Lecture 10: Convection Diffusion Problems

George C. Papanicolaou

1 2-D Convection-Diffusion

Consider a 2-D divergence-free, periodic, steady flow field u(t, ) in a domain without any
boundaries. Let p(t, x) be the concentration of a passive scalar, say temperature. Then the

non-dimensional governing equations for the non-dimensional variables g and u are:
pr+u-Vp=eAp, (1)

V-u=0, (2)

together with the initial condition p(0, z) = p°(x). Note that € is dimensionless parameter
since e ! ~ UL/v = Pe, where Pe is the Peclet number and L is the size of the peri-
odic cell. By integrating (1) over %? and using (2), we see that if [y, °(z)dz = 1, then
Joe A(t, x)dx = 1. Also if p°(x) > 0, then f(t, ) > 0. Since V- u = 0 and the flow is 2-D,

it is possible to introduce a stream function ¥ (z):

u=(—vy, Vz) . (3)

If Y(z, y) = sinzsiny + ¢ cos x cos y, then we have a cellular flow if § = 0, and a shear flow
if 6 = 1. Since z(t) is the position of a diffusing particle, the evolution equation for x(t)

can be written as the following SDE:
dz(t) = u(z(t))dt + V2e dW (t). (4)

If there is no diffusion (i.e. there is no v/2e dW (t) term in (4)), a particle starting on a
particular streamline remains on the streamline. If we have diffusion, there is a possibility
for a particle which starts in the region (a) to move to the region (b) (See Figure 1). In

that case, p can be interpreted as the probability density of z(t).
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Figure 1: Rough sketch of the periodic cell

2 Effective diffusivities

Consider a diffusing particle, lim;_ 1E [{(z(¢) — 2(0)) - e}?] always exists for u(z) which
is periodic and satisfies V - u = 0 and (u(z)) = 0, where (-) represents the periodic cell
average. We denote this limit as o7 (e), so called the effective diffusivity. It is a quadratic
form of e.

We now take the large time, long distance limit of the PDE (1) by changing the variables
t — nt, x — nx and letting n — oo. (This process is called the homogenization.) p,(t, ) =
p(n?t, nx) converges to p(t, ) in an appropriate sense as n — oo, where p(t, z) is the

solution of the homogenized equation

pt =V (0:Vp), (5)
with p(0, 2) = p%(z). o (e) is a constant matrix, or more precisely
oc(e) = (el + V) (Vx +e)-e), (6)

where I is the identity matrix, y(z) is a periodic function in JR2, and

o 0 _T;Z)(:L'v y)
‘P”‘<w<x,y> : ) "

It is found that o (e) satisfies the polarization relation

*

1 * * . .
(05 )ij = Z [05 (ei + ej) — O¢ (6i - ej)] , o4 j=1, 2, (8)
where e; = (1, 0), e2 = (0, 1). Apart from the homogenized equation (5), the homogeniza-

tion process also yields the cell problem, that is

V- -[(el +¥(z)(Vx+e)]=0. 9)
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o! can be calculated by solving (9) for x and plugging it into (6). The full derivation of
(5), (6) and (9) will be shown in the next section. The physical interpretation of o7 (e) is

the average flux in the direction e when there is a unit average gradient in the direction e.

3 Asymptotics for p,(t, )

Recall the passive scalar advection equation in the fast variables

Opn
o =V ([ + ¥y (2)]Vn) (10)

with initial condition

pn(0,2) = p°(x)

where [ is the identity matrix, ¥,, was defined previously, and we have set ¢ = 1. First we
must check that (10) solves (1)

Opn _ <8pn Ly 8pn> N <8pn apn>
Yy

o = \or Ty ) By e
= (pn)ez + (pn)yy - (¢n)m(7/)n)y + (¢n)y(wn)m - T/Jn(Pn)my + T/Jn(pn)ym
=App, —u-Vpp,.

Next we expand p, in an asymptotic series
1 1
pn(t,x) = p(t, z) + Eﬂ(l)(t,w,nw) + ﬁp(z) (t, 2, nx) + ...

It is clear that for this problem we have a clean separation of scales. The fast time scale

does not appear because the coefficients are time homogeneous.

Let nx = & so that V — V, + nV,. Plugging p,, into (10) we get

0 1 1
el 0L — @ -
ot <p+np el +>

(Va4 nVe) - [(1 +U,(6)) - (Vi +nVe) <p + %p(l) + %p@ + ﬂ .
As is standard procedure, we equate the coefficients for powers of n. At O(n?):
Ve [(I+Wn(€)) Vep] = 0. (11)
Note (11) is automatically satisfied since p is not a function of {. At O(n):

vf ' [([ + \I/n(f)) V:cp] + Vg - [([ + \I/n(f)) Vﬁp] + VE ’ |:(I + \Iln(g)) vfp(l) = 0. (12)
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The second term in (12) is zero via (11). Upon rewriting (12) we get
Ve |(1+9(&) (Vep™ + Vap) | =0 (13)

which resembles the cell problem (9). Equation (13) is a PDE for p(1)(¢) (periodic in €).
We can cast (13) into the cell problem by letting

t$£ ZXe] l,x

which separates the ¢ dependence from the ¢,z dependence. The function y.(§) satisfies

Ve [(I+¥n(§)) (Vexe(§) + )] =0. (14)
At O(1):

X e [+ 00(€) Vap®] + Ve [+ 0a(€) Vep] +

Vo [(1 4+ 0a()) Vo] + Vo - [( + 0 (€)) V)

which is a PDE for p®)(€) (periodic in &) with ¢,z as parameters. This can be re-written

as

Ve [(1+0(6) Vep? | +5 =0 (15)
where
§ = Ve [+ 00(0) Vap®] + Vo [(74 0a(©) Vepl] + V- [(1 4 0 (6)) Var] — 2.
Upon taking the cell average of (15), we obtain
(Ve [+ 2@ Ve ) +(5) =0 (16)

and since Vgp@) is a gradient of a periodic function, (S) = 0 which yields

0 (w0 o [ 15

m-ww () Vap)
=V, [{(T+ () (vgp D+ .p))]
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since V,p() is the gradient of a periodic function. In component form

op 0 - op)  dp
Al )
NN A
- Z axZ <AZJ(§) <a§] (Z Xek(f) axk ) + 8JZJ>>
1,7 k
_ (Oxa _Pp s Op
N ;%: <Al] ( 8& axzaxk +5]k8x28a:k>>
_ ((Oxer 5 9p
B> ¥<Aw (%)) ) o

where A;; = I;; + V;;(§). Thus, we obtain the homogenized equation

2
% Zakaa—;@k (17)
with
(o )
J
or
% — V. (07V)p). (18)

In summary, the key ideas for homogenization are:

1) Perform a multiscale expansion

t,x ~ macroscopic scales (slow)

n?t,nx ~ microscopic scales  (fast)

the resulting PDE will involve both fast and slow variables. In our case ¥y — ¢(nz). In

general v — 1(n’t,nx,t, ).
2) Seek an expansion in which the principle term is slowly varying (¢, z).

3) The coefficients of the slowly varying equation come from a cell problem. In this case

the term of interest was p and we had to go to O(1) to get the cell problem.
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The effective diffusivity matrix, o is given by

of = ((el +¥)(Vx) -e)
= ((el +¥)(Vx+e) (Vx+e))

where we added Vx to e because V - [(el + V) (Vx +e)] = 0 (9). Also since (Vx +e€) -

(Vx + e) is a quadratic form and ¥ is skew symmetric, we obtain

ol(e) =e(|Vx + e]2>
=ec+e{|Vx|?).

From this it is clear that convection always enhances diffusion since o¥(e) > e.
Finally we check convergence of the asymptotic expansion

1)

max t,x) —plx,t)] < max
0<t<T,xER? [palt, ) = p(z,1)] < 0<t<T,zeR?

Lo <3>‘ < opt
n n

n

provided pg decays rapidly at infinity and is smooth.
2)

/ / (Vpn —Vp)O(t,z)dzdt — 0
0 R2

where 6 is a test function. This says that on average the gradient converges. Calculating

V pn We obtain

Voo, =Vp+ Vgp(l)(t,a:,nm) + ..

Von— (Vo+ Veo)| i <

sup /
0<t<T JR2

thus p(M) closes the problem and allows us to determine Vp,. Note that 3) implies 2).

Notes by Tiffany A. Shaw and Aya Tanabe.
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