
Lecture 5: Amplitude Dynamics, Boundary Layers, and

Harbor Resonance

Jospeh B. Keller

1 Amplitude Amplification at the Shore

We will now consider the consequences of ray theory for the amplification of wave ampli-
tudes near a shoreline. In the deep ocean, tsunami waves have small amplitude and long
wavelength, on the order of tens of kilometers. But when they reach the shore, as mentioned
in the last lecture, they can grow to towering heights. We can gain insight into the nature
of this amplitude growth using the linear methods of the previous lecture.

We will consider the evolution of a wave train incident on a sloping beach. Let the depth
be a linear function of distance from the shore

h = x tanα ∼ αx, α≪ 1 (1)

Following the method of the previous lectures, factor the velocity potential into a horizontal
oscillation and a vertical mode shape

φ (x, y, z) = A cosh (k(z + h)) eiβS(x,y). (2)

Consequently,

(∇S)2 = k2 (3)

k tanh kh = 1. (4)

We now specialize to the case of one dimensional long waves. These are waves with long
wavelength compared to the depth and wavefronts parallel to the shore. Mathematically,
these assumptions imply

kh ≪ 1 (5)

S = S(x). (6)

In this limit, Equation (4) becomes
k2h = 1, (7)

which implies

k =
1√
h
. (8)
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Therefore, as the waves approach shore and h → 0, k → ∞ and the wavelength decreases
to zero. The parameter kh, however, remains small throughout:

kh =
1

k
→ 0

Incidentally, the one dimensional wave approaching parallel to the shore is the most
physically relevant case. Recall from Lecture 3 the equation for the path of characteristic
curves

d

dσ
∇S =

λ

2
∇n2(x). (9)

Using n2(x) = h0/h(x), we have

d

dσ
∇S = − h0

h2(x)
∇h. (10)

Since ∇S is parallel to rays, and −∇h points in the direction of the shore, this equation
shows that rays curve in the direction of the shore. Figure 1 illustrates the intuition behind
this result. As a wave approaches a beach at an angle, the section of the wavefront further
from the beach is over deeper water, and therefore has a relatively faster wave speed. Ac-
cordingly, the wavefront will swing towards the shore until it is parallel with the beach, and
all points on the wavefront have the same wave speed. For this reason, the one dimensional
formulation is adequate to investigate the late stages of a wave’s approach to the shore.

The reduction to one dimension also makes it easy to compute the phase. We have

∂S

∂x
= ±k

= ± 1√
h

= ± 1√
x tanα

. (11)

Though the derivative is singular at x = 0, it is integrable and we can compute the phase

S(x) = ±
∫ x

x0

1
√

h(x′)
dx′

= ±
∫ x

x0

1√
x′ tanα

dx′

= ± 2x1/2

√
tanα

+ C (12)

We choose the minus sign to be consistent with waves moving toward the shore.
We are now prepared to compute the amplitude evolution. Because the rays are straight

lines in one dimension, the ray tube area dσ = constant. We showed in Lecture 4 that

A2
0

(

sinh2 kh+ h
)

kdσ = constant.
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Figure 1: Waves on a sloping beach are refracted so as to approach with wavefronts parallel
to the shoreline
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Therefore,

A2
0 ∼ 1

k
(

h+ sinh2 kh
)

∼ 1

k (k2h2 + h)
. (13)

Using equation ( 8), we have

A0 =
C ′

h1/4
=

C

x1/4
. (14)

Thus, the theory predicts wave amplitudes going to infinity at the shoreline. That’s why
tsunamis do so much damage.

This result seems natural considering that we have held the example of a tsunami in
mind as we derived it. But one might ask what, in this theory, differentiates tsunamis from
any other wave? The ocean is full of waves satisfying kh ≪ 1 that reach shore without
catastrophic consequences. Clearly, something is wrong with the theory very close to the
shore.

A typical trouble with asymptotic theories is the presence of certain regions where the
solutions become singular. In these regions, the asymptotic expansions fail. We need a
different theory that applies in this singular region, which we call a boundary layer. If all
goes well, we will be able to find a solution that applies in the boundary layer and that
blends continuously into exterior solution we have just derived.

2 Boundary layer and shallow water equations

2.1 The concept of the wave boundary layer

The asymptotic analysis based on the linear wave theory discussed above, which was asymp-
totic in the sense that the depth and wavelength were small compared to the characteristic
horizontal scale, proved to be successful for deep water waves (see the previous lecture and
[3]). However, the theory fails in the proximity of the shore, yielding an infinite amplitude
there. Wave propagation near the shore can be analyzed by means of the shallow water
theory and the boundary layer concept.

The idea is to use the shallow water equations in the vicinity of the shore, where the
depth is small, and the wavelength is large compared to the depth. It is worth noting,
however, that shallow water theory is applicable over large regions of ocean basins, if we
study phenomena on the synoptic scale, large (L ≈ 100 km) compared to the mean depth
of the basin (H ≈ 500 - 1000 m), see e.g. [4].

First of all, we will ruminate for a while on the derivation of the shallow water equations,
formulated for an incompressible fluid in an inertial frame - Coriolis acceleration will not
be included.

Naturally, at this point anyone merely conversant with physical oceanography 1 would
ask about the relevance of linear shallow water theory to the reality which occurs on the
noninertial frame of the rotating Earth, where the the Coriolis acceleration should be taken

1and we assume that some of our readers belong to this group
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into account. In fact, this effect is crucial in studies of tidal phenomena as well as for
the more general model of Poincare waves (the latter problem being formulated in the
shallow water approximation in the synoptic-scale ocean gives dispersive waves). However,
neglecting the coriolis force may be justified in two classes of wave problems:

• waves propagating in lakes and small, shelf seas (i.e the Baltic sea) where the long
(with respect to the basin depth) waves are locally generated by a strong wind yet
they are short enough not to be effected by the Coriolis acceleration,

• Shoaling waves approaching normal to a shoreline. Then the waves, irrespective of
whether they were nondispersive or dispersive far from the shore due to the Coriolis
effect, undergo shoaling on scales on which the Coriolis effect does not contribute.

3 The structure of the boundary layer

While toying with the idea of the horizontal wave boundary layer d for the problem
of waves approaching the shore and affected by its presence, we could attempt to find an
analogy with the vertical terrestial and oceanic boundary layer (table 1). By this analogy,
we may expect that the solution obtained for the wave boundary layers may be matched
at the borderline between the boundary layer and the outer one, just like in the case of
vertical boundary layers.

3.1 Shallow water equations

We consider long waves propagating in relatively shallow water in an inertial frame of ref-
erence. We assume two-dimensional motion in the (x, y) plane. The equation of continuity
for an incompressible fluid is:

ux + wz = 0, (15)

The kinematic condition and the dynamic conditions at the free surface are:

(ηt + uηx − w)|z=η = 0, p|z=η = 0 (16)

The kinematic condition at the bottom is:

(uhx + w)|z=−h = 0, p|z=η = 0 (17)

It is convenient to formulate the problem in terms of the depth integrated horizontal velocity,
namely:

∂

∂x

∫ η

−h
udz, (18)

using the boundary conditions and the Leibniz rule of integration:

∂

∂x

∫ η

−h
udz = −ηt (19)

In the shallow water theory the hydrostatic pressure approximation is used. That is, vertical
acceleration is ignored. Then, the pressure at a point is determined entirely by the weight
of the water column above it:

p = gρ(η − z) (20)
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vertical (terrestial/ocean) horizontal (wave)

ground/free water surface/ice shoreline

Prandtl layer

shore wave boundary layer d where the shallow water theory
applies; for the sake of use of asymptotic methods, d can be
further divided into inner shore wave boundary layer di in
the immediate proximity of the shoreline and the outer shore
wave boundary layer do

Ekman layer
the outer layer where the shallow water might also apply
but the Coriolis term should be taken into account causing
waves to be dispersive

free flow (geostrophic layer)
the outermost layer where gravity deep water wave theory
applies

Table 1: Boundary layer structure and the analogy between vertical and horizontal bound-
ary layers.
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The horizontal pressure gradient is then px = gρηx. From the equation of motion in the x
direction, ut + uux = −gηx, the horizontal acceleration is independent of depth. Therefore
so is u, provided that it was initially independent of z. The depth integrated u is now
∫ η
−h udz = u(η + h). Using this, we obtain the nonlinear shallow water equations:

ut + uux = −gηx (21)

(

u(h+ η)
)

x
= −ηt, (22)

Where η = η(x, t), u = u(x, t), h = h(x). If we assume that u, η and their derivatives
are small, their products can be neglected compared with linear terms. Then (21) and (22)
yield the linear shallow water equations :

ut = −gηx (23)

(uh)x = −ηt (24)

Eliminating η from (23) and (24) gives

(uh)xx −
1

g
utt = 0. (25)

3.2 Linear SWE and the variable depth - asymptotic approach

Since h = h(x) is independent of t, we can rewrite (25) as

(uh)xx −
1

gh
(uh)tt = 0. (26)

This is the wave equation for a variable U∗ = uh with propagation velocity c =
√

gh(x).
For time harmonic waves U∗(x, t) = U(x) exp(−iωt), (26) becomes the Helholtz equation:

Uxx +
ω2

gh(x)
U = 0. (27)

We now define k = ω/
√
gh0, n(x)2 = gh0/gh(x), in terms of a typical depth h0. Then we

can rewrite (26) as
Uxx + k2n2(x)U = 0. (28)

Away from the shoreline h(x) = 0, the asymptotic form of U(x, k) for kh0 >> 1 is

U(x) ≈ Zin(x) exp (ik Sin(x)) + Zr(x) exp (ik Sr(x)). (29)

Here Zin(x), Sin(x) and Zr(x), Sr(x) are the amplitudes and phases of the incident and
reflected waves, respectively. We call (29) the outer asymptotic expansion of U . It
is not valid where h(x) = 0 because Zin(x), Zr(x) become infinite there. To determine
U(x) near the shore, we define x′ = kx and V (x′, k) = U(x, k). Then h(x) = h(x

′

k ) =

h(0) + hx(0)(
x′

k ) + O(k−2). Then at the shoreline x = 0 we get h(0) = 0 and we define α,
the slope of the bottom, by tanα = hx(0). Then n(x)2 = h0/h(x) = (kh0)/(x

′ tanα)+O(1)
and (28) becomes:

Vx′x′ +
( h0

tanα

k

x′
+ O(1)

)

V = 0. (30)
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When we neglect the O(1) term, (30) becomes a form of the Bessel equation. Although the
coefficient of V is singular at x′ = 0, the equation has a solution which is regular there. It
is

V (x′, k) = A
√
x′J1

(

2

√

kh0

tanα
x′

)

. (31)

Here, A is an arbitrary constant. Then the solution of (31) vanishes at x′ = 0. There is
also a solution which is infinite at x′ = 0. The asymptotic solution of (31) for x′ large is:

V (x′, k) ∼ A(
√
x′)ei

(

2
q

kh0

tan α
x′

)

+B(
√
x′)e−i

(

2
q

kh0

tan α
x′

)

, (32)

This can be matched with the outer expansion (29). The system of linear, variable depth
shallow water equations is satisfactory for small amplitude waves. It does not capture effects
like breaking, for which the nonlinear theory is needed.

4 Nonlinear Wave Propagation Along Rays

In these lectures, we have discussed the linear theory of waves in some detail. It would be
a shame not to discuss nonlinearity a little further. For decades, models of water waves
have been an interesting source of nonlinear equations. One of the most famous of these
equations is that of Kordeveg and de Vries, which was derived to model the cumulative
effect of nonlinearity in water waves travelling over long distances.

In this section, we will derive KdV in the context of a ray tracing theory for nonlinear
long waves on a layer with spatially varying depth. In linear theories, the amplitude typically
takes the form of a nearly sinusoidal wave train with amplitude and wavenumber slowly
varying along a ray. Instead, we will find that the amplitude is governed by an equation of
KdV form. Specifically, we will consider the equations for a disturbance on the surface of an
incompressible flow of constant density without rotation. This computation is a simplified
presentation of a more general analysis presented in [5], in which the effects of bottom
topography, incompressibility, rotation, stratification, and a polytropic equation of state
are taken into account. By including only one dimensional bottom topography, we will be
examining the simplest case in which nontrivial amplitude dynamics occurs.

4.1 Scaling the Equations of Motion

We begin by introducing a carefully chosen scaling of the equations of fluid motion. The
key method of asymptotic analysis is to rescale equations to introduce small parameters,
thus allowing complex problems to be considered as a sequence of simpler problems. The
art of this method is to tailor one’s scaling to access a physically interesting limit. In this
case, the scaling will pertain to waves with wavelength long compared to the depth of the
layer, propagating over long distances.

Let us consider a layer of incompressible fluid in two dimensions bounded above by the
free surface z⋆ = η⋆ (x⋆, t⋆) and below by the rigid surface z⋆ = −h⋆ (x⋆). Before writing the
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equations of motion, we introduce stretched dimensionless variables x,z,t, etc., as follows:

ǫ =
(

H
L

)2/3
, (x⋆, z⋆) = H

(

ǫ−3/2x, z
)

,
h⋆ = Hh, η⋆ = Hη,

p⋆ = gHρ0p, t⋆ = ǫ−3/2t
(

H
g

)1/2

(u⋆, w⋆) =
√
gH

(

u, ǫ1/2w
)

.

(33)

and v = (u,w). Here, L is a typical horizontal scale of variation, so ǫ is determined by the
characteristic aspect ratio of the motion.

In these stretched variables, the equations of motion take the following form:

∂w

∂z
+ ǫ

∂u

∂x
= 0, (34)

ǫ

(

∂u

∂t
+ u

∂u

∂x
+
∂p

∂x

)

+ w
∂u

∂z
= 0, (35)

ǫ2
(

∂w

∂t
+ u

∂w

∂x

)

+ ǫw
∂w

∂z
+
∂p

∂z
+ 1 = 0. (36)

The kinematic condition and the normal force balance at the free surface are, respec-
tively,

∂η

∂t
+ u

∂η

∂x
= w, (37)

p = C, (38)

evaluated at z = η(x). The kinematic condition at the lower boundary is

w = −ǫu∂h
∂x

(39)

evaluated at z = −h(x).
When ǫ = 0, equations ( 34) - ( 39) have, as a solution, the state of rest given by

v0 = 0, (40)

p0 = C − z (41)

η0 = 0. (42)

To find approximate solutions for ǫ 6= 0, we introduce a phase function S (x, t) and the
“fast” variable ξ = ǫ−1S. We then express v, p, and η, as functions of ξ as well as of x,z,t,
and ǫ. We also assume that these functions posses asymptotic expansions in ǫ of the form

v (ξ, t, x, z, ǫ) ∼ v0 (t, x, z) + ǫv1 (ξ, t, x, z) + ǫ2v2 + · · · , (43)

where the variables with subscript 0 are the rest state solutions given above. Under this
change of variables, the derivatives transform as

∂

∂x
→ ∂

∂x
+ ǫ−1Sx

∂

∂ξ
, (44)

∂

∂t
→ ∂

∂t
+ ǫ−1St

∂

∂ξ
. (45)
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.
Since, ∂h

∂ξ = 0, the equations of motion become

ǫ
∂u

∂x
+ Sx

∂u

∂ξ
+
∂w

∂z
= 0, (46)

ǫ

(

∂u

∂t
+ u

∂u

∂x
+
∂p

∂x

)

+ (St + uSx)
∂u

∂ξ
+ Sx

∂p

∂ξ
+ w

∂u

∂z
= 0, (47)

ǫ2
(

∂w

∂t
+ u

∂w

∂x

)

+ ǫ

(

w
∂w

∂z
+ (St + uSx)

∂w

∂ξ

)

+
∂p

∂x
+ 1 = 0. (48)

The boundary conditions become

ǫ

(

∂η

∂t
+ u

∂η

∂x

)

+ (St + uSx)
∂η

∂ξ
− w = 0, z = η, (49)

w + ǫu
∂h

∂x
= 0, z = −h. (50)

We will now substitute the asymptotic series forms into these equations and equate
coefficients of successive powers of ǫ. Additionally, we transform the boundary conditions at
z = η into boundary conditions at z = 0 by writing the boundary terms as a taylor expansion
around z = 0. In this way we obtain sets of equations for the successive determination of S
and of the various coefficients in the asymptotic expansion of the solution.

Equating the coefficients of order ǫ yields

Sx
∂u1

∂ξ
+
∂w1

∂z
= 0, (51)

St
∂u1

∂ξ
+ Sx

∂p1

∂ξ
= 0, (52)

∂p1

∂z
= 0, (53)

St
∂η1

∂ξ
− w1 = 0, z = 0, (54)

p1 = η1, z = 0, (55)

w1 = 0, z = −h. (56)

4.2 Modes Structure and the Eiconal equation

We can solve equations ( 51)-( 56) for the structure of wave solutions at leading order.
A PDE governing the phase function S will emerge as a solvability condition for these
equations, and will be seen to be equivalent to the eiconal equation of shallow water theory.

First, we eliminate η1 and u1 using equations ( 51) and ( 55) to write

∂η1

∂ξ
=

∂p1

∂ξ
, (57)

∂u1

∂ξ
= − 1

Sx

∂w1

∂z
. (58)
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Equality in equation ( 57) holds for all z by equation ( 53). The system simplifies to

−St
Sx

∂w1

∂z
+ Sx

∂p1

∂ξ
= 0, (59)

∂p1

∂z
= 0, (60)

∂p1

∂ξ
− w1

St
= 0, z = 0, (61)

w1 = 0, z = −h. (62)

In order to solve these equations, we seek a product solution of the form

p1 = A(ξ, t)ψ(x, z), (63)

w1 = −St
∂A

∂ξ
φ(x, z). (64)

These forms are analogous to that used in Lecture 3, the well known WKB ansatz. In
those cases the solution consists of a rapid sinusoidal oscillation with a slowly varying
amplitude. In the present case, we also imagine the solution will take the form of a rapidly
oscillating waveform, represented by A(ξ, t), with a slow modulation and vertical structure
represented by φ and ψ. However, because of nonlinearity, the fast waves do not take the
form of sinusoids. Rather, the appropriate wave shape will emerge from the analysis.

Substituting these solution forms into equations ( 59)-( 62) and simplifying yields

ψ = −θ2(x, t)
∂φ

∂z
, (65)

∂ψ

∂z
= 0, (66)

ψ = −φ, z = 0, (67)

φ = 0, z = −h. (68)

where

θ2(x, t) =
S2
t

S2
x

. (69)

This is a first order system of ordinary differential equations in z in which x and t appear
only as parameters. For the system to have a solution, we must have

S2
t

S2
x

= h. (70)

A particular solution of the system is then

w1 = St
∂A

∂ξ
ψ(x)

( z

h
+ 1

)

, (71)

u1 = −St
Sx

ψ(x)

h
A, (72)

p1 = Aψ(x), (73)

η1 = Aψ(x). (74)
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Note that, in principle, ψ may have an arbitrary x dependence, and u1 . This freedom
corresponds physically to the fact that an arbitrary slowly varying order ǫ height field could
be added to η1, and an arbitrary order ǫ velocity field U(x, z, t) could be added to u1, that
would have to be balanced only at higher order due to the form of equations ( 34)-( 39).
Since we are not interested in the interaction of waves with higher order mean flows, we
will assume U = 0 and ∂ψ

∂x = 0.
Equation ( 70) is the same as the eiconal equation computed when we derived shallow

water theory. To solve this equation we can use the method of characteristics, as in the
previous lectures. It is interesting to note that the modes and rays we have computed are
the same as those determined by the linear theory of wave propagation. It is only in the
determination of the amplitude A(ξ, t) that nonlinearity plays a role, and to that we now
turn.

4.3 Amplitudes

To determine the equations governing the amplitude function A(ξ, t), we must analyze the
set of equations obtained by equating the coefficients of order ǫ2 in equations ( 34)-( 39).
Doing so, we obtain

Sx
∂u2

∂ξ
+
∂w2

∂z
= −∂u1

∂x
, (75)

St
∂u2

∂ξ
+ Sx

∂p2

∂ξ
= −∂u1

∂t
− Sxu1

∂u1

∂ξ
− w1

∂u1

∂z
− ∂p1

∂x
, (76)

∂p2

∂z
= −St

∂w1

∂ξ
, (77)

St
∂η2

∂ξ
−w2 = −∂η1

∂t
− u1Sx

∂η1

∂ξ
+ η1

∂w1

∂z
, z = 0, (78)

p2 = η2 − η1
∂p1

∂z
= η2, z = 0, (79)

w2 = u1
∂h

∂x
, z = −h. (80)

(81)

This system is an inhomogeneous form of equations ( 51)-( 56), with forcing given by the
solutions computed at lower order. Substituting in the solutions found in equations ( 71)-
( 74) yields

− St
Sx

∂w2

∂z
+ Sx

∂p2

∂ξ
= G1(ξ, x, z, t), (82)

∂p2

∂z
= G2(ξ, x, z, t), (83)

St
∂p2

∂ξ
− w2 = G3(ξ, x, t), z = 0, (84)

w2 = u1
∂h

∂x
, z = −h. (85)
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where

G1 =
St
Sx

ψ

h

∂A

∂t
− Sx

ψ2

h
A
∂A

∂ξ
, (86)

G2 = −S2
t

∂2A

∂ξ2
ψ

( z

h
+ 1

)

, (87)

G3 = −∂A
∂t

+ 2St
ψ2

h
A
∂A

∂ξ
. (88)

As before, we seek a solvability condition for this system. This time, the condition will
impose a constraint on A that will allow us to solve for the amplitude along rays.

Begin by solving ( 83) for p2:,

p2 =

∫

−h
zG2dz

′ + P (ξ, x, t) . (89)

Inserting this solution into equation ( 82) and integrating over z gives

w2 = −Sx
St

∫ z

−h
G1dz

′ +
S2
x

St

∫ z

−h

∫ z′

−h

∂G2

∂ξ
dz′′dz′ − S2

x

St

∂P

∂ξ
z +D(ξ, x, t). (90)

Applying the boundary condition at z = −h gives

St
∂P

∂ξ
= D +

St
hSx

∂h

∂x
ψA. (91)

Finally, applying the boundary condition at z = 0 gives the constraint

−Sx
St

∫ 0

−h
G1dz

′ +
S2
x

St

∫ 0

−h

∫ z′

−h

∂G2

∂ξ
dz′′dz′ = −G3 − St

∫ 0

−h

∂G2

∂ξ
dz′ +

St
hSx

∂h

∂x
ψA. (92)

By substituting for G1, G2, and G3 into (92), and making extensive use of equation ( 70),
we find an equation for A:

∂A

∂t
−

[

3ψ

2h
St

]

A
∂A

∂ξ
+

[

1

6
hS3

t

]

∂3A

∂ξ3
= ∓ 1

2
√
h
A. (93)

The sign of the right hand side is determined by the branch of the solution to the eiconal
equation that is selected. It is negative for rightward travelling waves, and positive for
leftward travelling waves.

Equation ( 93) is of KDV form, with a linear growth term reflecting the expansion and
compression of ray tubes in space-time. Note that

1

2
√
h

dh

dx
=

d

dx

√
h

is the gradient of the ray speed, and thus reflects expansion and contraction of ray tubes.
For a rightward travelling wave travelling into deeper water, dc

dx > 0, ray tubes expand, and
equation ( 93) predicts the decay of A along a ray.
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Figure 2: The configuration of the cavity resonator.

Let us now examine the case of constant depth, in which equation ( 93) reduces to the
form

∂A

∂t
− λ1A

∂A

∂ξ
+ λ2

∂3A

∂ξ3
= 0 (94)

where λ1 and λ2 are constants. If we seek travelling wave solutions of the form A(ν), where
ν = ξ − ct, we find the ODE

−cA′ + λ1AA
′ + λ2A

′′′ = 0.

One periodic solution to this equation is the Jacobi function,

A = σcn
(

λ−1 (ξ − ct)
)

.

These are “cnoidal” waves. They resemble cosines, but with flatter troughs and sharper
peaks. Furthermore, the wavespeed c is a function of the amplitude σ.

It is helpful to be quite clear about the physical picture of wave propagation that has
emerged from this analysis. Due to the eiconal equation ( 70), surfaces of constant ξ
propagate with the shallow water wave speed

√
h. The amplitude equation has solutions

that propagate relative to surfaces of constant ξ. Thus, for example, the full propagation
velocity of the cnoidal wave solutions above is v =

√
h + c(σ). It is possible for these

nonlinear disturbances to travel at supercritical speeds.

5 Closed and semiclosed basins

Asymptotic methods will now be applied to determine waves in semiclosed basins linked
to the ocean by a small opening, such as harbors and marinas, subjected to the wave field
incoming from the open ocean. The configuration considered here is a semicircular cavity,
with the origin at the centre, as shown in figure 2. The boundary Γ consists of a circular arc
with r = a and two straight lines. The opening, of half-width s, is small compared to the
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radius of the cavity. The system is a two–dimensional version of an acoustic Helmholtz

resonator, and will lead to harbour resonance. The problem may be stated as follows:
given a prescribed potential at infinity φ∞, corresponding to a plane wave incident at an
angle α, that is φ∞ = eik(x cosα+y sinα), find the potential φ(x, y) satisfying:

∇2φ+ k2 φ = 0

∂φ

∂n
on Γ (95)

φ→ φ∞(x, y) + φs as r → ∞

Here φs is an outgoing wave potential. The problem can be solved numerically, but to get an
analytic insight into the behavior of the solution, we shall adopt the asymptotic approach
presented in [2]. For a small opening ks ≪ 1, the disturbance due to the cavity as seen
from afar is that of a point source of some strength m. Therefore, we can write:

φ = φ∞ − (1/4)imH
(1)
0 (kr). (96)

Expanding the Hankel function in (96) for kr → 0:

φ = φ∞(0, 0) − (1/4)im[1 + (2i/π) log((1/2)γ̃kr)] + O(mk2r2 log(kr)), (97)

where log γ̃ = 0.577.. is Euler constant. Note that φ∞(0, 0) = 1 and define φ0 = 1 −
(1/4)im + (m/2π) log((1/2)γ̃ks). Three asymptotic expansions are needed.

1. The outer expansion φout, valid in the infinite region away from the opening. The
opening appears as a source and the solution is:

φout → φ0 + (m/2π) log(r/s), r/s << 1, (98)

2. The potential in the cavity:

φin(x, y) = −m φC(x, y). (99)

Here φC is a mode of the closed basin. As r → 0:

φC → (2π)−1 log r + const. (100)

¿From the first two equations in (95), the solution φC is given by:

4φC = Y0(kr) −
Y ′

0(ka)

J ′

0(ka)
J0(kr). (101)

3. A potential φG in the neighborhood of the opening, obtained by conformal mapping
(see [2]).

Matching φG to the expansion in the cavity, and to that outside of it, gives the source
strength m in terms of the conductivity C. The source strength m corresponds to the
flux through the opening, given by m = C(φin − φout), where C is the conductivity of the
opening.
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With the value of m determined, the value of the potential on the cavity wall is:

φC =
m

2kaπ J ′(ka)
=

2

πka

(

1

Y ′(ka) + J ′(ka)
[

i− 2
π

(

1 + log
(

1
2 γ̃ks

)]

)

(102)

An example of the potential response, given by (102) and (99) for a large cavity for three
different opening widths (characterized by the values of s) is presented in figure (3a). The
peaks of the response occur when the term in the denominator in (102) is small. Due to
the oscillatory behavior of the Bessel functions, this coincides with zeros of either J1(ka) =
−J ′

0(ka) or Y1(ka) = −Y ′

0(ka) [1] see also figure (3b). In case when ka is small, the Y ′

0 term
dominates, and this corresponds with the highest peak in figure (3a), which defines the
Helmholtz mode. For the larger values of ka the J ′

0 term takes over and condition J ′

0 = 0
determines the position of the natural eigenmodes of the closed cavity. For the cavity with
small opening, the response is modified by the effect of the − log(γ̃ks) term, large when ks
is small. We can also observe the influence of the opening size s: reduction in the size s
moves the Helmholtz peak to smaller frequency and increases the amplitude of the response.

These results, obtained by asymptotic methods were tested in [2] against numerical
solutions. They provide a theoretical explanation of harbor resonance, a phenomenon of
practical importance in ocean engineering.

Notes be Alex Hasha and Inga Koszalka.
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Figure 3: (a) Response, given by (102) and (99) for a large sector cavity, with unit source
strength m = 1, for three different values of the opening width s. (b) The shape of the
bessel functions −J1(ka) = J ′

0(ka) and −Y1(ka) = Y ′

0(ka) for different values of ka.
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