase spa
ein these systems. How do initial 
onditions on the �turbulent side� of the edge pass ba
kto the laminar state and does there exist a unique point (or a small number of points)where this passing o

urs? In parti
ular geometries the edge 
ontains simple attra
tingstates, su
h as �xed points or travelling waves. In some of these situations, eviden
epoints to a single global attra
ting state in the edge, to whi
h all initial 
onditions onthe edge 
onverge, 
alled the edge state. A se
ondary question of this work 
on
erns thedynami
al signi�
an
e of this edge state during relaminarization. The point is signi�
antwithin dynami
s on the edge, and all initial 
onditions must, in some manner, pass bythis edge, therefore the edge state may be important in this relaminarization pro
ess.We will atta
k this problem on two fronts. The �rst will examine the statisti
s ofde
ay, and look for eviden
e of a unique �
rossing� point. The se
ond half will look tothe results of low-dimensional models and attempt to draw parallels between these andthe full dynami
s. In the next se
tions we will dis
uss the set-up used to investigatethis problem, and present some statisti
al work on this problem. We will then lookat previous work using low dimensional models to 
onsider this problem, and 
omparethese to the full dynami
s. Finally we shall draw 
on
lusions and dis
uss further workinto this problem.2 MethodsTo examine the questions 
onsidered above we 
hoose plane Couette �ow as the shear�ow for our investigation. This has been 
hosen for its simple geometry and the eviden
efor a single �xed point attra
ting edge state in a parti
ular geometry (S
hneider private
ommuni
ation 2011). As with pipe �ow dis
ussed above, no-slip boundary 
onditionsat the wall are used, with periodi
 boundaries in the two remaining dire
tions. Thelaminar �ow is linearly stable and takes the form
ū = Uy x̂, (1)where 
onvention di
tates that x takes the dire
tion of the wall motion, y the wallnormal dire
tion and z the spanwise dire
tion. The DNS is 
arried out in a Fourier2



by Chebyshev by Fourier domain, with an adaptive 3rd order Semi-impli
it Ba
kwardsDi�erentiation timestep 
ode written by Gibson ([23℄ [24℄). The Reynolds number inthis system is Re := Uh/ν, where U is the wall speed, h is half the wall separation and
ν the kinemati
 vis
osity. For simpli
ity both U and h remain equal to one. We willstudy Reynolds numbers in the range [340, 380] where turbulen
e exists but turbulentlifetimes are short (order 1000 time units). The domain is [0, 4π] × [−1, 1] × [0, 2π],
hosen for the existen
e of a single edge state, a member of the �Nagata� solution family[5℄, whi
h is visualised in �gure 1. We shall use the notation breaking the velo
ity �eld,
ū, into the laminar and perturbation parts, ū = y x̂ + u. This study will begin with astatisti
al investigation into de
aying turbulen
e, where traje
tories will be aligned tode
ay at the same point in a new time t∗ whi
h is de�ned for ea
h simulation as

t∗ := tlam − t, (2)where tlam is the time su
h that
∫

V

u · u dV < 0.005. (3)This �nds the time where the �ow is su�
iently 
lose to the laminar state to be 
onsid-ered as laminar. The results of this se
tion are not qualitatively a�e
ted by the pre
ise
hoi
e of this distan
e from the laminar state. For brevity we shall refer to this asthe relaminarization time. We begin by simulating a large number of DNS runs fromturbulent initial 
onditions until they rea
h the laminar state. On
e aligned by theirrelaminarization times we 
an �nd the mean and standard deviation of the L2 norm of
u, and plot this against the relaminization time. In �gure 2 we 
arry out this pro
edurefor 100 evolutions at a Reynolds number of 380. Several observations 
an be made fromthis �gure in answering the questions posed previously. The de
ay from the turbulentstate begins approximately 500 time units before relaminarization time, and before thisa statisti
ally steady state is observed with approximately 
onstant varian
e. Duringde
ay, while a de
rease of varian
e is observed, traje
tories do not 
onverge until justprior to t∗ = 0. This simple observation suggests an answer to one of the questionspostulated above: does there exist a unique point for passing by the edge? If a uniquepoint existed, one would expe
t to see the traje
tories 
onverge at an L2 norm valueasso
iated with the edge (∼ 0.2). The result was robust to using a range of metri
sto align the de
aying traje
tories, in
luding E3D, vorti
ity, and downstream vorti
ity.With all of these metri
s no patterns in the de
ay emerged, therefore suggesting thatthis hypothesis is false.3 Statisti
al analysisWe 
an use this approa
h to examine the physi
al properties of the �ow during de
ay,and 
on�rm the features expe
ted from analyti
al and previous 
omputational work. In�gure 3 we plot the mean evolution of the L2 norm of 4 physi
al quantities during the last1000 time units before de
ay, the velo
ity, the vorti
ity, the downstream vorti
ity andthe �3D velo
ity�. These �rst two are related to the energy and dissipation of the systemrespe
tively, and begin to de
ay simultaneously with similar relative gradients. TheL2 norm of the downstream vorti
ity provides a measure for the downstream vorti
ies,or rolls, whi
h redistribute the mean shear. This then 
reates downstream streaks,whi
h 
an develop instabilities. These instabilities feedba
k into the rolls. This is 
alledthe self-sustaining pro
ess (SSP [18℄), and plays a 
ru
ial role in the maintenan
e ofturbulen
e. Therefore if the rolls are removed then the sustaining pro
ess is broken, andturbulent 
annot be maintained. The results in frame (
) of �gure 3 show that the L23



Figure 1: Visualization of the �xed point embedded in edge, whi
h is an attra
tor whenthe dynami
s are restri
ted to the edge. Colours indi
ate downstream velo
ity, with red�owing into the page and blue out of the page. Arrows plot 
ross stream velo
ity �eld.
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Figure 2: L2 Norm of perturbation velo
ity �eld u against t∗, the time before relami-narization. Plotted are the mean ± the standard deviation of 100 turbulent evolutionsat Re = 380. Initial 
onditions generated from turbulen
e at slightly larger Re.4



norm of the downstream vorti
ity begins to de
ay at the same time as the previous twometri
s, however it de
reases at greater relative rate. This results in no rolls existing forthe �nal 200 time units of the de
ay. The �nal measure 
onsidered is the �3D velo
ity�,
u
′, the part of the velo
ity �eld whi
h depends upon x.

u =
1

Lx

∫
ũ dx + u

′ (4)The quantity is dynami
ally important to the maintenan
e of turbulen
e, the energy inthis part of the velo
ity �eld we shall denote as E3D. It 
an be shown in shear �owsthat a 2D perturbation 
annot to lead to turbulen
e. From the view of the SSP thisquantity measures the instabilities whi
h 
omplete the pro
ess and feedba
k upon therolls. Frame (d) of �gure 3 shows the evolution of this quantity before relaminarization.The beginnings of de
ay are observed in line with the other 3 quantities, with de
ayo

urring at the same relative rate as downstream vorti
ity. Therefore we observe thatthe for the last 200 time units of de
ay the �ow is two-dimensional with no downstreamrolls, this leaves only downstream streaks (and a small amount of 
ross-stream �ow).These �ndings therefore agree with the previous work, whi
h suggested that downstreamrolls and 3D �ow are the �rst parts of the �ow �eld to fully de
ay. After these twoquantities have de
ayed the streak de
ay will govern the overall de
ay rate, whi
h weshall now study.Understanding the stru
ture of the streaks during this de
ay will explain the varietyof de
ays rates observed, as these are the only feature remaining during the �nal partof de
ay. In �gure 4 frames (a) & (b) show the x-averaged1 velo
ity for two di�erentde
ay traje
tories approximately 200 time units before relaminarization. Traje
torieswere 
hosen for displaying slow and fast de
ay respe
tively, i.e. shallow and steep de
ayrates during the �nal 200 time units of de
ay. Beyond this 
hoi
e these traje
tories aregeneri
 within their respe
tive 
lass (slow or fast de
ay). Obvious from the �gure arethe two di�erent streak stru
tures involved in the �ow �eld, where streaks are indi
atedby waviness in the downstream velo
ity 
ontours. Frame (a) has two streaks, one fastand one slow, whereas frame (b) has four streaks with two of ea
h sign. The di�erentlength-s
ales involved with these �ow �elds explain the de
ay rates involved. In thisregime the di�usion operator dominates the evolution, meaning that stru
tures withsmall length-s
ales involved will de
ay at a faster rate 
ompared to those with largerlength-s
ales. The �ow at this stage in de
ay is independent of x, and all �ow-�elds havesimilar dependen
e upon y leaving the z stru
ture to set this rate. To further this workwe 
onsider the evolution of simple stru
tures 
arrying the two and four streak pattern,members of the �Nagata� family of solutions. As previously dis
ussed one member of thisfamily, whi
h has a four streak pattern (�gure 1), is the edge state in the 
hosen geometry.However there exists a two streak member of the family, whi
h also lies on the edge buthas two unstable dire
tions (and is therefore not an attra
ting stru
ture on the edge).The x-averaged �ow �eld for these solutions are plotted in frames (
) and (d) of �gure4. The 
omparisons between the de
aying �elds and solution �elds 
an be easily seen,but the solutions have sharper streak stru
ture and retain downstream vorti
ity. We
an study the length-s
ales involved in these �xed points and the de
aying traje
toriesby by representing the z dependen
e of the �ow-�eld through a Fourier de
omposition.As these solutions belong to the same family, but are e�e
tively solutions from twodi�erent box widths their dependen
e on the �rst few Fourier modes di�ers. The twostreak solution 
ontains a large amount of energy in the �rst mode, whereas the fourstreak solution 
ontains none. The se
ond Fourier mode will be the dominant term forthe 4-streak solution, but be of lesser importan
e in the 2-streak solution. When thesetwo solutions are perturbed in the 
orre
t unstable dire
tion (to the �laminar side� of1Re
all �nal de
ay is independent of x, therefore 2D visualization displays all �ow features.5
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Figure 3: Evolution of the mean ± standard deviation for the L2 norm of 4 �ow �eldquantities, (a) Velo
ity, (b) downstream vorti
ity, (
) vorti
ity & (d) �3D velo
ity�.All experien
e de
ay approximately 500 time units before relaminarization, with fasterrelative de
ay rates for downstream vorti
ity and 3D velo
ity.the edge) the solutions will smoothly de
ay to the laminar state. The de
ay of thesestates, with their di�erent spanwise spe
tra will be a useful 
omparison for de
ayingturbulen
e. In �gure 5 100 de
aying traje
tories are plotted, alongside the de
ay fromthe two states dis
ussed all at the same Reynolds number. The striking feature of this�gure is that the de
ay from two �xed points almost bounds the de
ay from turbulen
e.We 
an understand this by studying the spanwise Fourier modes during the last 200time units of de
ay. Those de
aying at a similar rate as the two streak solution, willhave more energy in the �rst spanwise Fourier mode and little in the se
ond. Whereasthose de
aying with the four streak solution will have little in the �rst spanwise Fouriermode and the majority in the se
ond. Traje
tories de
aying at rates between these two�extremes� will have energy in both these modes in varying proportions whi
h mat
hthe de
ay rate. An observation to made from this �gure is that no de
aying traje
toryin our sample de
ayed at a signi�
antly greater rate than the four streak �xed point.It appears within this domain all turbulen
e (in this range of Reynolds number) de
aysthrough a very simple streak stru
ture. How this behaviour would 
hange if a widerdomain was used, or a larger Reynolds number set, remains a topi
 for further resear
h.The author suggests that if the domain was su�
iently widened then turbulen
e wouldde
ay through a six streak stru
ture, in addition to the two and four stru
tures. Itis not obvious that all de
aying turbulen
e in this geometry should have streaks withsu
h similar y-dependen
e, although the tight 
onstraints of the domain might again beresponsible. Studying the de
ay of other �xed points in this geometry would make foran interesting 
omparison with those dis
ussed above. Are these two solutions spe
ialin the way they almost bound the de
ay, or is this a feature of �xed points?

6
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Figure 4: Frames (a), (b) show x-averaged �ow �elds 200 time units before de
ay.Solutions sele
ted for demonstrating slow and fast relaminarization rates respe
tively.Frame (a) has two streaks, one fast at the 
entre of the domain, and one slow at the leftedge. Frame (b) has four streaks, two fast and two slow. To be 
ompared with frames(
) and (d) x-averaged �ow �eld for members of the Nagata solution family. Frame (
)shows the longest spanwise wavelengths family member. Solution in frame (d) 
ontainstwo 
opies of the Nagata solution in spanwise dire
tion.4 Edge geometryThrough examining the statisti
s of the de
ay from turbulen
e we have gained insightinto the pro
esses involved, and eviden
e that a unique route past the edge does notexist. Beyond this fa
t we have learnt little about how the de
aying traje
tories pass theedge. In this se
tion we will examine this issue with the aid of low dimensional models.Attempts to study low dimensional models for shear turbulen
e have been used in re
entyears with limited su

ess. Wale�e [18℄ took the ideas behind his self-sustaining pro
essto 
onstru
t both eight and four mode ODE models, however these were limited byrepresenting turbulen
e with a �xed point. These models did show that the physi
alpro
esses behind turbulen
e 
ould be 
aptured in a small number of well 
hosen modes.Extensions to a nine mode model [19℄ and an eight mode PDE model [20℄ have madeprogress in 
apturing more detail but more modes makes the analysis more 
omplex.In order to understand the edge Lebovitz examined the edge stru
ture in Wale�e's fourmode model [21℄. He subsequently designed a two dimensional system whi
h 
apturedthe same edge topology [22℄. It is this two dimensional system whi
h we will 
omparewith the edge stru
ture in the full system. The equations of the system are

ẋ1 = −δx1 + x2 + x1x2 − 3x2

2

ẋ2 = −δx2 − x2

1
+ 3x1x2, (5)where δ is the 
ontrol parameter and surrogate for Reynolds number, whi
h we will �x at

0.4. For this value of δ the system has 3 �xed point solutions. One is stable and lo
atedat (0, 0) whi
h will be the surrogate for the laminar state. One is an unstable saddle,
alled the lower bran
h (LB), whi
h is the surrogate for the edge state. The �nal �xed7
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aying traje
tories. Bla
khorizontal lines - indi
ate the value of L2 norm for the two solutions from �gure 4 (higherline - two streak solution). Bla
k lines - de
ay from �xed point solutions to the laminarstate after perturbation. All de
aying lines have been aligned by de
ay time.point is unstable, 
alled the upper bran
h (UB) and is the surrogate for the turbulentstate. In �gure 6 the three �xed points points are plotted alongside the manifolds of theedge state and a typi
al de
ay from near the upper bran
h point. The stable manifoldof the edge state forms the edge in this system; near the edge state initial 
onditionsbelow the edge de
ay to the laminar state, whereas points above the edge visit an areain phase spa
e further from the laminar state before being attra
ted the laminar state.The feature 
aptured by this model, and Wale�e's four order model, is that while theedge goes out to in�nity in one dire
tion, in the other it spirals in�nitely many timesaround the upper bran
h point. An initial 
ondition near the upper bran
h point willspiral outwards before passing around the edge on the way to the laminar state. It isthis spiral feature that provides the route from the �turbulent� part of phase spa
e tothe �laminar state�.In this se
tion we wish to answer the following. Does a higher dimensional equivalentof this behaviour o

ur in the full dynami
s? It is obvious that we 
annot simply plotthe phase spa
e of the full dynami
s, so we need a test to 
ompare the model with thefull dynami
s. We shall introdu
e the test in the redu
ed model before 
arrying outthe same analysis in PCF. We begin with a traje
tory spiraling out from the unstableequilibrium, and sele
t several time points along the traje
tory. At these points we shall
al
ulate a new initial 
ondition
xin = λx (6)in the model for a range of λ around λ = 1, the 
ondition that re
overs the originalpoint on the relaminarizing traje
tory. For ea
h value of λ we will evolve the new initial
ondition and study the dynami
s. A 
ondition 
lose to the surrogate for turbulen
ewill be �above� the edge, therefore there exists a λ ∈ [0, 1] for whi
h a new 
ondition lies8
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e for 2D model. Red 
rosses indi
ate �xed points (in
reasing x1)Laminar surrogate, Turbulen
e surrogate and Edge state surrogate. Bla
k lines showthe unstable and stable manifolds of the edge state. Stable manifold is the edge in thissystem. Blue line an example de
aying traje
tory beginning �near� turbulen
e.below the edge and will qui
kly relaminarize. The subsequent behaviour is measured bya time average of the L2 norm of x, (
alled the T measure), taken over a suitable time.The T measure should be 
onsidered a surrogate for the lifetime of the �ow. Consideringhow this T measure 
hanges with λ will lo
ate the edge relative to the relaminarizingtraje
tory. A sudden and large 
hange in the value of T denotes a transition a
ross theedge. Figures 7 shows the evolution in phase spa
e of the res
aled and original de
ayingtraje
tories, from an initial 
ondition above and on the outside of the spiral stru
ture.This measure of �turbulen
e� against λ is plotted in �gure 8. The original traje
toryde
ays qui
kly, as do those res
aled further from the laminar state. However for λ < 0.97a large in
rease in the time average of the L2 norm is observed, this is 
aused by steppinga
ross the edge meaning another spiral must be 
ompleted before relaminarization. Wewill 
ompare these results to the 
arrying out the same analysis at later point along theoriginal traje
tory, with results in �gures 9 & 10. The original point lies below the edge,so the reverse λ s
aling is observed. For λ < 1.08 traje
tories relaminization qui
kly, butlarger values lie the other side of the edge. The results from these two points highlightthe transition that is made as a traje
tory in this model passes around the edge on routeto the laminar point. By using a relatively short time average of the L2 norm for ourproje
tion we restri
t the edge 
rossings that we 
an observe. Crossing the outer-mostloop of the spiral is 
aptured as a transition, but the subsequent 
rossings of inner partsof the edge are not 
aught by this relatively short time average. By using this metri
 weobserve a behaviour whi
h is has a parallel in the full dynami
s, whi
h will be dis
ussedlater.In the 
ase of the low dimensional model the out
ome of the test 
ould be predi
tedfrom the phase portrait alone. Having studied this simple system the same analysis
an be performed on the full dynami
s and allow some interpretation of the 
omplex9
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behaviour of the edge. Before we 
an begin this work we should 
onsider the methodspreviously used to study the edge. These methods have revolved around a bise
tionte
hnique between an original turbulent state and another whi
h smoothly relaminarizes.The 
riterion as to the turbulent or laminar evolution of the new �ow �eld are usuallyenergy or E3D thresholds, with the turbulent threshold set just below the turbulent valueof the metri
. These te
hniques work well for �nding the attra
ting obje
ts embeddedwithin the edge, but using this de�nition the edge will not be found near the turbulentpart of phase spa
e. This 
an be 
ompared to using the T measure (with a short timeaverage) to de�ne the edge in the low dimensional model. If this was used, only the outerspiral of the edge would be dete
ted. In the two dimensional model the edge is de�nedto be the stable manifold of the edge state, whi
h removes the issue. In the full system,in geometries whi
h have a single attra
ting edge state, we 
an use the same de�nition.While the edge state may be lo
ated using the bise
tion te
hnique, we suggest that theedge is de�ned as the stable manifold of the edge state. It should be noted that thisde�nition does not automati
ally solve the problem of tra
king the edge near turbulent,whi
h will be dis
ussed later in this work. With this new de�nition of the edge, we 
anmove forward to 
omparing the full dynami
s with the low dimensional model.The test begins with a single relaminarizing traje
tory, along whi
h two test pointsare sele
ted. The �ow �elds at these points are res
aled using the same methodology asbefore,
uin = λu (7)where λ = 1 re
overs the original dynami
s. For ea
h value of λ the initial 
ondition isgenerated, evolved for a set time, and the time average of the L2 norm of u re
orded(again 
alled the T measure). Figure 11 shows the evolution of the L2 norm of u forthe original traje
tory and res
aled 
onditions for λ ∈ [0.8, 1.3], and in �gure 12 isplotted the T measure against λ. By 
hoi
e the original traje
tory de
ays qui
kly, asdo its neighbours in λ. However for both larger and smaller values of λ the T measurein
reases, indi
ating a 
rossing of the edge to turbulent dynami
s on both sides of thepoint. A se
ond region where traje
tories de
ay exists at λ ≃ 0.9. The main point tore
eive is that there exists an edge (in this 
ase several pie
es of the edge) below therelaminarizing traje
tory. The next step is to 
arry the pro
ess out at a later time, theresults of whi
h are presented in �gures 13 & 14. A transition has o

urred sin
e theprevious analysis, as there now exists no edge beneath the relaminarizing traje
tory.Turbulent dynami
s are only to be found by 
hoosing λ > 1.2. While the results of
ondu
ting this test on the full dynami
s are far more 
ompli
ated than those of thelow dimensional model, 
ertain 
hara
teristi
s are maintained in both situations. Earlyin the de
ay, part of the edge exists beneath the traje
tory in phase spa
e. Yet later,this edge beneath is no longer present. This result is unsurprising given that by thede�nition of the edge this transition from one �side� to another has to o

ur. Howeverthe time and manner of the transition 
an provide eviden
e as to the topology of theedge.Early in the de
ay the test shows the existen
e of an edge below the de
aying traje
-tory. Using the bise
tion te
hniques brie�y dis
ussed earlier we 
an tra
k the dynami
son this edge. Later in the de
ay of the original traje
tory there exists only an edgeabove the de
aying traje
tory. Again bise
tion 
an be used to tra
k the dynami
s ofthis part of the edge. Figure 15 shows the evolution of these two pie
es of edge, theedge beneath in green and the edge above in red. The dynami
s on these two pie
esof edge initially move in di�erent dire
tions, however 200 time units later they be
omeinvolved in the same dynami
s whi
h is maintained for the rest of the time the edge isa

urately tra
ked2. This result suggests that the two pie
es of edge above and below2i.e. when the 
oloured pairs diverge. There is no eviden
e that if the edge was tra
ked longer these12



the traje
tory are dynami
ally 
onne
ted. Building on the previous result we now havea more 
omplete pi
ture of the route past the edge. The transition from the traje
torylying above the edge to below it, added to the dynami
al 
onne
tion of those two pie
esof edge �ts with the low dimensional pi
ture built by the 2D model of Lebovitz. The
omplete geometry of the edge in the full dynami
s is mu
h more 
ompli
ated than a 2Dmodel 
ould hope to model, as shown by the multiple layers of edge observed in �gure12. Two further details from this work also suggest agreement with the low dimensionalmodel, that the edge goes up into the turbulent part of phase spa
e. If we examine thelo
ation of the transition in relative edge position of a traje
tory (from above the edge tobelow the edge) under the E3D proje
tion of the dynami
s we note that this transitiono

urs at values of E3D asso
iated with turbulent dynami
s. This metri
 is 
ommonlyused to evaluation if a �ow �eld is turbulent and therefore suggests the edge also existsnear turbulen
e in phase spa
e. This 
laim 
ould be proved by developing a method totra
k the edge into turbulen
e, however a method to perform this is not 
lear. The se
-ond observation to be made 
on
erns the evolution of the dynami
s after the transitionin edge lo
ation has o

urred. As 
an be seen in �gure 15, the relaminarizing traje
torytra
ks the dynami
s of the edge for approximately 50 time units before diverging. Thispi
ture is 
onsistently observed and helps our understanding of the manner in whi
htraje
tories pass by the edge. The traje
tories running approximately parallel to theedge in phase spa
e �ts the pi
ture produ
ed from the low dimensional model. Noneof the results found in this work are individually 
onvin
ing arguments for the spiraltopology of the edge. However together they begin to form a body of eviden
e whi
hsupports a more 
ompli
ated version of this 
artoon of the edge geometry. The mannerof the transition around the edge appears to agree with the pi
ture 
onstru
ted. The
E3D proje
tion suggests this transition happens near turbulen
e, and the dynami
s ofthe edge near this transition appear to be 
onne
ted. The evolution of the traje
toryas it leaves turbulen
e remains 
lose to the edge for a signi�
ant amount of time (> 50time units) both before and after transition, whi
h again is in agreement with the lowdimensional model.5 Con
lusionThe fo
us of this work has been understanding the role that the edge plays during de
ayfrom turbulen
e. Beginning from a hypothesis that turbulen
e de
ayed through a pointin the edge, we examined the statisti
s and physi
al pro
esses involved in de
ay. We�nished by 
omparing the dynami
s of the edge in a low dimensional system to the fulldynami
s of plane Couette �ow. There was no eviden
e to support the hypothesis of aunique de
ay point, instead what was observed was a wide variety of de
ay rates androutes ba
k to the laminar state. We statisti
ally 
on�rmed ideas about the physi
alpro
esses involved during the de
ay. Statisti
ally all parts of the �ow �eld begin tode
ay at the same point in time, but the downstream rolls and x-dependent part ofthe �ow �eld de
ay at a greater relative rate. The last 200 time units of de
ay involveonly downstream fast and slow streaks. The rate that these streaks de
ay is set by thehorizontal length-s
ales involved. The streak stru
ture during de
ay is simple, involvingpredominately the �rst and se
ond horizontal Fourier modes. The relative energy inthese two modes sets the de
ay rate. To understand the geometry of the edge in thefull dynami
s we ran tests to 
ompare this to a 2D model. This 2D model had beensele
ted as the simplest model 
ontaining edge stru
ture seen in several low dimensionalmodels of shear �ows. In these models the edge extended to in�nity in one dire
tion,but in another wrapped up in�nitely many times around a stru
ture (in the 
ase ofedge dynami
s would separate. 13
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the 2D model a �xed point). Comparing to this model we saw some eviden
e in thefull dynami
s for similar, if more 
ompli
ated stru
ture. De
aying traje
tories passedaround the edge, and the parts it passed around were found to be dynami
ally 
onne
tedin some 
ases. The value of E3D at this transition suggests that the edge passes up intophase spa
e. However we do not 
laim that this eviden
e proves this model to bea

urate. What we have su

eeded in doing, is test the validity of this model with aseries of tests, and further work is required before stronger 
on
lusions 
an be made.There are several areas of this work where interesting extensions are 
lear. Condu
tingthe statisti
al analysis for a larger domain size would allow study of the 
onje
tureson streak stru
ture. Are six-streak stru
tures observed in larger domains during de
ay,and at what Reynolds numbers? Another question opened up by this work is into thesigni�
an
e of the lo
ation where a de
aying traje
tory passes around the edge. Doesthis o

ur at a spe
i�
 time before de
ay, and are there parti
ular 
hara
teristi
s of the�ow �eld as the edge is rounded?Despite having held attention of great minds sin
e 1883, turbulen
e in shear �owsis an area where real progress is 
urrently being made around the globe. Modern ideasand powerful 
omputers have enabled the dis
overy of new and 
omplex solutions, whi
hbear resemblan
e to experimental work. Progress has been made furthering our under-standing of the edge, and the role that it plays in the dynami
s of turbulent shear �ows.The edge itself 
hanges strongly with Reynolds number, with di�erent solutions playingthe role as the edge state. The idea that the edge is wrapped and folded around theturbulent dynami
s, whi
h a traje
tory must negotiate in order to return to the laminarstate, is an idea whi
h requires further study before 
on
lusions 
an be drawn.6 A
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