
Lecture 14: Waves on deep water, I

Lecturer: Harvey Segur. Write-up: Adrienne Traxler

June 23, 2009

1 Introduction

In this lecture we address the question of whether there are stable wave patterns that
propagate with permanent (or nearly permanent) form on deep water. The primary tool
for this investigation is the nonlinear Schrödinger equation (NLS). Below we sketch the
derivation of the NLS for deep water waves, and review earlier work on the existence and
stability of 1D surface patterns for these waves. The next lecture continues to more recent
work on 2D surface patterns and the effect of adding small damping.

2 Derivation of NLS for deep water waves

The nonlinear Schrödinger equation (NLS) describes the slow evolution of a train or packet
of waves with the following assumptions:

• the system is conservative (no dissipation)

• then the waves are dispersive (wave speed depends on wavenumber)

Now examine the subset of these waves with

• only small or moderate amplitudes

• traveling in nearly the same direction

• with nearly the same frequency

The derivation sketch follows the by now normal procedure of beginning with the water
wave equations, identifying the limit of interest, rescaling the equations to better show that
limit, then solving order-by-order.

We begin by considering the case of only gravity waves (neglecting surface tension), in
the deep water limit (kh → ∞). Here h is the distance between the equilibrium surface
height and the (flat) bottom; a is the wave amplitude; η is the displacement of the water
surface from the equilibrium level; and φ is the velocity potential, u = ∇φ. (See also
Lecture 4.) In terms of our small parameter ǫ (= ah), we will consider waves that are
nearly monochromatic:

~k = (k0, 0) + O(ǫ)

ω =
√

gk0 + O(ǫ)
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and small in amplitude:
k0‖η‖ = O(ǫ)

We use a coordinate θ = k0x − ω(k0)t and a solution form

η(x, y, t; ǫ) = ǫ[A(ǫx, ǫy, ǫt, ǫ2t)eiθ + A∗e−iθ] + ǫ2[stuff2] + ǫ3[stuff3] + O(ǫ4)

and then insert the formal expansions for η(x, y, t; ǫ) and φ(x, y, t; ǫ) into the full equations.
Solving order by order, the algebra is nasty, but mostly avoidable via one of the usual

suspects such as maple. What we find is the following:

• At O(ǫ), ω2 = gk, we recover the linearized dispersion relation for gravity-induced
waves on deep water.

• At O(ǫ2), the expansion blows up and becomes disordered unless

∂A

∂(ǫt)
+ cg

∂A

∂(ǫx)
= 0

where cg is the group velocity (the propagation speed of the wave envelope).

In η above, now define a coordinate moving with the wave ξ = (ǫx) − cg(ǫt), a slowly
varying transverse direction ζ = ǫy, and a slowly varying time τ = ǫ2t. Now examine O(ǫ3),
where the expansion again becomes disordered unless A(ξ, ζ, τ) satisfies

i∂τA + α∂2
ξ A + β∂2

ζ A + γ|A|2A = 0 (1)

which is the 2D nonlinear Schrödinger equation. Here α, β, and γ are real numbers de-
termined by the problem. For the case of deep water waves, the signs of the coefficients
(independent of scaling choice) are α < 0, β > 0, and γ < 0.

The NLS or some equivalent has been derived at many times and in many contexts,
including: Zahkarov in 1968 for water waves [14], Ostrovsky in 1967 for optics [8], Benjamin
and Feir in 1967 for water waves [3], a general formulation by Benney and Newell in 1967
[4], Whitham in 1965 [12], whose formulation was used by Lighthill in 1965 [6], and finally
by Stokes in 1847 for water waves with no spatial dependence. A historical overview is
provided by Zakharov and Ostrovsky [15].

3 Waves of permanent form on deep water

Now we come to the overarching question of interest in this and the next lecture: do stable
waves of permanent form in deep water exist? Starting back at the beginning, Stokes [9]
considered a spatially uniform train of plane waves,

η(x, y, t; ǫ) = ǫ[A(ǫ2t)eiθ + A∗e−iθ] + O(ǫ2)

which after removing the spatial derivatives from (1) must satisfy

i∂τA + γ|A|2A = 0 , γ = −4k2
0
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where the expression for γ depends on the choice of scalings (see [1]). If we take the complex
conjugate of this equation, multiply the original by A∗ and the conjugate by A, and subtract
them, we find:

iA∗∂τA + iA∂τA∗ = 0

In other words, ∂τ (A∗A) = 0, so the square of the amplitude is a constant. With that, the
equation is easy to solve, yielding

A(τ) = (A0e
iφ)eiγ|A0|2τ

Putting this into the η expression above, and using θ from earlier, we have

η(x, t; ǫ) = 2ǫ|A0| cos [k0x − ω(k0)t − (2ǫk0|A0|)
2t] + O(ǫ2)

where the final term inside the cosine is Stokes’ nonlinear correction to the frequency.
Although Stokes found a nonlinear correction for water waves of permanent form with

finite amplitude, he did not prove that such waves existed. Nekrassov (available in [7]) and
Levi-Civita [5] accomplished this task in the 1920s, and Struik [10] extended their work
from deep water to water of any constant depth. Finally, Amick and Toland [2] obtained
optimal results about the existence of waves of permanent form in 2D. The solutions in
question, a periodic train of plane waves, are approximated by experimental data such as
in the top panel of Figure 1.

3.1 Why don’t we see them?

Despite the above work to prove the existence of such waves, they are not commonly ob-
served in nature, but perhaps they can be produced in more controlled conditions. Photos
from Benjamin in 1967, in Figure 1, show a wave train disintegrating in 60 meters, as
discussed in the stability analysis of [3].

Returning to the NLS in Zakharov 1968,

i∂τA + α∂2
ξ A + β∂2

ζ A + γ|A|2A = 0

for the case of gravity waves on deep water, we have α < 0, β > 0, and γ < 0. The “Stokes
wave” above is the solution for a spatially uniform, finite amplitude train of plane waves
to third order expansion in the water wave equations. We can now check its stability by
linearizing the NLS around a Stokes wave and looking for unstable modes.

A(ξ, ζ, τ) = |A0| e
iγ|A0|2τ

Assume additional small perturbations:

A(ξ, ζ, τ) = eiγ|A0|2τ [|A0| + µ · u(ξ, ζ, τ) + iµ · v(ξ, ζ, τ)] + O(µ2)

Putting this into (1), above, and keeping only terms up to O(µ), we have:

eiγ|A0|2τ
[

−γ|A0|
2 (|A0| + µu + iµv) + iµ(∂τu + i∂τv)

+αµ(∂2
ξ u + i∂2

ξ v) + βµ(∂2
ζ u + i∂2

ζ v) + γ|A0|
2(|A0| + µu + iµv) + 2γ|A0|

2µu
]

= 0
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Figure 1: Wavetrain in deep water (L = 2.3 m, h = 7.6 m), with 60 meters between photos.
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where the real and imaginary parts respectively break into a pair of linear PDEs with
constant coefficients,

∂τv = α∂2
ξ u + β∂2

ζ u + 2γ|A0|
2u (2)

−∂τu = α∂2
ξ v + β∂2

ζ v (3)

We seek a solution of the form

u = U · eimξ+ilζ+Ωτ + (c.c.)

v = V · eimξ+ilζ+Ωτ + (c.c.)

Putting these into (2) and (3), above, and eliminating U and V , we are left with an algebraic
equation for the linear stability:

Ω2 + (αm2 + βl2)(αm2 + βl2 − 2γ|A0|
2) = 0 (4)

where Re(Ω) > 0, positive real growth rate, indicates linear instability. Marginal stability
occurs at

Ω = ±
√

−(αm2 + βl2)(αm2 + βl2 − 2γ|A0|2) = 0

for which the first root (recalling that here α < 0, β > 0) is

αm2 = −βl2

l = ±

√

|α|

β
m

which defines a pair of lines with opposite slope that cross at the origin. The second root is

αm2 + βl2 − 2γ|A0|
2 = 0

which defines a hyperbola. See Figure 2 for the regions described by this expression; insta-
bility occurs for points along the m-axis between the two sets of curves. (This can be seen
by considering l2 = 0 and m2 small, for which αm2 < 0 and αm2 − 2γ|A0|

2 > 0; similarly,
a positive real root does not exist for m2 = 0 and l2 6= 0.)

The maximum value of the growth rate can be easily determined by noting that l and
m appear only in the combination αm2 + βl2, so we can call that something easy like s and
look for extrema of Ω2:

Ω2 = −s(s − 2γ|A0|
2)

∂Ω2

∂s
= −(s − 2γ|A0|

2) − s

0 = −2smax + 2γ|A0|
2

smax = γ|A0|
2

The growth rate evaluated at this point is

Ω2(smax) = −γ|A0|
2(γ|A0|

2 − 2γ|A0|
2)

Ωmax = |γ| |A0|
2
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Figure 2: The regions of stability described by equation 4. Shaded regions are unstable.

Collecting the above, we have the result that a uniform train of finite amplitude plane
waves is unstable in deep water, with the most unstable mode growing at Ωmax = |γ| |A0|

2.
The instability is nonlinear in the sense that its growth rate depends on the amplitude |A0|,
so as |A0| → 0 then Ωmax → 0.

For applications other than deep-water gravity waves, we can repeat the above procedure
for the stability diagram, where the respective signs of the coefficients will determine the
existence of unstable regions. In general we have:

• αβ < 0, αγ > 0 → unstable

• αβ < 0, αγ < 0 → unstable

• αβ > 0, αγ > 0 → unstable

• αβ > 0, αγ < 0 → stable

One example of the instability of a uniform wavetrain was shown in Figure 1. For a
second example in an electromagnetic context, see Figure 3 (which can be viewed as a cut
across the center of the stability diagram, with the most unstable modes growing at either
side).

3.2 A different wave pattern of permanent form

Having addressed the plane wave set of solutions above, and found them to be linearly
unstable, another class of solutions is now our only hope for finding permanent stable wave
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Figure 3: Experimental observation of modulational instability. The horizontal axis is in
nanometers, so the length scale is L = 1.3 · 10−6 m, with timescale T = 4 · 10−15 s. Input
power level low (a); 5.5 W (b); 6.1 W (c); 7.1 W (d). Figure adapted from [11].
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patterns on deep water. This section will take a slightly different tack, using the Inverse
Scattering Transform to solve the initial value problem (see Lecture 5) for the 1D NLS
equation. This method enables us to show the existence of soliton solutions (which are
by definition waves of permanent form) and deferring the question of their stability to
transverse perturbations until the next lecture.

Continuing the search for another stable wave form, Zakharov and Shabat in 1972 [16]
considered the NLS in 1D,

i∂τA = ∂2
ξA + 2σ|A|2A (5)

where σ = −1 is the “defocusing” case and σ = +1 is the “focusing” case appropriate for
deep water. Setting σ = 1 and looking for traveling waves of “permanent form,” there is a
special case:

A(ξ, τ) = 2a · e−i(2a)2τ sech 2a(ξ + ξ0)

The corresponding shape of the free surface, as seen in Section 2, takes the form η(x, t; ǫ) =
ǫ(Aeiθ + A∗e−iθ) + O(ǫ2) where θ = kx − ω(k)t so that

η(x, t; ǫ) = (2ǫa) sech [(2ǫa)(x − cgt)] cos
{

kx − [ω(k) + (2ǫa)2]t
}

(6)

which is a wave packet with special shape (see Figure 4) discussed further below. This
solution is reminiscent of the sech2 soliton solutions of the KdV. This remark naturally
leads us to ask which other properties of the KdV, and associated solution techniques,
apply to the 1D NLS.

Zakharov and Shabat (1972) [16] demonstrated that the 1D NLS (5) is also completely
integrable for either sign of σ. As for the KdV, there are an infinite number of explicit,
local conservation laws, of which the first three are

i∂τ (|A|2) = ∂ξ(A
∗∂ξA − A∂ξA

∗)

i∂τ (A
∗∂ξA − A∂ξA

∗) = ∂ξ(. . .)

i∂τ (|∂ξA|2 + σ|A|4) = ∂ξ(. . .)

The other major consequence of complete integrability (see notes for Lecture 5) is that
we can treat the problem with the inverse scattering transform. However, this time the
scattering problem is no longer defined by the time-invariant Schrödinger equation, but is
found instead to be given by the set of equations

∂ξv1 = −iλv1 + Av2

∂ξv2 = −σA∗v1 + iλv2.

The requirement that the eigenvalues be independent of time, together with the compati-
bility condition

∂ξ∂τ

(

v1

v2

)

= ∂τ∂ξ

(

v1

v2

)

recover the 1D NLS provided

∂τv1 = (−2iλ2 + iσ|A|2)v1 + (2Aλ + i∂ξA)v2

∂τv2 = (−2σA∗λ + iσ∂ξA
∗)v1 − (−2iλ2 + iσ|A|2)v2
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Indeed,

∂ξ∂τv1 = (iσA∂ξA
∗ + iσA∗∂ξA)v1 + (−2iλ2 + iσ|A|2)(−iλv1 + Av2)

+(2λ∂ξA + i∂2
ξ A)v2 + (2Aλ + i∂xiA)(−σA∗v1 + iλv2)

= (iσA∂ξA
∗ − 2λ3 − σλ|A|2)v1 + (iσ|A|2A + λ∂ξA + i∂2

ξ A)v2

∂τ∂ξv1 = −iλ[(−2iλ2 + iσ|A|2)v1 + (2Aλ + i∂ξA)v2] + (∂τA)v2

+A[(−2σA∗λ + iσ∂ξA
∗)v1 + (2iλ2 − iσ|A|2)v2]

= (−2λ3 − σλ|A|2 + iσA∂ξA
∗)v1 + (λ∂ξA + ∂τA − iσ|A|2A)v2

Equating the two, all v1 terms cancel, but for the two v2 sides to balance, we must have

∂τA = i∂2
ξ A + 2iσ|A|2A

Repeating the process for the v2 equations produces the complex conjugate of the above.
From this we arrive back at the 1D NLS,

i∂τA = ∂2
ξA + 2σ|A|2A

as should be the case.
As a consequence of constructing this Inverse Scattering Transform method for the 1D

NLS, it can be shown that for σ = 1 (focusing NLS), any smooth initial data A(ξ, 0) with
∫

|A|dξ < ∞ evolves into N “envelope solitons” which persist forever, plus an oscillatory
wavetrain that decays in amplitude as τ → ∞. Envelope solitons are stable for the focusing
case in the 1D NLS.

Figure 4 (from unpublished work by Hammack) shows experimental evidence for the
existence of these envelope solitons, and reveal that they match the sech solution (6) very
well. Figure 5 shows data from three other experiments on envelope solitons: the first
shows the evolution of two solitons in isolation; the second has some additional noise that
eventually separates from the soliton; the third shows one of the wave pulses overtaking
and passing through another, emerging on the other side in (mostly) unchanged form. In
contrast to Figure 1, where the uniform train of plane waves disintegrates quickly, the
experiments in Figures 4 and 5 show the relative persistence of soliton solutions, providing
some confirmation of the stability predicted by this 1D theory.

4 Conclusions

Finally, we reach the point of drawing tentative conclusions. According to the 1D or 2D
NLS, a uniform train of plane waves is unstable in deep water. However, according to
focusing NLS in 1D with initial data in L1 (i.e., meeting the integrability condition above),
envelope solitons are stable in deep water. Experimental evidence seems to support both
of these conclusions, but we have not yet addressed the stability of the 1D soliton solutions
to transverse perturbations. For more on that topic, see the next lecture.
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Figure 4: Measured surface displacement, showing evolution of envelope soliton at two
downstream locations. Dimensions are h = 1 m, kh = 4.0, ω = 1 Hz. The solid line is the
measured history of surface displacement; the dashed line is the theoretical envelope shape.
Data was taken at 6 m (top) and 30 m (bottom) downstream of the wavemaker.
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Figure 5: Wave pulse interaction: one wave pulse overtaking and passing through another
wave pulse. Left-hand trace: first pulse alone, ω0 = 1.5 Hz, initial (ka)max ≃ 0.01, six-cycle
pulse. Center trace: second pulse alone, ω0 = 3 Hz, initial (ka)max ≃ 0.2, 12-cycle pulse
which disintegrates into two solitons. Right-hand traces: interaction of the two pulses.
Adapted from [13].
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canal à profondeur finie, Mathematische Annalen, 95 (1926), pp. 595–634.

[11] H. A. Tai, K. and A. Tomita, Observation of modulational instability in optical

fibers, Physical Review Letters, 56 (1986), pp. 135–138.

[12] G. Whitham, A general approach to linear and nonlinear dispersive waves using a

Lagrangian, Journal of Fluid Mechanics, 22 (1965), pp. 273–283.

[13] H. Yuen and B. Lake, Nonlinear deep water waves: Theory and experiment, Physics
of Fluids, 18 (1975), pp. 956–960.

[14] V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep

fluid, J. Appl. Mech. and Tech. Phys., 9 (1968), pp. 190–194.

[15] V. Zakharov and L. Ostrovsky, Modulation instability: The beginning, Physica
D, 238 (2009), pp. 540–548.

[16] V. Zakharov and A. Shabat, Exact theory of two-dimensional self-focusing and

one-dimensional self-modulation of waves in non linear media, Soviet Physics JETP,
34 (1972), pp. 62–69.

145




