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1 Introduction

The flow of a fluid over an obstacle is a classical and fundamental problem in fluid mechanics.
When the flow velocity is near the local wave speed, obstacles in the path of this resonant
flow tend to generate interesting wave fields around them. This lecture explores transcritical
flow over a step primarily in the framework of the forced Korteweg-deVries equation using
both asymptotic analysis and numerical simulations. This lecture follows from Lecture 11
in that resonant flow over a step may be resolved with undular bores.

2 Linearized shallow-water theory

Consider one-dimensional shallow-water flow past topography. The flow variables we are
interested in are the total local depth H = ζ + h−F (x) and the depth-averaged horizontal
velocity V . Here ζ is the surface elevation above the undisturbed depth h and the bottom
is located at z = −h + F (x) where F (x) is the obstacle. The fully nonlinear shallow water
equations for conservation of mass and momentum are

ζt + (HV )x = 0, (1)

Vt + V Vx + gζx = −(H2D2H)x
3H

− (H2D2F )x
2H

− FxD2(ζ + F )

2
, (2)

where D =
∂

∂t
+ V

∂

∂x
.

Equation (1) is exact, but equation (2) is a long-wave approximation; the terms on the
right-hand side are the leading-order effects of wave dispersion. They form the Su-Gardner
equations (also known as the Green-Naghdi equations).

If the Su-Gardner equations are linearized about the constant state U, h, where V =
U + u, |u| << V, |ζ| << h, they reduce to the forced linear wave equation

D2
I ζ − c2ζxx − U2Fxx, DI =

∂

∂t
+ U

∂

∂x
, c =

√

gh. (3)

Here c is the linear long-wave speed, and a key parameter is the Froude number, Fr = U/c.
Provided that background flow velocity is not critical (Fr 6= 1), as t → ∞, there is a steady
solution

ζ =
U2

U2 − c2
F (x). (4)
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The solution is a stationary depression over the obstacle for subcritical flow (Fr < 1), and
a stationary elevation for supercritical flow (Fr > 1).

3 Forced Korteweg-deVries equation

The linear solution clearly fails as the flow nears criticality Fr ≈ 1. The wave energy cannot
propagate away from the obstacle. In this case, it is necessary to invoke weak nonlinearity
and weak dispersion. This results in the forced Korteweg-deVries (fKdV) equation.

For water waves, the fKdV equation is, in non-dimensional form with scaling of charac-
teristic length h and velocity c,

−ζt − ∆ζx +
3

2
ζζx +

1

6
ζxxx +

1

2
Fx = 0. (5)

Here ∆ = Fr − 1 measures the degree of criticality, subcritical for ∆ < 0 or supercritical
for ∆ > 0. The equation describes the usual KdV balance between nonlinearity, dispersion
and time evolution, supplemented here by forcing and criticality. The asymptotic regime
where equation (5) holds is characterized by a small parameter ǫ << 1, where a balance
between all terms requires the scaling F ∼ ǫ4, A ∼ ǫ2, ∂/∂x ∼ ǫ4, ∂/∂t ∼ ǫ3, and ∆ ∼ ǫ2.
Note that ζ scales with

√
F and with the detuning ∆, a feature typical of forced resonant

systems.
The canonical form of the fKdV equation,

−At − ∆Ax + 6AAx + Axxx + Fx(x) = 0, (6)

is obtained by putting ζ = 2A/3, ∆ = ∆̃/6, t = 6t̃, F = 2F̃ /9, and then omitting the
“tilde.” Equation (6) is typically solved with the initial condition that A(x, 0) = 0, which
corresponds to the introduction of the topographic obstacle F (x) at t = 0.

4 Transcritical flow over a localized obstacle

Figures (1-3) are a series of solutions with varying criticality (∆) for the canonical form of
the fKdV equation where the forcing function is localized at x = 0 with a maximum height
FM > 0 and is “Gaussian” in shape. In these figures, FM is specifically FM = 1.

In Figures 1-3 it can be seen that solutions of the fKdV equation typically consist of
upstream and downstream nonlinear wavetrains connected by a locally steady solution over
the obstacle. The origin and behavior of the nonlinear wavetrains is due to the structure
of the locally steady solution over the obstacle. Assuming that the dispersionless or “hy-
draulic” limit is applicable in the obstacle region, the linear dispersive term in equation (6)
can be neglected. A result of this is that for all localized F (x) with a maximum height
FM > 0,

6A± = ∆ ∓ (12FM )1/2. (7)

The transcritical regime is thus defined as

|∆| < (12FM )1/2. (8)
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Figure 1: Solution to the fKdV equation (6) at exact criticality, ∆ = 0. The forcing (not
shown in the plot) is located at x = 0 and has a maximum height of FM = 1

Figure 2: Solution to the fKdV equation (6) for a subcritical case, ∆ = −1.5.
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Figure 3: Solution to the fKdV equation (6) for a supercritical case, ∆ = 1.5.

In the transcritical regime, the local steady solution is characterized by a transition from
a constant elevation A− > 0 upstream (x < 0) of the obstacle to a constant depression
A+ < 0 downstream (x > 0) of the obstacle, where ∆ = 3(A+ + A−), independent of the
details of the localized forcing term F (x). The explicit values of A+ and A− are determined
by the forcing term F (x), as shown in Sections 5.1 and 5.2. The upstream and downstream
solutions are solved with undular bores.

4.1 Undular bores

A simple representation of an undular bore can be obtained from the solution of the KdV
equation

At + 6AAx + Axxx = 0 (9)

with the initial condition of a step, A = A0H(−x) with A0 > 0 and H(x) the Heaviside
function. An asymptotic solution can be found using Whitham’s modulation theory. This
formalism was presented in Lecture 10. The relevant asymptotic solution corresponding to
the “step” initial condition is constructed in terms of a similarity variable x/t. The undular
bore wavetrain is located in the region

−6 <
x

A0t
< 4. (10)

Also recall that if the initial condition A0 corresponds to a negative step A0 < 0 then
the undular bore solution does not exist. Instead the asymptotic solution is a rarefaction
wave,

A = 0 for x > 0,

A =
x

6t
for A0 <

x

6t
< 0,
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A = A0, for
x

6t
< A0 < 0. (11)

Small oscillatory wave trains are needed to smooth out the discontinuities in Ax at x = 0
and x

t = −6A0.

4.2 Asymptotic analysis for localized forcing

We now return to the asymptotic solution of the fKdV equation, and resolve the upstream
and downstream transitions by the “undular bore” solutions. Making the appropriate trans-
formations for the upstream wavetrain in (10) (see [2]), the upstream wavetrain (x < 0)
occupies the region

∆ − 4A <
x

t
< min{0,∆ + 6A}. (12)

The upstream wavetrain cannot move beyond the obstacle (at x = 0), and thus is only fully
realized if ∆ < −6A−. Combining this criterion with (7) and (8) defines the regime

−(12FM )1/2 < ∆ < −1

2
(12FM )1/2 (13)

where a fully developed undular bore solution can develop upstream. On the other hand,
when ∆ > −6A− or

−1

2
(12FM )1/2 < ∆ < (12FM )1/2 (14)

the undular bore cannot develop beyond the obstacle. A partially formed undular bore
develops upstream, and this is attached to the obstacle.

The downstream wavetrain similarly is constrained to lie in x > 0. The undular bore
solution occupies the zone

max{0,∆ − 2A+} <
x

t
< ∆ − 12A+ (15)

The downstream wavetrain is only fully realized if ∆ > 2A+. Combining this criterion
with (7) and (8), the region where a fully developed downstream undular bore coincides
with (14), the region where the upstream wavetrain is partially formed and attached to
the obstacle. Similarly, when the downstream undular bore (∆ < 2A+) is only partially
developed and attached to the obstacle, the upstream undular bore is fully developed and
detached from the obstacle.

Figures (1-3) show this behavior in the regime defined by (14) where the upstream
wavetrain is partially formed and attached to the obstacle while the downstream wavetrain
is fully developed. In the subcritical case (∆ < 0), the upstream wavetrain weakens and
for sufficiently large |∆| separates from the obstacle (i.e. makes the transition from the
regime defined by (14) to the regime defined by (13)). When this transition is reached, the
downstream wavetrain intensifies and forms a stationary lee wave field. For supercritical
flow (∆ > 0), the behavior is always governed by (14). As |∆| increases the upstream
wavetrain develops into well-separated solitary waves attached at the obstacle while the
downstream wavetrain weakens and moves downstream.

For the case where the obstacle has negative polarity (FM < 0), the upstream and
downstream solutions are qualitatively similar (i.e. can be described in terms of an undular

114



Figure 4: Solution to the fKdV equation (6) for exact criticality, ∆ = 0. The forcing (not
shown in the plot) is located at x = 0 and has localized negative forcing FM = −0.1.

bore solution). However, the local solution around the obstacle is transient, and this causes
a modulation of the undular bore solutions seen previously. A typical solution of the fKdV
equation with a negative polarity obstacle is shown in Figure (4). Note the perturbations
in the solution around the obstacle.

5 Transcritical flow over a step

5.1 Asymptotic analysis for positive step forcing

First, consider a broad positive step, where

F (x) =

{

0 for x < 0
FM for x > W

(16)

and F (x) varies monotonically in 0 < x < W , and FM > 0. Strictly F (x) should return
to zero for some L >> W . For this analysis, we ignore this and assume that L → ∞. We
revisit the step of finite length in the numerical simulations of Section 5.3. We now modify
the asymptotic solution found for localized forcing in Section 4 for an infinitely long step.
The first step is to construct the local steady-state solution, using the hydraulic limit. In
the forcing region (0 < x < W ), A = A(x), while otherwise

A = A− for x → −∞, (17)

A = A+ for x → ∞. (18)
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The steady-state fKdV equation (6) ignoring the dispersive term is

−∆Ax + 6AAx + Fx = 0. (19)

Integrating (19) with respect to x results in the equation

−∆A + 3A2 + F = C, (20)

whose solutions are
6A = ∆ ± (∆2 + 12C − 12F )1/2. (21)

Thus, there are two branches to the solution. Applying the far-field limits (17, 18) to
equation (20) yields

C = −∆A− + 3A2
− = −∆A+ + 3A2

+ + FM . (22)

The constant C is obtained by taking the long-time limit of the unsteady hydraulic
solution. The fKdV equation (6) with no dispersion is a nonlinear hyperbolic equation that
can be solved by the the method of characteristics. This equation written in characteristic
form is

dx

dt
= ∆ − 6A,

dA

dt
= Fx(x) (23)

with the initial condition that A = 0 at t = 0. For a positive step, Fx is zero for x < 0
and x > W and Fx > 0 for 0 < x < W . From (23), all characteristics begin with an initial
slope ∆ and then decrease. The key issue is whether the characteristics ever reach a turning
point (dx/dt = 0, ∆ = 6A).

For ∆ ≤ 0, all characteristics have a negative slope and there are no turning points. In
this case, A+ = 0 and from (22), C = FM and the upper branch must be chosen in (21).
For ∆ > (12FM )1/2, there are also no turning points, and all characteristics have positive
slope. In this case, A− = 0, C = 0 and the lower branch is chosen. For 0 < ∆ < (12Fm)1/2

there is a turning point. Characteristics emerging from the step (0 < x < W ) with F = F0,
0 < 12F0 < 12FM − ∆2 have a turning point and then go upstream into x < 0. From this,
12C = 12FM − ∆2 and from (22), 6A+ = ∆, while A− is then obtained from the upper
branch of (21). In summary, the upstream and downstream solutions for a positive step
forcing are

∆ ≤ 0 : 6A− = ∆ + (∆2 + 12FM )1/2, 6A+ = 0, (24)

0 < ∆ < (12FM )1/2 : 6A− = ∆ + (12FM )1/2, 6A+ = ∆, (25)

∆ > (12FM )1/2 : 6A− = 0, 6A+ = ∆ − (∆2 − 12FM )1/2. (26)

In all cases, the upstream solution A− is a “jump” in the hydraulic limit, and thus needs
to be resolved by an undular bore. The upstream undular bore is located in the region

∆ − 4A <
x

t
< min{0,∆ + 6A}, (27)

the region similar to that for the upstream jump for a localized forcing (12). For a fully
detached undular bore, ∆ + 6A− < 0, and combining this criterion with (24, 25, 26), the
defining regime is

∆ < −2(FM )1/2 < 0. (28)
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In the regime where ∆ + 6A− > 0 but ∆ − 4A− < 0, or

−2(FM )1/2 < ∆ < (12FM )1/2, (29)

the upstream undular bore is only partially formed and is attached to the positive step.
Unlike the localized obstacle, the downstream profile A+ is not a jump (A+ > 0). The
solution downstream is terminated instead by a rarefaction wave.

5.2 Asymptotic analysis for negative step forcing

A similar analysis to Section 5.1 for a positive step can be carried out for a negative step
(FM < 0). The results are

∆ ≥ 0 : 6A− = 0, 6A+ = ∆ − (∆2 − 12FM )1/2 with C = 0, (30)

−(|12FM |)1/2 < ∆ < 0 : 6A− = ∆, 6A+ = ∆ − (|12FM |)1/2 with C = −∆2/12, (31)

∆ < −(|12FM |)1/2 : 6A− = ∆ − (∆2 − 12FM )1/2, 6A+ = 0 with C = FM . (32)

In all cases, the downstream solution A+ in (30-32) is negative and contains a jump. This
jump needs to be resolved by an undular bore, occupying the zone similar to (13)

max{0,∆ − 2A+} <
x − W

t
< ∆ − 12A+. (33)

For a fully detached undular bore (∆ − 2A+ > 0) is obtained in the regime

∆ > −(|3FM |)1/2. (34)

The downstream undular bore is partially attached when ∆ − 2A+ < 0 corresponding to a
regime where

−(|12FM |)1/2 < ∆ < −(|3FM |)12 < 0. (35)

A stationary lee-wave train forms downstream when ∆ < −(|12FM |)1/2. The upstream
solution A− is less than zero, and thus terminated by a rarefaction wave.

5.3 Numerical solutions for the fKdV equation with a step forcing

Combining the results from Sections 5.1 and 5.2, we can now understand the behavior of
flow over a finite-length positive step forcing; that is, a step up, followed by a region of
constant elevation and terminated by a step down. Figure 5 shows numerical simulations
of the fKdV equation for water waves (5) with varying ∆ for a step forcing of the form

F (x) =
FM

2
(tanh γx − tanh γ(x − L)), (36)

where FM = 0.1, γ = 0.25 and L = 50 >> 1. Note these are parameter values for the
unscaled parameters in the water wave formulation.

When the flow is critical (∆ = 0), the theory predicts an upstream undular bore attached
to the obstacle (regime given by (29)) and a fully detached downstream undular bore that
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Figure 5: Numerical simulations of the fKdV equation (5) for the forcing (36), where
FM = 0.1, γ = 0.25, L = 50 ≫ 1 and (a)∆ = 0., (b)∆ = 0.2, (c)∆ = −0.2. Note, to obtain
the correct boundary values given by (28, 29) and (34, 35), the parameters must be scaled
to those for the canonical fKdV (6).
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propagates downstream (34). This is seen in Figure 5a, and is similar to the behavior of
exactly resonant flow over a localized obstacle (Figure 1).

The behavior of a supercritical flow is shown in Figure 5b. Once again, the upstream
undular bore is only partially formed and the downstream undular bore is fully developed
and propagates downstream. The upstream solution however has transitioned from the
solution defined by (24) to that defined by (25); the downstream solution still remains in
the regime given by (34). A rarefaction wave thus propagates downstream from the positive
step at x = 0. The rarefaction wave persists until it reaches the end of the step at x = 50,
and the solution adjusts to a solution predicted for simply a localized forcing (one upstream
undular bore and one downstream undular bore).

Figure 2c shows a numerical simulation for subcritical flow where ∆ = −0.2. In this
case, there is a detached undular bore propagating upstream and a detached downstream
bore that intensifies and propagates slowly. The parameter values in this simulation are
close to the boundaries predicted by the asymptotic theory, and while the upstream bore
falls in the regime (29) given for an attached undular bore, the behavior in the simulation
suggests that the upstream solution actually follows regime (28). Similarly, the downstream
bore should fall into regime (35), but actually follows regime (34). This is attributed to
errors in the estimates of A∓ and the resulting boundaries derived from those quantities.
Note that the downstream solution is in the regime defined by 31 and thus a rarefaction
wave propagating upstream is generated at the negative step (x = 50).

5.4 Comparison of the fKdV solutions to solutions of the full Euler equa-

tions

Figure 6 shows numerical simulations of the full Euler equations for the same positive step
forcing as before. In these simulations, there seems to be good qualitative agreement with
the behavior of the solutions of the fKdV equation. Table 1 shows the quantitative differ-
ences between the simulations. The amplitudes of the leading upstream and downstream
waves are consistently larger in the fKdV simulations likely due to nonlinearity. The varia-
tion of all the predicted amplitudes and elevations as ∆ is varied follows the same trend for
both the fKdV and Euler equations. Furthermore, in all of the Euler equation simulations,
there were no other wavetrains generated than those seen in the simulations of the fKdV
equation. Therefore, for small-amplitude steps, the fKdV equation likely provides a good
guide for transcritical flow over a step.

5.5 Solutions to a negative step forcing

Similar numerical simulations can be carried out for an obstacle where the step forcing in
(36) is negative, FM < 0. The flow first encounters a negative step, followed by a constant
depression section, and is terminated by a positive step. The asymptotic analyses from
Sections 5.1 and 5.2 suggest that the resulting undular bore propagates downstream of the
negative step and another undular bore similarly propagates upstream of the positive step.
These undular bores interact with each other over the step itself.

In the depression region, the interactions between the two undular bores can be quite
complex as seen in Figures 7-8. In Figure 7, the undular bores pass through each other
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Figure 6: Numerical simulations of the full Euler equations for the forcing (36), where
FM = 0.1, γ = 0.25, L = 50 ≫ 1 and (a)∆ = 0., (b)∆ = 0.2, (c)∆ = −0.2.
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∆
fKdV Euler

AW− A− AW+ A+ AW− A− AW+ A+

0.2 0.83 0.44 0.31 -0.16 0.75 0.40 0.28 -0.18

0.1 0.66 0.38 0.39 -0.20 0.57 0.36 0.32 -0.21

0.0 0.50 0.30 0.51 -0.26 0.44 0.33 0.37 -0.25

-0.1 0.39 0.22 0.64 -0.33 0.32 0.20 0.43 -0.30

-0.2 0.30 0.16 0.84 -0.40 0.23 0.13 0.53 -0.36

-0.3 0.24 0.13 0.64 -0.38 0.16 0.08 0.57 -0.38

-0.4 0.19 0.10 0.00 0.00 0.10 0.01 0.00 0.00

Table 1: Quantitative comparison of the results from the fKdV equation (5) and the Euler
equations. A−(A+) is the elevation just upstream (downstream) of the positive (negative)
step at x = 0(50) respectively, and AW−(AW+) is the amplitude of the leading wave in the
corresponding undular bore.

Figure 7: Numerical simulation of the fKdV equation (6) for the step forcing (36) where
FM = −0.1, γ = 0.25, L = 50 ≫ 1 and ∆ = 0.0.
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Figure 8: Numerical simulation of the full Euler equations for the step forcing (36) where
FM = −0.1, γ = 0.25, L = 50 ≫ 1 and ∆ = −0.2.

with interference in the depression region. For moderate time, both the upstream and
downstream solutions are fairly unperturbed by each other.

Figure 7 shows a solution of the fKdV equation to a negative step forcing, while Figure
8 shows a solution to the full Euler equations for the same forcing. For the positive step,
it seemed that there were no qualitative differences between the fKdV solutions and the
solutions to the full Euler equations. However, the differences in Figures 7 and 8 are
significant. In Figure 8 the wave propagation is largely restricted to the depression region.
The waves in the full Euler solutions are likely confined to the step region due to the
interaction of two effects not accounted for in the fKdV equation. First, the steps have a
finite amplitude that the wave must pass over in order to propagate. Small amplitude waves
may reflect at the steps, instead of propagating forward. In addition, the depression also
causes a depression in the local wave speed in the step region, and waves may have lower
amplitude due to this effect.
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