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1 Introduction to Water Waves

1.1 Motivation and Basic Properties

There are many types of waves. Here, we will be paying particular attention to water waves
as they provide a concrete, physical example of a dynamical system that exhibits many of
the mathematical concepts that have been developed in recent years, including,

• linear stability,

• nonlinear stability,

• solitons,

• complete integrability,

• chaos,

• sensitive dependence on initial data,

• singularities,

• blow-up in finite time, and

• deterministic versus probabilistic models.

Water waves evolve on a timescale that humans can naturally relate to (as opposed to,
say, optical waves). Furthermore, since we are hosted by the Woods Hole Oceanographic
Institution, water waves are a fitting phenomenon to examine.

For the purposes of these notes, we shall pay particular attention to surface water waves,
that is, those that you would feel if you were in a boat on the surface, or that you might
observe if you were at the beach.

Surface water waves have their maximum displacement at the surface (decreasing expo-
nentially with depth) and are approximately periodic. Furthermore, they propagate with
little dissipation [1], that is, they lose very little energy to the surrounding environment as
they propagate. As a result, they can propagate very long distances. Surface water waves
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Figure 1: The shaded region indicates the solid earth boundary, the dashed line indicates
mean sea level (z = 0) and the solid line represents the free surface. h is the distance from
mean sea level to the ocean floor, and η(x, y, t) is the deviation of the free surface from
mean sea level and g is acceleration due to gravity.

are also dispersive, in that waves of different wavelengths travel at different speeds.

There are a number of other oceanic waves that will be ignored in this discussion,
including,

• sound waves (or pressure waves) which arise from the compressibility of seawater.
Pressure wave speeds are O(1500ms−1), which is much greater than, say, the 2004
Tsunami which propagated at less than 200ms−1,

• internal waves (see Lectures 6 and 11), which arise due to variations in fluid density,
have periods in the order of hours (recall surface waves have periods of order seconds),

• inertial waves (which include Rossby Waves), which are due to the rotation of the
Earth and have periods greater than 12 h.

1.2 Derivation of the Governing Equations

Following Stokes[2], we derive some equations representing the evolution of the displace-
ment of the sea surface height, η = η(x, y, t), from a rest position at z = 0 and for the
velocity throughout the fluid domain, u = u(x, y, z, t), where −h(x, y) < z < η(x, y, t) (h
is the depth of the ocean floor), with t > 0 and η + h > 0.

Here (x, y, z) denote fixed, laboratory coordinates with z indicating the vertical coordi-
nate and x and y denoting horizontal coordinates. This is illustrated in Figure 1. We can
denote the location of a fixed fluid parcel as x(t) = {x(t), y(t), z(t)} and the velocity of a
fluid parcel,

u(x, t) = (u, v,w) =

(

Dx

Dt
,
Dy

Dt
,
Dz

Dt

)

, (1)

where D

Dt
is the material derivative, or in other words, the derivative that follows the fluid

parcel in a Lagrangian perspective of fluid motion. The material derivative may be written
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in Eulerian form as,
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (2)

For instance, the material derivative for the z component of velocity is,

Dw

Dt
=

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
. (3)

To set about deriving equations governing η and u, we assume that the water (again,
following Stokes [2]),

• is incompressible (which precludes sound waves),

• has uniform density (which precludes inertial waves),

• is not affected by the rotation of the Earth (which precludes inertial waves),

• is inviscid,

• and finally that gravity is uniform and is anti-parallel with ez.

Note that the theory can be expanded to include all of the neglected effects (Lectures 6
and 11 analyse the case of internal waves, while Lecture 15 discusses the effect of viscous
damping on the fluid motion).

In addition, we assume that the flow is irrotational. This assumption does not change
the governing equations but restricts the types of initial conditions considered, and therefore
the types of solutions obtained.

We begin with mass conservation, noting that the net mass flux into an arbitrary volume
V must be zero by incompressibility, so that

∫∫

∂V

ρu · n̂ds = 0 (4)

where ∂V is the surface bounding the volume, ds an infinitesimal area on that surface, and
n̂ the unit normal vector to the surface. Using the divergence theorem, and the fact that
we have assumed a uniform density, ρ = constant, we may rewrite equation (4) as

ρ

∫∫∫

V

∇ · udV = 0. (5)

This expression is valid for all choices of V . We can thus say that the fluid velocity is
divergence free

∇ · u = 0. (6)

We now examine the assumption that the flow is irrotational. The vorticity of the fluid
is defined by

ω = ∇× u. (7)

If we assume that the vorticity is zero, then we can define a velocity potential φ = φ(x, t)
such that

u = ∇φ. (8)
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Recall from vector calculus that the curl of a gradient is identically zero, thus, if the vorticity
of the flow is non-zero, then the velocity potential does not exist. Combining the definition
for the velocity potential with the conservation (divergence) equation shows that φ is a
solution of Laplace’s equation

∇2φ = 0. (9)

We have not yet discussed the validity of the irrotational assumption. To investigate
this, we first state the Navier-Stokes equations,

ρ
Du

Dt
+ ∇p + ρgez = µ∇2

u. (10)

If we neglect viscosity by setting µ = 0, we regain Euler’s equation,

Du

Dt
+

∇p

ρ
+ gez = 0. (11)

If we then take the curl of Euler’s equation, we find an expression for the time evolution of
vorticity,

Dω

Dt
=

∂ω

∂t
+ u · ∇ω = ω · ∇u (12)

showing that if the vorticity is zero at t = 0, it remains so for all subsequent time.

We now examine Bernoulli’s Law. We first rewrite the material derivative as

Du

Dt
=

∂u

∂t
+

1

2
∇|u|2 − u × ω , (13)

where we have made use of equation (2) and of the vector identity u · ∇u = 1

2
∇|u|2 − u ×

∇× u. Since we have assumed that the initial vorticity is zero and we have shown that it
shall remain so, the third term on the right is identically zero. As a result, Euler’s equation
becomes,

∇

{

∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz

}

= 0. (14)

Integrating this expression gives

∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz = F (t) , (15)

where F (t) is an additive constant. Note that since the velocity potential is defined up to
an arbitrary additive function of time, we may absorb F (t) into ∂φ

∂t
. As such, we may set

F (t) = 0 in (15) without loss of generality, and thus recover the well-known Bernoulli’s Law.

We assume that the bottom boundary is impermeable, and thus, enforce a “no-normal
flow” boundary condition,

u · ∇ {z + h(x, y)} = 0 at z = −h(x, y) , (16)
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where ∇{z + h(x, y)} is the normal vector to the bottom surface. Using the definition of
the velocity potential, equation (8), we obtain,

∂φ

∂z

∂z

∂z
+

∂φ

∂x

∂h

∂x
+

∂φ

∂y

∂h

∂y
= 0

∂φ

∂z
+ ∇φ · ∇h = 0 . (17)

On the surface, z = η(x, y, t), we require the continuity of the pressure field p. Just
above the surface, there are two contribution to pressure: a pressure due to the weight of
the atmosphere and a pressure given by the surface tension, which conceptually acts like an
elastic membrane stretched over the surface of the water. The surface tension is evaluated
from the Young-Laplace equation. Hence,

p = pair − σ∇ · n̂ at z = η(x, y, t) , (18)

where σ is a constant, with units Nm−1, and n̂ is the surface normal unit vector. From here
on, we assume that pair = 0, again without loss of generality. Note that we are ignoring the
effects of wind. Vector calculus tells us that

n̂ =
∇η

√

1 + |∇η|2
. (19)

Using (18) in Bernoulli’s Law (15) gives us the dynamic boundary condition on the free
surface,

∂φ

∂t
+

1

2
|∇φ|2 + gη =

σ

ρ
∇ ·

{

∇η
√

1 + |∇η|2

}

. (20)

We obtain a kinematic boundary condition by assuming that a material element on the free
surface stays on the free surface,

D

Dt
(z(t) − η(x, y, t)) = 0. (21)

Noting that Dz
Dt

= w = ∂zφ and Dη
Dt

= ∂tη + u · ∇η, we obtain

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
, (22)

when evaluated at z = η.

To summarize, the governing equations are

∂φ

∂t
+

1

2
|∇φ|2 + gη =

σ

ρ
∇ ·

{

∇η
√

1 + |∇η|2

}

on z = η(x, y, t)

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
on z = η(x, y, t)

∇2φ = 0 −h(x, y) < z < η(x, y, t)

∂φ

∂z
+ ∇φ · ∇h = 0 on z = −h(x, y).
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The first equation relates the evolution of the velocity potential for a material element
on the surface to the restoring force of gravity and the surface tension. The second equation
describes the kinematic evolution of the free surface. The third equation is the continuity
equation, where we have assumed that the fluid is incompressible and irrotational. The
last equation is a statement that we do not allow any flow across the impermeable bottom
boundary.
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