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Abstract

In this work the “edge of chaos” is studied to increase our understanding of
turbulence in shear flows. The “edge” is a hypersurface in phase space which
separates conditions which return to the laminar state from those which engage in
turbulent dynamics. We tackle the subject of the geometry of the edge, and its
involvement during the return to the laminar state. Here studying plane-Couette
flow we observe the death of the self-sustaining process during decay and identify
the processes which govern the decay rate. The report concludes with tests on the
validity of edge geometry observed in low dimensional models.

1 Introduction

The study of Newtonian fluid flow through through a straight circular pipe was first
carried out in the 19th century, where Hagen [1] and Poiseuille [2] separately studied the
laminar flow which now carries both their names. This work was continued by Reynolds
[3] who studied the transition from laminar flow to flow which is both temporally and
spatially disordered, called turbulent flow. The Reynolds number Re := UD /v governs
this transition, where U is the mean speed, D the diameter and v the kinematic viscosity.
The laminar Hagen-Poiseuille flow is linearly stable for all values of Re, meaning that
a finite amplitude disturbance is required to generate turbulent behaviour. The energy
that the disturbance requires to trigger turbulence has been studied for many years,
and depend sensitively upon the shape of the disturbance and the Reynolds number.
The minimum value of the Reynolds number at which turbulence is seen varies between
experiments but appears to lie in the range 1750-2300. It is thought that in this range of
Re that there exists a chaotic saddle responsible for the dynamics, which may transition
to a chaotic attractor for larger Re [4]. In this regime the lifetime of turbulence can vary
strongly, so mean dynamics described by probability functions are used to demonstrate
the behaviour. Faisst et al. [4] amongst others showed that probability of turbulence
surviving depends exponentially on the ratio of time, ¢, to a mean lifetime which depends
upon Re. The relationship between Re and the mean lifetime is still a subject of research,
both experimental and computational. In that work the discussion centres around the
existence of a finite Re for which the probability of decay back to the laminar state is
Zero.

Pipe flow is one member of a class of shear flows which also include plane Couette
flow, Taylor-Couette flow and boundary layer flow. Plane Couette flow (PCF) is the flow
between two infinite plates, which are driven at constant speed in opposite directions.
The flow shares all of the features discussed about (although with different critical Re),
but for research has two advantages over pipe flow. The symmetry of the system allows
the existence of fixed points solutions, whereas the simplest structure in pipe flow are
travelling waves. The Cartesian geometry of PCF is computationally simpler than the
cylindrical coordinate system of pipe flow.



The linear stability of the laminar states makes finding new solutions to the Navier-
Stokes equations challenging, however recently new solutions have been found ([5], [6],
[7], [8], [9], [10], [11], [12]). These solutions are fixed points (in PCF only), travelling
waves which are steady under a translating reference frame and periodic orbits, many
of which exhibit symmetries. These solutions are unstable but have both stable and
unstable manifolds and are therefore saddle points in phase space. Kerswell [13] and
others propose that these, and more solutions form a “skeleton” for the dynamics which
can guide trajectories around the turbulent portion of phase space.

Within the last 10 years a new method has been implemented to find solutions in
both pipe flow and PCF. The method, pioneered by Itano et al. [14], is to track the
“Edge of Chaos”, the hyper-surface surface which separates separates conditions which
simply relaminarize from those which are subjected to turbulence. The edge therefore
provides a minimum on the energy required to trigger turbulence, however there is no
known method to use the edge to find this minimum energy point. By reducing the
dynamics to only evolve along the edge, new structures have been found in both pipe
flow and PCF ([15], [16], [17]). By evolving along the edge only, one unstable direction
is removed, meaning solutions embedded in the edge with just one unstable direction in
the full dynamics become local attractors within the dynamics of the edge. As discussed
earlier, at low Reynolds number turbulence is transient and initial conditions experience
sudden decay back to the laminar state. The edge can therefore not be considered a
boundary for the basin of attraction of the laminar state, as conditions either side of the
edge will decay. This therefore raises a question into the understanding of phase space
in these systems. How do initial conditions on the “turbulent side” of the edge pass back
to the laminar state and does there exist a unique point (or a small number of points)
where this passing occurs? In particular geometries the edge contains simple attracting
states, such as fixed points or travelling waves. In some of these situations, evidence
points to a single global attracting state in the edge, to which all initial conditions on
the edge converge, called the edge state. A secondary question of this work concerns the
dynamical significance of this edge state during relaminarization. The point is significant
within dynamics on the edge, and all initial conditions must, in some manner, pass by
this edge, therefore the edge state may be important in this relaminarization process.
We will attack this problem on two fronts. The first will examine the statistics of
decay, and look for evidence of a unique “crossing” point. The second half will look to
the results of low-dimensional models and attempt to draw parallels between these and
the full dynamics. In the next sections we will discuss the set-up used to investigate
this problem, and present some statistical work on this problem. We will then look
at previous work using low dimensional models to consider this problem, and compare
these to the full dynamics. Finally we shall draw conclusions and discuss further work
into this problem.

2 Methods

To examine the questions considered above we choose plane Couette flow as the shear
flow for our investigation. This has been chosen for its simple geometry and the evidence
for a single fixed point attracting edge state in a particular geometry (Schneider private
communication 2011). As with pipe flow discussed above, no-slip boundary conditions
at the wall are used, with periodic boundaries in the two remaining directions. The
laminar flow is linearly stable and takes the form

u=Uyx, (1)

where convention dictates that x takes the direction of the wall motion, y the wall
normal direction and z the spanwise direction. The DNS is carried out in a Fourier



by Chebyshev by Fourier domain, with an adaptive 3rd order Semi-implicit Backwards
Differentiation timestep code written by Gibson ([23] [24]). The Reynolds number in
this system is Re := Uh/v, where U is the wall speed, h is half the wall separation and
v the kinematic viscosity. For simplicity both U and h remain equal to one. We will
study Reynolds numbers in the range [340, 380] where turbulence exists but turbulent
lifetimes are short (order 1000 time units). The domain is [0, 4n] x [—1,1] x [0, 27],
chosen for the existence of a single edge state, a member of the “Nagata” solution family
[5], which is visualised in figure 1. We shall use the notation breaking the velocity field,
i, into the laminar and perturbation parts, @ = y X + u. This study will begin with a
statistical investigation into decaying turbulence, where trajectories will be aligned to
decay at the same point in a new time ¢* which is defined for each simulation as

t* = tiam — t, (2)

where t;4,, is the time such that
/ u-udV < 0.005. (3)
1%

This finds the time where the flow is sufficiently close to the laminar state to be consid-
ered as laminar. The results of this section are not qualitatively affected by the precise
choice of this distance from the laminar state. For brevity we shall refer to this as
the relaminarization time. We begin by simulating a large number of DNS runs from
turbulent initial conditions until they reach the laminar state. Once aligned by their
relaminarization times we can find the mean and standard deviation of the L2 norm of
u, and plot this against the relaminization time. In figure 2 we carry out this procedure
for 100 evolutions at a Reynolds number of 380. Several observations can be made from
this figure in answering the questions posed previously. The decay from the turbulent
state begins approximately 500 time units before relaminarization time, and before this
a statistically steady state is observed with approximately constant variance. During
decay, while a decrease of variance is observed, trajectories do not converge until just
prior to ¢t* = 0. This simple observation suggests an answer to one of the questions
postulated above: does there exist a unique point for passing by the edge? If a unique
point existed, one would expect to see the trajectories converge at an L2 norm value
associated with the edge (~ 0.2). The result was robust to using a range of metrics
to align the decaying trajectories, including Esp, vorticity, and downstream vorticity.
With all of these metrics no patterns in the decay emerged, therefore suggesting that
this hypothesis is false.

3 Statistical analysis

We can use this approach to examine the physical properties of the flow during decay,
and confirm the features expected from analytical and previous computational work. In
figure 3 we plot the mean evolution of the L2 norm of 4 physical quantities during the last
1000 time units before decay, the velocity, the vorticity, the downstream vorticity and
the “3D velocity”. These first two are related to the energy and dissipation of the system
respectively, and begin to decay simultaneously with similar relative gradients. The
L2 norm of the downstream vorticity provides a measure for the downstream vorticies,
or rolls, which redistribute the mean shear. This then creates downstream streaks,
which can develop instabilities. These instabilities feedback into the rolls. This is called
the self-sustaining process (SSP [18]), and plays a crucial role in the maintenance of
turbulence. Therefore if the rolls are removed then the sustaining process is broken, and
turbulent cannot be maintained. The results in frame (c) of figure 3 show that the L2



Figure 1: Visualization of the fixed point embedded in edge, which is an attractor when
the dynamics are restricted to the edge. Colours indicate downstream velocity, with red
flowing into the page and blue out of the page. Arrows plot cross stream velocity field.
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Figure 2: L2 Norm of perturbation velocity field u against ¢*, the time before relami-
narization. Plotted are the mean + the standard deviation of 100 turbulent evolutions
at Re = 380. Initial conditions generated from turbulence at slightly larger Re.



norm of the downstream vorticity begins to decay at the same time as the previous two
metrics, however it decreases at greater relative rate. This results in no rolls existing for
the final 200 time units of the decay. The final measure considered is the “3D velocity”,
u’, the part of the velocity field which depends upon x.

1 ~
uzL—m/ud:U—i—u' (4)

The quantity is dynamically important to the maintenance of turbulence, the energy in
this part of the velocity field we shall denote as F3p. It can be shown in shear flows
that a 2D perturbation cannot to lead to turbulence. From the view of the SSP this
quantity measures the instabilities which complete the process and feedback upon the
rolls. Frame (d) of figure 3 shows the evolution of this quantity before relaminarization.
The beginnings of decay are observed in line with the other 3 quantities, with decay
occurring at the same relative rate as downstream vorticity. Therefore we observe that
the for the last 200 time units of decay the flow is two-dimensional with no downstream
rolls, this leaves only downstream streaks (and a small amount of cross-stream flow).
These findings therefore agree with the previous work, which suggested that downstream
rolls and 3D flow are the first parts of the flow field to fully decay. After these two
quantities have decayed the streak decay will govern the overall decay rate, which we
shall now study.

Understanding the structure of the streaks during this decay will explain the variety
of decays rates observed, as these are the only feature remaining during the final part
of decay. In figure 4 frames (a) & (b) show the x-averaged! velocity for two different
decay trajectories approximately 200 time units before relaminarization. Trajectories
were chosen for displaying slow and fast decay respectively, i.e. shallow and steep decay
rates during the final 200 time units of decay. Beyond this choice these trajectories are
generic within their respective class (slow or fast decay). Obvious from the figure are
the two different streak structures involved in the flow field, where streaks are indicated
by waviness in the downstream velocity contours. Frame (a) has two streaks, one fast
and one slow, whereas frame (b) has four streaks with two of each sign. The different
length-scales involved with these flow fields explain the decay rates involved. In this
regime the diffusion operator dominates the evolution, meaning that structures with
small length-scales involved will decay at a faster rate compared to those with larger
length-scales. The flow at this stage in decay is independent of =, and all flow-fields have
similar dependence upon y leaving the z structure to set this rate. To further this work
we consider the evolution of simple structures carrying the two and four streak pattern,
members of the “Nagata” family of solutions. As previously discussed one member of this
family, which has a four streak pattern (figure 1), is the edge state in the chosen geometry.
However there exists a two streak member of the family, which also lies on the edge but
has two unstable directions (and is therefore not an attracting structure on the edge).
The x-averaged flow field for these solutions are plotted in frames (c) and (d) of figure
4. The comparisons between the decaying fields and solution fields can be easily seen,
but the solutions have sharper streak structure and retain downstream vorticity. We
can study the length-scales involved in these fixed points and the decaying trajectories
by by representing the z dependence of the flow-field through a Fourier decomposition.
As these solutions belong to the same family, but are effectively solutions from two
different box widths their dependence on the first few Fourier modes differs. The two
streak solution contains a large amount of energy in the first mode, whereas the four
streak solution contains none. The second Fourier mode will be the dominant term for
the 4-streak solution, but be of lesser importance in the 2-streak solution. When these
two solutions are perturbed in the correct unstable direction (to the “laminar side” of

IRecall final decay is independent of z, therefore 2D visualization displays all flow features.
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Figure 3: Evolution of the mean + standard deviation for the L2 norm of 4 flow field
quantities, (a) Velocity, (b) downstream vorticity, (c) vorticity & (d) “3D velocity”.
All experience decay approximately 500 time units before relaminarization, with faster
relative decay rates for downstream vorticity and 3D velocity.

the edge) the solutions will smoothly decay to the laminar state. The decay of these
states, with their different spanwise spectra will be a useful comparison for decaying
turbulence. In figure 5 100 decaying trajectories are plotted, alongside the decay from
the two states discussed all at the same Reynolds number. The striking feature of this
figure is that the decay from two fixed points almost bounds the decay from turbulence.
We can understand this by studying the spanwise Fourier modes during the last 200
time units of decay. Those decaying at a similar rate as the two streak solution, will
have more energy in the first spanwise Fourier mode and little in the second. Whereas
those decaying with the four streak solution will have little in the first spanwise Fourier
mode and the majority in the second. Trajectories decaying at rates between these two
“extremes” will have energy in both these modes in varying proportions which match
the decay rate. An observation to made from this figure is that no decaying trajectory
in our sample decayed at a significantly greater rate than the four streak fixed point.
It appears within this domain all turbulence (in this range of Reynolds number) decays
through a very simple streak structure. How this behaviour would change if a wider
domain was used, or a larger Reynolds number set, remains a topic for further research.
The author suggests that if the domain was sufficiently widened then turbulence would
decay through a six streak structure, in addition to the two and four structures. It
is not obvious that all decaying turbulence in this geometry should have streaks with
such similar y-dependence, although the tight constraints of the domain might again be
responsible. Studying the decay of other fixed points in this geometry would make for
an interesting comparison with those discussed above. Are these two solutions special
in the way they almost bound the decay, or is this a feature of fixed points?
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Figure 4: Frames (a), (b) show z-averaged flow fields 200 time units before decay.
Solutions selected for demonstrating slow and fast relaminarization rates respectively.
Frame (a) has two streaks, one fast at the centre of the domain, and one slow at the left
edge. Frame (b) has four streaks, two fast and two slow. To be compared with frames
(c) and (d) z-averaged flow field for members of the Nagata solution family. Frame (c)
shows the longest spanwise wavelengths family member. Solution in frame (d) contains
two copies of the Nagata solution in spanwise direction.

4 Edge geometry

Through examining the statistics of the decay from turbulence we have gained insight
into the processes involved, and evidence that a unique route past the edge does not
exist. Beyond this fact we have learnt little about how the decaying trajectories pass the
edge. In this section we will examine this issue with the aid of low dimensional models.
Attempts to study low dimensional models for shear turbulence have been used in recent
years with limited success. Waleffe [18] took the ideas behind his self-sustaining process
to construct both eight and four mode ODE models, however these were limited by
representing turbulence with a fixed point. These models did show that the physical
processes behind turbulence could be captured in a small number of well chosen modes.
Extensions to a nine mode model [19] and an eight mode PDE model [20] have made
progress in capturing more detail but more modes makes the analysis more complex.
In order to understand the edge Lebovitz examined the edge structure in Waleffe’s four
mode model [21]. He subsequently designed a two dimensional system which captured
the same edge topology [22]. It is this two dimensional system which we will compare
with the edge structure in the full system. The equations of the system are

T1 = —0x1 + 2o + 2120 — 3(E%

.ffSQ = —5132 — IE% + 3IE1IE2, (5)
where 4 is the control parameter and surrogate for Reynolds number, which we will fix at
0.4. For this value of § the system has 3 fixed point solutions. One is stable and located

at (0,0) which will be the surrogate for the laminar state. One is an unstable saddle,
called the lower branch (LB), which is the surrogate for the edge state. The final fixed
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Figure 5: Coloured lines - L2 norm of the u against time for decaying trajectories. Black
horizontal lines - indicate the value of L2 norm for the two solutions from figure 4 (higher
line - two streak solution). Black lines - decay from fixed point solutions to the laminar
state after perturbation. All decaying lines have been aligned by decay time.

point is unstable, called the upper branch (UB) and is the surrogate for the turbulent
state. In figure 6 the three fixed points points are plotted alongside the manifolds of the
edge state and a typical decay from near the upper branch point. The stable manifold
of the edge state forms the edge in this system; near the edge state initial conditions
below the edge decay to the laminar state, whereas points above the edge visit an area
in phase space further from the laminar state before being attracted the laminar state.
The feature captured by this model, and Waleffe’s four order model, is that while the
edge goes out to infinity in one direction, in the other it spirals infinitely many times
around the upper branch point. An initial condition near the upper branch point will
spiral outwards before passing around the edge on the way to the laminar state. It is
this spiral feature that provides the route from the “turbulent” part of phase space to
the “laminar state”.

In this section we wish to answer the following. Does a higher dimensional equivalent
of this behaviour occur in the full dynamics? It is obvious that we cannot simply plot
the phase space of the full dynamics, so we need a test to compare the model with the
full dynamics. We shall introduce the test in the reduced model before carrying out
the same analysis in PCF. We begin with a trajectory spiraling out from the unstable
equilibrium, and select several time points along the trajectory. At these points we shall
calculate a new initial condition

Xin = AX (6)

in the model for a range of A around A = 1, the condition that recovers the original
point on the relaminarizing trajectory. For each value of A we will evolve the new initial
condition and study the dynamics. A condition close to the surrogate for turbulence
will be “above” the edge, therefore there exists a A € [0, 1] for which a new condition lies
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Figure 6: Phase space for 2D model. Red crosses indicate fixed points (increasing x1)
Laminar surrogate, Turbulence surrogate and Edge state surrogate. Black lines show
the unstable and stable manifolds of the edge state. Stable manifold is the edge in this
system. Blue line an example decaying trajectory beginning “near” turbulence.

below the edge and will quickly relaminarize. The subsequent behaviour is measured by
a time average of the L2 norm of x, (called the T measure), taken over a suitable time.
The T measure should be considered a surrogate for the lifetime of the flow. Considering
how this T measure changes with A will locate the edge relative to the relaminarizing
trajectory. A sudden and large change in the value of T denotes a transition across the
edge. Figures 7 shows the evolution in phase space of the rescaled and original decaying
trajectories, from an initial condition above and on the outside of the spiral structure.
This measure of “turbulence” against A is plotted in figure 8. The original trajectory
decays quickly, as do those rescaled further from the laminar state. However for A < 0.97
a large increase in the time average of the L2 norm is observed, this is caused by stepping
across the edge meaning another spiral must be completed before relaminarization. We
will compare these results to the carrying out the same analysis at later point along the
original trajectory, with results in figures 9 & 10. The original point lies below the edge,
so the reverse A scaling is observed. For A < 1.08 trajectories relaminization quickly, but
larger values lie the other side of the edge. The results from these two points highlight
the transition that is made as a trajectory in this model passes around the edge on route
to the laminar point. By using a relatively short time average of the L2 norm for our
projection we restrict the edge crossings that we can observe. Crossing the outer-most
loop of the spiral is captured as a transition, but the subsequent crossings of inner parts
of the edge are not caught by this relatively short time average. By using this metric we
observe a behaviour which is has a parallel in the full dynamics, which will be discussed
later.

In the case of the low dimensional model the outcome of the test could be predicted
from the phase portrait alone. Having studied this simple system the same analysis
can be performed on the full dynamics and allow some interpretation of the complex
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Figure 7: Phase space of the 2D model. Blue curving line denotes the trajectory decaying
from “turbulence”. Blue straight line shows range of rescaled initial conditions, the
evolution of which are plotted in red. Original decaying point lies above the edge.
Rescaled initial conditions span the edge.

T measure

Figure 8: T measure against A\. Measures whether each initial condition maintains “tur-
bulent” evolution during measure time. Values above 0.2 indicate “turbulent” evolution.
Values below indicate decay to the laminar state.
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Figure 9: Phase space of the 2D model. Test this time carried out at later time on the
original decaying trajectory. Initial condition now lies below the edge. Rescaled initial
conditions still span the edge.
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Figure 10: T measure against A for second point on the trajectory. Graph confirms no
edge beneath trajectory (smaller \) but edge exists above (larger ).

11



behaviour of the edge. Before we can begin this work we should consider the methods
previously used to study the edge. These methods have revolved around a bisection
technique between an original turbulent state and another which smoothly relaminarizes.
The criterion as to the turbulent or laminar evolution of the new flow field are usually
energy or F3p thresholds, with the turbulent threshold set just below the turbulent value
of the metric. These techniques work well for finding the attracting objects embedded
within the edge, but using this definition the edge will not be found near the turbulent
part of phase space. This can be compared to using the T measure (with a short time
average) to define the edge in the low dimensional model. If this was used, only the outer
spiral of the edge would be detected. In the two dimensional model the edge is defined
to be the stable manifold of the edge state, which removes the issue. In the full system,
in geometries which have a single attracting edge state, we can use the same definition.
While the edge state may be located using the bisection technique, we suggest that the
edge is defined as the stable manifold of the edge state. It should be noted that this
definition does not automatically solve the problem of tracking the edge near turbulent,
which will be discussed later in this work. With this new definition of the edge, we can
move forward to comparing the full dynamics with the low dimensional model.

The test begins with a single relaminarizing trajectory, along which two test points
are selected. The flow fields at these points are rescaled using the same methodology as
before,

u;, = Au (7)

where A = 1 recovers the original dynamics. For each value of A the initial condition is
generated, evolved for a set time, and the time average of the L2 norm of u recorded
(again called the T measure). Figure 11 shows the evolution of the L2 norm of u for
the original trajectory and rescaled conditions for A € [0.8,1.3], and in figure 12 is
plotted the T measure against A. By choice the original trajectory decays quickly, as
do its neighbours in A\. However for both larger and smaller values of A the T measure
increases, indicating a crossing of the edge to turbulent dynamics on both sides of the
point. A second region where trajectories decay exists at A ~ 0.9. The main point to
receive is that there exists an edge (in this case several pieces of the edge) below the
relaminarizing trajectory. The next step is to carry the process out at a later time, the
results of which are presented in figures 13 & 14. A transition has occurred since the
previous analysis, as there now exists no edge beneath the relaminarizing trajectory.
Turbulent dynamics are only to be found by choosing A > 1.2. While the results of
conducting this test on the full dynamics are far more complicated than those of the
low dimensional model, certain characteristics are maintained in both situations. Early
in the decay, part of the edge exists beneath the trajectory in phase space. Yet later,
this edge beneath is no longer present. This result is unsurprising given that by the
definition of the edge this transition from one “side” to another has to occur. However
the time and manner of the transition can provide evidence as to the topology of the
edge.

Early in the decay the test shows the existence of an edge below the decaying trajec-
tory. Using the bisection techniques briefly discussed earlier we can track the dynamics
on this edge. Later in the decay of the original trajectory there exists only an edge
above the decaying trajectory. Again bisection can be used to track the dynamics of
this part of the edge. Figure 15 shows the evolution of these two pieces of edge, the
edge beneath in green and the edge above in red. The dynamics on these two pieces
of edge initially move in different directions, however 200 time units later they become
involved in the same dynamics which is maintained for the rest of the time the edge is
accurately tracked?. This result suggests that the two pieces of edge above and below

2i.e. when the coloured pairs diverge. There is no evidence that if the edge was tracked longer these
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the trajectory are dynamically connected. Building on the previous result we now have
a more complete picture of the route past the edge. The transition from the trajectory
lying above the edge to below it, added to the dynamical connection of those two pieces
of edge fits with the low dimensional picture built by the 2D model of Lebovitz. The
complete geometry of the edge in the full dynamics is much more complicated than a 2D
model could hope to model, as shown by the multiple layers of edge observed in figure
12. Two further details from this work also suggest agreement with the low dimensional
model, that the edge goes up into the turbulent part of phase space. If we examine the
location of the transition in relative edge position of a trajectory (from above the edge to
below the edge) under the E3p projection of the dynamics we note that this transition
occurs at values of F3p associated with turbulent dynamics. This metric is commonly
used to evaluation if a flow field is turbulent and therefore suggests the edge also exists
near turbulence in phase space. This claim could be proved by developing a method to
track the edge into turbulence, however a method to perform this is not clear. The sec-
ond observation to be made concerns the evolution of the dynamics after the transition
in edge location has occurred. As can be seen in figure 15, the relaminarizing trajectory
tracks the dynamics of the edge for approximately 50 time units before diverging. This
picture is consistently observed and helps our understanding of the manner in which
trajectories pass by the edge. The trajectories running approximately parallel to the
edge in phase space fits the picture produced from the low dimensional model. None
of the results found in this work are individually convincing arguments for the spiral
topology of the edge. However together they begin to form a body of evidence which
supports a more complicated version of this cartoon of the edge geometry. The manner
of the transition around the edge appears to agree with the picture constructed. The
Esp projection suggests this transition happens near turbulence, and the dynamics of
the edge near this transition appear to be connected. The evolution of the trajectory
as it leaves turbulence remains close to the edge for a significant amount of time (> 50
time units) both before and after transition, which again is in agreement with the low
dimensional model.

5 Conclusion

The focus of this work has been understanding the role that the edge plays during decay
from turbulence. Beginning from a hypothesis that turbulence decayed through a point
in the edge, we examined the statistics and physical processes involved in decay. We
finished by comparing the dynamics of the edge in a low dimensional system to the full
dynamics of plane Couette flow. There was no evidence to support the hypothesis of a
unique decay point, instead what was observed was a wide variety of decay rates and
routes back to the laminar state. We statistically confirmed ideas about the physical
processes involved during the decay. Statistically all parts of the flow field begin to
decay at the same point in time, but the downstream rolls and z-dependent part of
the flow field decay at a greater relative rate. The last 200 time units of decay involve
only downstream fast and slow streaks. The rate that these streaks decay is set by the
horizontal length-scales involved. The streak structure during decay is simple, involving
predominately the first and second horizontal Fourier modes. The relative energy in
these two modes sets the decay rate. To understand the geometry of the edge in the
full dynamics we ran tests to compare this to a 2D model. This 2D model had been
selected as the simplest model containing edge structure seen in several low dimensional
models of shear flows. In these models the edge extended to infinity in one direction,
but in another wrapped up infinitely many times around a structure (in the case of

edge dynamics would separate.
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Figure 11: L2 norm of u against time. Blue curve shows decaying trajectory in full
dynamics. Blue straight line shows range of initial condition from A rescaling. Red
curves show selected evolution trajectories from these new initial condition.
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Figure 12: T measure against A for first point in full dynamics. T measure values larger
than 0.2 indicate turbulent evolution. Highly complex edge structure evident, with 3
regions of turbulent dynamics and 2 regions of laminar dynamics. Points to 3 individual
edge pieces.
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Figure 13: L2 norm of u against time for second point 60 time units later. Blue curve
shows decaying trajectory in full dynamics. Blue straight line shows range of initial
condition from A rescaling. Red curves show selected evolution trajectories from these
new initial condition.
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Figure 14: T measure against A for second point. Simpler structure, evidence for single
edge piece intersecting the rescaling line. Edge lies above the relaminarizing trajectory.

15



L2 Normu

1000

Figure 15: L2 norm of u against t (relabeled to locate initial edge bisection at zero).
Blue curve - relaminarizing trajectory which transitions from having edge below to edge
above only. Green curves - bounding curves for edge bisection tracking the dynamics of
the edge below the blue curve at t = 0. Red curves - bounding curves for edge bisection
tracking the dynamics of the edge above the blue curve at ¢ = 20. Both pieces of edge
become involved in same dynamics, indicating dynamical connection. Inset: close-up
around t = 0.
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the 2D model a fixed point). Comparing to this model we saw some evidence in the
full dynamics for similar, if more complicated structure. Decaying trajectories passed
around the edge, and the parts it passed around were found to be dynamically connected
in some cases. The value of F5p at this transition suggests that the edge passes up into
phase space. However we do not claim that this evidence proves this model to be
accurate. What we have succeeded in doing, is test the validity of this model with a
series of tests, and further work is required before stronger conclusions can be made.
There are several areas of this work where interesting extensions are clear. Conducting
the statistical analysis for a larger domain size would allow study of the conjectures
on streak structure. Are six-streak structures observed in larger domains during decay,
and at what Reynolds numbers? Another question opened up by this work is into the
significance of the location where a decaying trajectory passes around the edge. Does
this occur at a specific time before decay, and are there particular characteristics of the
flow field as the edge is rounded?

Despite having held attention of great minds since 1883, turbulence in shear flows
is an area where real progress is currently being made around the globe. Modern ideas
and powerful computers have enabled the discovery of new and complex solutions, which
bear resemblance to experimental work. Progress has been made furthering our under-
standing of the edge, and the role that it plays in the dynamics of turbulent shear flows.
The edge itself changes strongly with Reynolds number, with different solutions playing
the role as the edge state. The idea that the edge is wrapped and folded around the
turbulent dynamics, which a trajectory must negotiate in order to return to the laminar
state, is an idea which requires further study before conclusions can be drawn.
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