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We have seen that solitary waves, either with a “pulse”-like profile or as the envelope
of a wave packet, play a key role in nonlinear wave dynamics. However, there are physical
situations when such KdV-type waves may not be genuinely localized. Instead they are
accompanied by co-propagating small oscillations which spread out to infinity without decay
(see Figure 1). These are generalized solitary waves. As we saw in Lecture 16, they may
occur for water waves with surface tension for Bond numbers less than 1/3. It can be shown
that they can also occur for interfacial waves when there is a free surface, and for all internal
waves with mode numbers n ≥ 2. The underlying reason for their existence is the presence
of a resonance between a long wave with wave number k ≈ 0 and a short wave with a finite
wave number. When the amplitude of the central core is small compared to its length,
O(ǫ2), the amplitude of the oscillations is exponentially small, typically O(exp (−C/ǫ))
where C is a positive constant. Hence generalized solitary waves cannot usually be found
by conventional asymptotic expansions, and need exponential asymptotics.

Consider the dispersion relation for internal waves, shown in Figure 2. Normally any
mode numbers higher than 1 will resonate with other modes, so typically these waves do
not persist, and we see only the mode 1 (soliton) waves. However, sometimes the first
mode resonates with the surface mode, in which case waves of mode 2 or higher become
generalized solitary waves, and only the mode 1 wave is a pure solitary wave.

Steady generalized solitary waves are necessarily symmetric. However, this means they
cannot be realized physically as then the group velocity of the small oscillations is the same
in both tails, which implies that energy sources and sinks are needed at infinity. In practice,
these waves are generated asymetrically, with a core and small oscillations only on one side,
determined by the group velocity (see Figure 3). Consequently, they are unsteady and
slowly decay due to this radiation. In Figure 4 we present an acoustic visualisation of the
streamlines generated by stratified flow past a sill, as reported in the experiments of Farmer
& Smith [3]. This phenomenon was subsequently explained in terms of generalized solitary
waves by Akylas & Grimshaw [1].

1 The Coupled KdV Equations

The technique we use to find the tail oscillations is based on extending the usual asymptotic
expansion into the complex plane, and using Borel summation. It is similar to the techniques
used by [6] and [7].

We begin by using a model system of two coupled KdV equations, which can be shown
to describe the interaction between two weakly nonlinear long internal waves whose linear
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Figure 1: Schematic plot of a generalized solitary wave profile.

long wave speeds are nearly equal. The two coupled equations are

ut + 6uux + uxxx +
(

pvxx + quv + 1
2rv2

)

x
= 0 , (1a)

vt + ∆vx + 6vvx + vxxx + λ
(

puxx + ruv + 1
2qu2

)

x
= 0 , (1b)

where λ is the coupling parameter and ∆ is the detuning parameter, proportional to the
difference between the two linear long wave speeds, and p, q and r are real-valued constants.
For stability we choose λ > 0, and we may also take ∆ > 0 without loss of generality. This
system is Hamiltonian, and possesses conservation laws for the “mass” variables u and v,
the “momentum” λu2 + v2, and the Hamiltonian.

Let us first examine the linear spectrum for waves of wave number k and phase speed
c for this system. Linearization of (1a) and (1b), followed by a search for solutions of the
kind eik(x−ct) yields

c = 1
2∆ − k2 ±

√

λp2k4 + 1
4∆2. (2)

If we let the coupling parameter λ → 0 these linear modes uncouple into a u-mode with
spectrum c = −k2 and a v-mode with spectrum c = ∆ − k2. This situation persists for
λ > 0, and there is a resonance between the long wave (u-mode) and a short wave (v-mode),
with a resonant wavenumber k0 =

√

∆/(1 − λp2) provided that λp2 < 1. A typical plot of
these modes is presented in Figure 5.
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Figure 2: Plot of a schematic set of dispersion curves for internal waves: mode 1 (blue),
mode 2 (red), mode 3 (green) and the surface mode (violet).
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Figure 3: Schematic plot of an asymmetric generalized solitary wave profile.

We now seek nonlinear travelling wave solutions of the form

u = u(x − ct) , v = v(x − ct) , (3)

so that the coupled KdV system (1a, 1b) can be integrated once to become

− cu + 3u2 + uxx + pvxx + quv + 1
2rv2 = 0 , (4a)

− cv + ∆v + 3v2 + vxx + λ
(

puxx + ruv + 1
2qu2

)

= 0 . (4b)

Here the two constants of integration have been set to zero, which is achieved either by
imposing solitary wave boundary conditions (u, v → 0 as |x| → ∞) or by translating u and
v by constants. Equations (4a, 4b) form a fourth order ODE system. We shall show that
they have symmetric generalized solitary wave solutions with co-propagating oscillatory tails
of small amplitude. This amplitude will be found using either exponential asymptotics, or
more directly by expanding in λ.

2 Exponential Asymptotics

A typical approach to these equations is to expand around k = 0 for the long (u-mode)
wave. We introduce a small parameter ǫ ≪ 1, and seek an asymptotic expansion of the
following form,

us(ǫx) =

∞
∑

n=1

ǫ2nun , vs(ǫx) =

∞
∑

n=1

ǫ2nvn , c =

∞
∑

n=1

ǫ2ncn . (5)
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Figure 4: An experimental observation from [1] of an asymmetric generalized solitary in-
ternal wave generated by stratified flow past a sill. The streamlines are visualised using
acoustic imaging, and appear to show a mode 2 solitary wave followed by a train of smaller-
amplitude mode-1 waves.
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Figure 5: Plot of the linear phase speed c as a function of wave number k in the coupled
KdV equations. Both the u-mode (red curve) and the v-mode (blue curve) are shown for
the case ∆ = 1, p = 0.5, λ = 0.2.
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Substituting this into (4a,4b) and solving order by order in ǫ yields

u1 = 2γ2sech2(ǫγx) , v1 = 0 , c1 = 4γ2 , (6a)

u2 =
λ

∆

{

(20p2 + q2 − 8pq)c1u1 − (q − 6p)(q − 10p)u2
1

}

, (6b)

v2 = −
λ

∆

{

pc1u1 + 1
2(q − 6p)u2

1

}

, (6c)

c2 = −
λ

∆
p2c2

1 . (6d)

The expansion can be continued to all orders in ǫ2 without any oscillatory tail being detected.
This is because the size of the tail depends exponentially on ǫ, and so it decays faster as
ǫ → 0 than any power of ǫ.

To find the tail oscillations, we observe that un, vn are singular in the complex plane at
x = (2m+1)iπ/2ǫγ, m ∈ Z. This motivates a closer examination via the change of variable

x =
iπ

2ǫγ
+ z , (7)

which allows us to consider the region of the complex plane close to the first singularity.
Then as ǫz → 0, sech2(ǫγx) ∼ −1/ǫ2γ2z2, and so, substituting back into our asymptotic
expansion (6a)–(6d),

us ∼ −
2

z2
−

λ

2∆z4
(q − 6p)(q − 10p) + · · · + O(ǫ2) , (8a)

vs ∼ −
2λ

∆z4
(q − 6p) + · · · + O(ǫ2) . (8b)

Next we consider the inner problem, in which we seek solutions of (4a, 4b) in the form
u = u(z), v = v(z), and for which the expressions (8a, 8b) form an outer boundary condition.
The outcome is just the same system (4a, 4b) with x replaced by z,

− cu + 3u2 + uzz + pvzz + quv + 1
2rv2 = 0 , (9a)

− cv + ∆v + 3v2 + vzz + λ
(

puzz + ruv + 1
2qu2

)

= 0 . (9b)

Note that c = O(ǫ2) from (6a) and can be omitted at the leading order. We proceed by
applying a Laplace transform

[u, v] =

∫

Γ
e−zs[U(s), V (s)] ds , (10)

where the contour Γ runs from 0 to ∞ in the half-plane Re{sz} > 0. We then seek a power
series solution

[U(s), V (s)] =

∞
∑

n=1

[an, bn]s2n−1 , (11)

where a1 = −2, b1 = 0, a2 = −λ(q − 6p)(q − 10p)/12∆, b2 = −λ(q − 6p)/3∆ from (8a, 8b).
In general, substitution of (11) into the Laplace transform (10) generates the asymptotic
series

[u, v] ∼

∞
∑

n=1

[αn, βn]z−2n , [αn, βn] = (2n − 1)![an, bn] . (12)
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This agrees with the asymptotic series (8a, 8b), and in effect the Laplace transform is a
Borel summation of the asymptotic series.

Substitution of the Laplace transform (10) and the series (11) into the differential
equation system (9a, 9b) yields a recurrence relation for [an, bn]. Setting ∆[An, Bn] =
(−k2

0)
n[an, bn], we find that

(n + 1)(2n + 5)

(n − 1)(2n − 1)
An−1 +

(

p −
q

(n − 1)(2n − 1)

)

Bn−1 = Fn , (13)

(

1 − λp2
)

Bn − Bn−1 − λpAn−1 + λ
rBn−1 + qAn−1

(n − 1)(2n − 1)
= Gn , (14)

where Fn and Gn are quadratic convolution expressions in A2, . . . , An−2 and B2, . . . , Bn−2.
As n → ∞, these nonlinear terms can be neglected, and we find that

[An, Bn] → [−p, 1]K as n → ∞ , (15)

where K is a constant whose value depends on λ, p, q, r. It follows that the series (11)
converges for |s| < k0, k2

0 = ∆/(1 − λp2). The result (15) shows that as |s| → k0 there is a
pole singularity given by

[U(s), V (s)] ≈ ∆
[p,−1]K

2(s − ik0)
. (16)

We have now established that the solution in the z-variable is given by (10) where
[U(s), V (s)] has a pole singularity at s = ik0, at the complex conjugate point s = −ik0,
and at all of their harmonics s = ±imk0, m ∈ N. Hence the contour Γ should be chosen to
avoid the imaginary s-axis, and to be explicit we choose it to lie in Re{s} > 0. However,
we seek a symmetric solution, which in the z-variable requires that Im{u, v} = 0 when
Re{z} = 0. The presence of the pole prevents (10) from satisfying this condition, and so
we must correct it by adding a subdominant term

[u, v] =

∫

Γ
e−zs[U(s), V (s)] ds +

ib

2
[p,−1] exp(−ik0z + iδ). (17)

Here b, δ are real constants, and note that | exp (−ik0z)| is smaller than any power of |z|−1

as z → ∞ in Re{z} > 0 , Im{z} < 0, recalling that x = (iπ/2ǫγ) + z. The symmetry
condition is now applied by bringing the contour Γ onto Re{s} = 0 and deforming around
the pole at s = ik0. The outcome is

b cos δ = πK , (18)

which we substitute into (17). The final step is to bring this solution back to the real axis,
using x = (iπ/2ǫγ) + z. Taking account of the corresponding singularity at s = −ik0, we
finally arrive at

[u, v] ∼ [us, vs] + b∆[−p,−1] exp(−πk0/2ǫγ) sin(k0|x| − δ) . (19)

This is a two-parameter family in γ and δ, where 0 < δ < π/2. The minimum tail amplitude
occurs at δ = 0, whilst the amplitude tends to infinity as δ → π/2. Note that the constant
argument of the exponential is determined by the location of the singularity, but we require
the exponential asymptotics to find the amplitude.
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3 Embedded solitons

The constant K is determined by the recurrence relations (13, 14). It is a function of
the system parameters λ, p, q, r and in general is found numerically. However, from our
straightforward asymptotic solution (6a, 6b) we know that K = 0 for q = 6p, and in general
we may find many parameter combinations where K = 0. In particular,

K ∼
λ(6p − q)

3∆
as λ → 0 . (20)

These special values imply that the solitary wave decays to zero at infinity, even though
its speed lies inside the linear spectrum, at least in this asymptotic limit. These are called
embedded solitons. They are usually not stable, but are then metastable, or are said to
exhibit semi-stability, in that they are unstable to small, but not infinitesimal, perturbations.
Nevertheless, they are found to be useful in several applications, such as nonlinear optics
and solid state physics. For water waves with surface tension, generalized solitary waves
exist for Bond numbers 0 < B < 1/3, although numerical simulations suggest that there
are no embedded solitons.

4 One-sided generalized solitary waves

These symmetric solitary waves cannot be realized in practice, since they require an energy
source and sink at infinity. Instead, they are replaced by solitary waves with radiating tails
on one side only, determined by the group velocity. That is, in x > 0 for cg > c, or in x < 0
for cg < c, where cg is the group velocity at the resonant wavenumber. For the present case,
the linear dispersion relation is (2) and so for the relevant u-mode, cg = ∆−3k2 < c = ∆−k2.
Hence there are no oscillations in x > 0, but they will appear in x < 0.

Thus in x > 0, or more generally in Re{z} > 0, the solution is completely defined by the
Laplace transform integral (10), with the contour Γ lying in Re{s} > 0. Then for x < 0, or
Re{z} < 0, the contour Γ must be moved to Re{z} < 0 across the axis Re{s} = 0. In this
process the solution collects a contribution from the pole at s = ik0, which generates the
tail oscillation. The final outcome is that (19) is replaced by

[u, v] ∼ [us, vs] − H(−x)2πK∆[−p,−1] exp(−πk0/2ǫγ) sin(k0x) (21)

where H(·) is the Heaviside function. In effect the phase shift δ = 0, there are no oscillations
in x > 0, and the amplitude in x < 0 is exactly twice the amplitude of the symmetric
solution.

5 Weak Coupling

Let us now return to the coupled travelling wave equations (4a, 4b). Supposing that the
coupling parameter is very small, 0 < λ ≪ 1, we may expand asymptotically in λ as follows,

[u, v] ∼

∞
∑

n=0

λn[un, vn] , c ∼

∞
∑

n=0

λncn . (22)
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Substituting this expansion into (4a 4b), we find that the leading order solution is

u0 = 2β2sech2(βx) , v0 = 0 , c0 = 4β2 . (23)

This leading term is a u-mode solitary wave. A comparison with the previous expansion
(5) suggests that β = ǫγ, but now the amplitude can be order unity. At the next order

−c0u1 + 6u0u1 + u1xx + pv1xx + qu0v1 − c1u0 = 0 , (24a)

(∆ − c0)v1 + v1xx + pu0xx + 1
2qu2

0 = 0 , (24b)

We use the leading order solution for u (23) to rewrite (24b) as

(∆ − c0)v1 + v1xx = f(x) = −pc0u0 + 1
2(6p − q)u2

0 . (25)

Note that in the limit λ → 0, the resonant wavenumber is k0 ≈ (∆ − c0)
1/2, which takes

account of the finite speed of the wave. We must now take c0 < ∆ to get tail oscillations,
whilst for c0 > ∆ the expansion yields a genuine solitary wave. The general solution of (25)
is

v1 = A sin k0x + B cos k0x +
1

2k0

∫

∞

−∞

f(x′) sin (k0|x − x′|)dx′ . (26)

To determine the constants A,B we impose a symmetry condition on v1, so that A = 0,
and then

v1 ∼ b1 sin (k0|x| − δ) as |x| → ∞ , (27)

b1 cos δ = L =
1

2k0

∫

∞

−∞

f(x) cos (k0x)dx . (28)

With v1 known, we take the limit |x| → ∞ in (24a) to find

u1 ∼ −p
(∆ − c0)

∆
b1 sin (k0|x| − δ) , as |x| → ∞ , (29)

Substituting (25) into (28), we find that

L = −
β2

6k0

{

k2
0(q − 6p) + 4β2q

}

∫

∞

−∞

sech2(βx) cos (k0x)dx . (30)

Then, as β = ǫγ → 0, this reduces to

L ∼
πk2

0

3
(6p − q) exp (−πk0/2ǫγ) , (31)

which agrees with the previous result (20) from the exponential asymptotics, since L = πK.
The one-sided solutions are obtained by setting δ = 0, and replacing b1 in (27, 29) by either
0 for x > 0 or 2b1 for x < 0.
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