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For all the systems that we have considered so far, we have chosen only to model a
planar solidification front. In many situations this is not realistic and the interface is in
fact subject to instabilities. In this lecture, we consider small perturbations to the planar
interface in order to investigate the properties of these instabilities: when do they exist,
what is the growth rate of the instability and what is the characteristic length scale? We
shall assume non-kinetic growth to simplify the analysis.

1 Mechanism for instability

For a planar solid growing from a cooled boundary, all isotherms in the system are parallel to
the solid–liquid interface (see Fig. 1). When we introduce a perturbation onto the interface,
the isotherms are deformed in response to the new boundary conditions (as shown in Fig.
1b). As a result of this, the isotherms are bunched where the solid protrudes into the liquid
(crests) and are spread out where the solid lags behind (troughs). In the regions where
the isotherms are bunched, the temperature gradient is large and so there will be enhanced
heat transport from liquid to solid relative to the heat transport in the planar system. The
protrusion is therefore eroded. Similarly, less heat will be transported to the troughs and
so the rate of solidification is locally increased. These effects act to stabilize the interface
by levelling out any deviation from the steady planar state.

For the case of a supercooled melt, the heat flows from the solid towards the liquid.
As before, upon introduction of the perturbation, there is bunching of the isotherms above
crests on the solid–liquid interface and enhanced spacing of isotherms above the troughs.
However, the directions of the heat fluxes are reversed from the previous case, so that heat
is transported more rapidly away from the crests and more slowly away from the troughs.
This causes the interface to advance more rapidly at the crests, and relatively slower at the
troughs, so that any corrugations will grow in amplitude (Fig. 1c). Thus the interface is
unstable.

In the student exercise from the previous lecture, we saw that perturbations are sta-
bilized due to the Gibbs-Thomson effect. We found that the curvature of the interface
modifies the equilibrium melting temperature to

Te = Tm − Γ∇ · n, (1)
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Figure 1: Schematic diagrams showing the direction of heat flow (arrows) during the evolu-
tion of the solid–liquid interface. (a) Planar solidification from a cooled front. (b) Stability
of a front growing from a cooled boundary. (c) Instability of a front growing into a super-
cooled melt. (d) Stabilization as a result of the Gibbs-Thomson effect.
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Figure 2: Schematic diagram for (a) solidification of liquid by pulling liquid downwards
through a cooled heat exchanger and (b) melting of solid by pulling upwards through a
heated heat exchanger.

where ∇ · n is the interface curvature. Therefore, the interface temperature is reduced
relative to Tm at crests in the interface and increased at troughs. Thus heat will flow
from troughs to crests, causing the crests to melt back, while the troughs solidify faster,
stabilizing the front (see Fig. 1d). In the following, we will consider the stability of a planar
front growing into a supercooled melt including the Gibbs-Thomson effect. As will be seen,
the Gibbs-Thomson effect stabilizes the front for small wavelengths, while the front becomes
unstable at longer wavelengths.

2 Modelling interfacial instability

In order to explore stability of a planar surface growing into a supercooled melt, we consider
the case of liquid being pulled down through a heat exchanger at a constant velocity V as
shown in Fig. 2. The heat exchanger maintains the temperature at TH < Tm at a height
z = H, and the interface is assumed to be initially planar at z = 0. In experiments it is V ,
rather than the position of the interface, H, which is controlled and so H is an unknown:
in this problem, it will be determined from the Stefan boundary condition.

If we apply a small perturbation z = η(x, t) to the solid–liquid interface, we can inves-
tigate the stability of the interface as follows. The pulling velocity introduces an advective
term into the heat equation, which becomes:

∂T

∂t
− V

∂T

∂z
= κ∇2T, (2)
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while the boundary conditions are

T = TH at (z = H), (3)

T = Tm − Γ∇ · n at (z = η), (4)

and

ρL(V + ηt) = −k
∂T

∂z

∣

∣

∣

∣

z=η

. (5)

Note that we have already linearized the Stefan boundary condition for small perturbations
by assuming that the normal to the interface is parallel to the z-axis.

In order to non-dimensionalize the equations, we choose to scale lengths with H, time
with SH2/κ and write T = TH + (Tm − TH)θ. In terms of these nondimensional variables,
the advection–diffusion equation then becomes

1

S

∂θ

∂t
− p

∂θ

∂z
= ∇2θ, (6)

while the Stefan boundary condition takes the form

Sp + ηt = −θz, (7)

where the Peclet number is defined as p = V H/κ and measures the strength of advection
relative to diffusion. The remaining boundary conditions can then be written as

θ = 1 − γ∇ · n (z = η), (8)

θ = 0 (z = 1), (9)

where γ = Γ/H∆T is the non-dimensional surface energy.
We initially seek a steady state such that θ = θ(z) has no t or x dependence and η = 0.

Equation (6) then simplies to
θ′′ + pθ′ = 0 (10)

and the temperature field in the liquid is given by

θ = 1 − 1 − e−pz

1 − e−p
. (11)

We can then apply the Stefan boundary condition to obtain the Peclet number (and thus
the interface velocity) in terms of the Stefan number as

p = − log(1 − S−1). (12)

When the Stefan number is large, we can expand Eqn. (12) in terms of S−1 to show
that p ≈ S−1 � 1. Therefore, when we consider Eqn. (6) in the large S limit, we can
discard the time derivative and advection terms (the quasi-stationary approximation) to
approximate the temperature field as

θ ≈ 1 − z. (13)
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With this quasi–stationary approximation, we can now perform a linear stability analysis
by applying a small disturbance

η = η̂eiαx+σt (14)

to the interface and letting the temperature field take the form

θ = 1 − z + θ̂eiαx+σt. (15)

Substituting this expression for θ into the quasi–stationary form of Eqn. (6), we obtain

θ̂′′ − α2θ̂ = 0, (16)

so that
θ̂ = A sinhα(1 − z), (17)

in which we have applied the boundary condition at z = 1.
In order to determine the curvature of the interface, we note that for an interface de-

termined by the equation g(x, z, t) = 0, the normal to the surface is given by

n =
∇g

|∇g| .

Here, g = z − η(x, t) and so

n =
(−ηx, 1)

(1 + η2
x)1/2

≈ (−ηx, 1), (18)

while the curvature, K = ∇ · n takes the form

∇ · n ≈ −ηxx. (19)

Using this expression for the curvature, we can apply the two remaining boundary
conditions at the solid–liquid interface in order to obtain a dispersion relation controlling
the rate of growth of the individual wavelengths. The Stefan condition gives

ση̂ = −θ̂′ = αA cosh α, (20)

and the Gibbs–Thomson condition gives that

θ̂ − η̂ = −γ(−ηxx) = −α2γη̂,

which becomes
A sinhα − η̂ = −α2γη̂. (21)

Combining Eqns. (20) and σ×(21), we obtain

Aσ sinhα − αA cosh α = −α3γA cosh α, (22)

from which we immediately have the dispersion relation

σ = α coth α(1 − γα2). (23)

24



0 0.5 1 1.5 2 2.5 3 3.5
 1

 0.5

0

0.5

1

1.5

σ∼

α∼

Figure 3: Plot of the dispersion relation (23) in the case γ = 0.1.

This can be simplified in the limits of small and large wavelength perturbations to

σ =

{

−γα3, α � 1

1 + α2
(

1

3
− γ
)

, α � 1.
(24)

Equation (23) can be used to plot the dependence of σ on α, as demonstrated in Fig. 3. In
particular, we note two interesting properties of equation (23). Firstly, there is a critical
wavenumber, αc, above which σ < 0 and perturbations decay in time; the interface is
stable for α > αc. There is therefore a minimum wavelength below which the instability is
eliminated. Clearly,

αc = γ−1/2. (25)

We can then write the minimum wavelength, λc, in dimensional terms as

λc =
2πH

αc
= 2π (H`c)

1/2 , (26)

where

`c ≡
γsl

ρL

Tm

∆T
= γH (27)

is the capillary length. The minimum wavelength is therefore proportional to the geometric
mean of the capillary length and H, which is a lengthscale for thermal diffusion. Typically
for ice we have

`c =
(3 × 10−2 N m−1) × (300 K)

(103 kg m−3) × (3 × 105 J kg−1) × (1 K)
∼ 30 nm. (28)
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In typical laboratory experiments, H ∼ 10−1 m and so we find that the minimum wave-
length λc ∼ 300 µm.

Secondly, we observe from Fig. 3 that there is a maximally unstable wavenumber, αm,
provided that γ < 1/3. Expanding (23) for αm � 1 and requiring that σ′(αm) = 0, we find
that

αm = (3γ)−1/2 =
αc√

3
. (29)

This wavenumber corresponds to a maximally unstable wavelength λm =
√

3λc. Since it
is this mode that grows fastest, this is the wavelength that we might expect to observe in
experiments. Recall also that typically `c ∼ 30 nm and H ∼ 0.1 m so that

γ =
`c

H
∼ 10−7 � 1, (30)

and our approximation that αm � 1 is valid. Finally, we find that λm ≈ 0.5 mm for typical
laboratory experiments.

Student Problem Show that a melting interface is stable by considering the above prob-
lem with TH > Tm and V with the opposite sign. (cf. Fig. 2b.)

Solution We note that the system is effectively identical to the previous case, except that
now Ṽ = −V and ∆̃T = (TH −Tm) = −∆T , where tilde/no tilde distinguishes between the
melting/freezing problem, respectively. We also see that p̃ = −p, S̃ = −S and we can define
T = TH − ∆̃T θ̃. Thus when we non-dimensionalize the equations (and dropping tildes), we
find that

1

S

∂θ

∂t
+ p

∂θ

∂z
= ∇2θ, (31)

Sp − ηt = −θz (z = η), (32)

θ = 1 + γ∇ · n (z = η), (33)

and
θ = 0 (z = 1). (34)

There is a steady state solution as before, such that

θ = 1 −
(

1 − epz

1 − ep

)

, (35)

and upon applying the Stefan boundary condition, we find that

p = log(1 + S−1) (36)

so that p ≈ S−1 for S � 1.
As before, for large S, we can make a quasi-staionary approximation by discarding time

derivative and advection terms in the diffusion–advection equation so that:

θ ≈ 1 − z. (37)
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Figure 4: Photographs showing the development of the morphological instability discussed
here. In the middle picture, pinching is observed leaving inclusions of liquid within the
solid.

Finally, using this linear approximation as a basic state, we apply a small perturbation to
the interface of the form

η = η̂eiαx+σt (38)

along with
θ = 1 − z + θ̂eiαx+σt (39)

which yields a similar dispersion relation to the freezing case:

σ = −α coth α(1 + γα2). (40)

Note that the expression for σ is always negative, and so the interface is stable to small
amplitude perturbations of all wavelengths.

3 Beyond linear theory: pinching

The morphological instability discussed in the last section is manifested as a fingering in-
stability with typical finger morphologies shown in Fig. 4. As these fingers grow, their
growth cannot any longer be understood by the linear stability analysis presented in the
last section. Instead, nonlinearities become important and the fingers themselves become
unstable to dendritic growth shown in Fig. 4. While the detailed morphology of these fingers
is difficult to understand without detailed numerical simulations, the pinching instability
of the fingers (illustrated in the middle frame of Fig. 4) can be understood by means of a
simple model. This pinching is of particular interest since it results in pockets of fluid being
trapped within the solid. Here we present a simple model of pinching, which is mathemat-
ically analogous to the model of the pinching of a liquid thread developed by Rayleigh and
Plateau.
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Figure 5: Setup showing the one dimensional model of pinching in solidification.

We consider a liquid cylinder of radius a within a concentric annulus of inner and outer
radii a and R > a respectively, as shown in Fig. 5. This is the simplest geometry that will
lead to an instability since in two dimensions the surface energy acts to suppress pinching.
With a third dimension, however, there are two competing curvatures: an axisymmetric
perturbation in the cylinder radius increases the ‘ring’ curvature where the radius is smallest
driving fluid away from that point and driving the instability further. We assume that the
material properties of the two phases are identical.

The interface between liquid and solid is given by

g(r, z, t) = a(z, t) − r = 0, (41)

where we are assuming that the system remains axisymmetric for all times. The normal
(pointing from solid to liquid) is then given by

n =
(−1, az)
√

1 + a2
z

, (42)

so that

∇ · n =
1

r

d

dr

(

r
−1

√

1 + a2
z

)

+
d

dz

(

az
√

1 + a2
z

)

≈ −1

r
+ azz ≈ −1

a
+ azz.

The (equilibrium) temperature along the interface is therefore given by

Te ≈ Tm + Γ

(

1

a
− azz

)

. (43)

28



This expression has to be combined with the conservation of heat to obtain a complete set
of equations. For long wavelength deformations, the system has time to equilibriate across
cross-sections at fixed z and so we assume that T = T (z). The conservation of heat is
considerably simplified by this approximation. In particular, if Hl,s represents the specific
enthalpy in the liquid/solid phases, then the conservation of heat for an element of height
δz requires that

ρ
∂

∂t

[

πa2δzHl + π(R2 − a2)δzHs

]

=
[

q(z) − q(z + δz)
]

πR2, (44)

where q = −k∂T/∂z is the conductive heat flux in the system. Taking the limit δz → 0, we
find that

ρ(Hl − Hs)
∂

∂t

(

πa2
)

+ πa2ρ
∂Hl

∂t
+ π(R2 − a2)ρ

∂Hs

∂t
= −πR2 ∂q

∂z
. (45)

However, by definition we have Hl−Hs = L and (∂H/∂T )p = cp so that (45) first simplifies
to

ρL
∂

∂t
(πa2) + πR2ρcp

∂T

∂t
= πR2 ∂

∂z

(

k
∂T

∂z

)

,

and then

ρcp
∂T

∂t
=

∂

∂z

(

k
∂T

∂z

)

− ρL
∂

∂t

(

πa2

πR2

)

. (46)

This can in turn be written in terms of the solid volume fraction φ = 1 − a2/R2 to give

ρcp
∂T

∂t
=

∂

∂z

(

k
∂T

∂z

)

+ ρL
∂φ

∂t
. (47)

Note that (47) has the diffusive character of the heat equation that we have solved previ-
ously. However, we now have a source of heat arising from the latent heat produced in the
conversion of liquid into solid. In this respect, (47) is very similar to the conservation of
heat in a mushy layer, which we shall meet in a few lectures’ time.

Under the assumption that there are no kinetic effects, T and a are related through the
Gibbs-Thomson equation (43). We can therefore eliminate T from (46) in favour of a and
rewrite (46) as a single equation for a(z, t):

ρcpΓ
∂

∂t

(

1

a
− azz

)

= kΓ
∂2

∂z2

(

1

a
− azz

)

− ρL

R2

∂

∂t
(a2). (48)

If we perturb the initially cylindrical fluid inclusion then we can write a(z, t) = a0 +a1(z, t)
(where a0 is a constant). Substituting this expression into (48) and linearizing, we find that

ρcpΓ
∂

∂t

(

a1

a2
0

− a1,zz

)

= kΓ
∂2

∂z2

(

a1

a2
0

− a1,zz

)

+
2ρL

R2
a0a1,t. (49)

We can then look for normal mode solutions with a1 ∝ exp(iαx + σt). The resulting
dispersion relation is simplified by non-dimensionalizing lengths with R and times with
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Figure 6: The dispersion relation (50) showing the existence of a maximally unstable
wavenumber. Here ã0 = 0.25 and S = 10, so that (52) is satisfied.

R2/κ — the thermal diffusion timescale. Denoting dimensionless quantities with ˜ we find
that

σ̃ = α̃2 1 − ã2
0α̃

2

(2S + α̃2)ã2
0
− 1

, (50)

where

S ≡ LR

cpΓ
(51)

is the relevant Stefan number in this problem. This dispersion relation is plotted in figure
6. Again, considering the behaviour of σ̃(α̃) in the limits α̃ � 1 and α̃ � 1 reveals that
there is a maximally unstable wavenumber in this problem, provided that

S > 1

2
a−2

0
. (52)

We expect that this maximally unstable wavenumber would give rise to a well-defined
wavelength in experiments.
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