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1 Introduction

Nonlinear waves can be studied by a number of models, which include the Korteweg–de
Vries (KdV) and the Kadomtsev-Petviashvili (KP) equations. These equations are reviewed
briefly and applied here to investigate the dynamics of surface waves in the ocean. The
resulting tsunami of the Indian Ocean earthquake in 2004 are considered as a specific
example. The tsunami dynamics, as well as wave patterns observed near shore, are explained
by ideas developed in the previous lectures.

2 Review of waves in shallow water

A theory of nonlinear surface waves in shallow water was presented in Lectures 5 and 6.
Relevant aspects of this theory are reviewed first for later discussion of observed waves
in the ocean. Note that the theory, which includes effects due to dispersion, is different
from the hyperbolic partial differential equations called the shallow-water equations, which
describe non-dispersive waves and are presented in Lecture 8.

Consider the water in the ocean as an incompressible, irrotational fluid with velocity
potential φ. A Cartesian coordinate system is adopted with the x and y axes in the hor-
izontal plane and the z axis pointing upwards from the mean level of the fluid. The fluid
lies in the domain bounded below by a prescribed topography, z = −h(x, y), and above by
a free surface to be determined, z = η(x, y, t). In this theoretical framework, the governing
equations at any time t are given by

∇2φ = 0 − h < z < η, (1)

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
z = η, (2)

∂φ

∂t
+

1

2
|∇φ|2 + gη = 0 z = η, (3)

n · ∇φ = 0 z = −h. (4)

The velocity potential satisfies the incompressibility condition (1), subject to the boundary
conditions at the top and bottom of the domain. Equations (2) and (3) are respectively
the kinematic and dynamic conditions on the free surface. Gravity g is dominant and
surface tension is neglected in the dynamic condition (3), implicitly restricting the analysis
to waves with horizontal lengthscales much larger than the capillary length scale. Equation
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(4), where n is the unit vector normal to the topography, is the impermeability condition
at the rigid bottom of the ocean.

A theory of nonlinear waves in shallow water is developed by introducing the following
approximations. First, the characteristic variation a in η is small compared to the entire
depth of the water h, under the small-amplitude approximation. Second, waves propagate
in the x direction with a typical wavelength Lx, much longer than the depth of the water.
This is the shallow water or the long wave approximation. Third, the motion is nearly
one-dimensional, provided the horizontal length scale Ly in the transverse direction of the
propagating wave is much longer than Lx. It is assumed that all small effects balance
by order of magnitude such that a/h = O(ǫ), (h/Lx)2 = O(ǫ) and (Lx/Ly)

2 = O(ǫ) or
smaller, where ǫ ≪ 1 is the small parameter in the problem. See Lectures 3, 5 and 6 for the
derivation and discussion of these scalings.

At leading order in ǫ, η satisfies the one-dimensional wave equation given by

∂2η

∂t2
= c2

∂2η

∂x2
, (5)

for constant topography h, where c =
√

gh is the phase speed of the wave. The solution is
a linear combination of traveling waves given by

η = ǫh[f(x − ct; ǫy, ǫt) + F (x + ct; ǫy, ǫt)] + O(ǫ2), (6)

where f and F are amplitudes of the waves that propagate in the positive and negative x
directions respectively. At next order in ǫ, either the KdV or the KP equation is obtained,
depending on whether (Lx/Ly)

2 ≪ O(ǫ) or (Lx/Ly)
2 = O(ǫ) respectively. Waves propagat-

ing along the x axis with (Lx/Ly)
2 ≪ O(ǫ), are one-dimensional and described by the KdV

equation [8]
∂f

∂τ
+ f

∂f

∂ξ
+

∂3f

∂ξ3
= 0, (7)

where τ = ǫt is the slow time variable and ξ = x − ct is the spatial coordinate in the
reference frame of the moving waves. The KdV equation indicates that the wave amplitude
evolves due to nonlinear and dispersive effects, corresponding to the second and third terms
of (7) respectively. Two-dimensional waves, with (Lx/Ly)

2 = O(ǫ), disperse weakly in
the transverse direction of propagation and are described by f(ξ, ζ, τ) satisfying the KP
equation [6] instead

∂

∂ξ

(

∂f

∂τ
+ f

∂f

∂ξ
+

∂3f

∂ξ3

)

+
∂2f

∂ζ2
= 0, (8)

where ζ = ǫy is the slowly-varying coordinate in the y direction. Both KdV and KP
equations are integrable, meaning that they admit soliton solutions. A soliton is a special
type of solitary wave, a localized wave that travels without any change in shape or size.
The soliton has a permanent form in structure even after interacting with another oncoming
soliton. Solitary waves occur frequently because they represent the long-time limit of waves
that arise from a range of initial conditions. The possible appearance of solitary waves in
the ocean is examined below.
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Figure 1: Numerical simulation of surface elevation (red) and depression (blue) of the Indian Ocean,
soon after a series of undersea earthquakes occurred off the coast of Sumatra over an interval of 10
minutes on 26 December, 2004. An animation of the evolving surface of the ocean is available at
http://staff.aist.go.jp/kenji.satake/.
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Variable (units) Magnitude

h (km) 3.5
a (km) 0.001
Lx (km) 100
Ly (km) 1000
c (km/h) 650
u (km/h) 0.2

Table 1: Typical magnitudes of the tsunami triggered on 26 December, 2004, in the Indian
Ocean of depth h. Surface waves with amplitude a, wavelength Lx and width Ly traveled
with phase speed c and fluid speed u.

3 Application to Tsunami waves

The sudden displacement of a large volume of water results in a series of surface waves in
the ocean, called a tsunami. A famous example is the tsunami caused by a series of undersea
earthquakes off the western coast of Sumatra on 26 December, 2004. These earthquakes
occurred near-simultaneously along a 1000 km fault line. The surface elevation and depres-
sion of the ocean, soon after the earthquake, have been reproduced numerically as shown in
Figure 1. The resultant tsunami waves devastatingly struck the coasts of the Indian Ocean
and caused many casualties.

The magnitude of the tsunami in the Indian Ocean is estimated as presented in Table
1. Note that a/h, (h/Lx)2 and (Lx/Ly)

2 are all small with a common order of magnitude
ǫ in the narrow range from 10−2 to 10−3, consistent with the approximations required to
obtain solitary waves governed by the KP equation. However, we know from Lectures 5 and
6 that solitary waves only develop on the long time scale of order 1/ǫ, namely 102 to 103

hours in this case. Given that the tsunami traveled a distance of approximately 1500 km
across the Bay of Bengal with phase speed 650 km/h, the initial displacement of water did
not have sufficient time to evolve into a solitary wave. The tsunami would have needed to
propagate a distance two or three orders of magnitude longer than across the Bay of Bengal
to develop into a solitary wave, as governed by the KdV or the KP equation.

In contrast to the short distance traveled by the tsunami in the Indian Ocean, the
tsunami triggered off the coast of Chile on 22 May, 1960, by the most powerful earthquake
ever recorded, may have developed into solitary waves. The tsunami propagated tens of
thousands of kilometers across the Pacific Ocean and reached the coast of Japan after 22
hours. It is possible that this tsunami developed into solitary waves, which propagated
without change in their structural form.

In the deep and open ocean, the dynamics of tsunami waves are characterized by small
amplitudes and long wavelengths, which are hardly detected by an observer on a boat on the
surface. As the tsunami approaches near shore, the depth of the water decreases, resulting
in a decelerating wave speed at the front while the back of the tsunami maintains speed.
The waves consequently compress horizontally and grow vertically in a process called wave
shoaling. The waves may grow to tens of meters in amplitude, causing much damage when
they reach and strike coastlines.

The tsunami caused by the Sumatra earthquake in 2004 propagated eastwards to the
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Figure 2: The tsunami of 26 December, 2004, approaching Hat Ray Leah beach on the Krabi coast,
Thailand [1].

coast of Thailand with a wave of depression at the front. This reflects the downward
displacement of water on the eastern side of the area where the tsunami originated, as shown
in Figure 1. As shown in Lecture 5, laboratory experiments demonstrate that a downward
displacement of water leads to a wave-train preceeded by a wave of depression[5]. When the
front of the wave of depression arrived in Thailand, the water along the shoreline receded
dramatically and exposed areas that are otherwise submerged, as shown in Figure 2. Soon
after, successive waves of large amplitude struck the coast and destructed the area.

Risks posed to coastlines can be assessed by considering the tsunami in the deep ocean,
from initiation to propagation. Tsunami is generated by a thrust fault, a normal fault
or a landslide. A crucial quantity for estimating the size of the tsunami is the volume of
water displaced by seismic events under the water. The time for the tsunami to propagate
between two given positions, x1 and x2, is estimated by minimizing

∫

x2

x1

ds

c(s)
(9)

over all possible paths from x1 to x2. Note that the shortest distance from x1 to x2 may
not be the path that minimizes (9) because the wave speed c(s) =

√

gh(s) may increase
considerably with position s along another path.

It remains a challenge to predict the detailed dynamics of tsunami, particularly near
the shore. As the tsunami approaches the coast, the dynamics are influenced by effects due
to reflection, refraction and breaking of the waves. The near-shotre shape, size and speed
of the tsunami are still poorly understood.

4 Oscillatory waves in shallow water

In this Section, further insight into waves in shallow water is provided by examining another
special class of waves, which oscillate periodically. Indeed, in contrast to tsunami waves
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Figure 3: Cnoidal waves traveling in the ocean below flying aircrafts (National Geographic, 1933).

which are caused by earthquakes and landslides, most surface waves in the ocean are caused
by storms and winds. These waves oscillate periodically and may develop patterns of
permanent form, which are presented below.

The simplest model of long waves of small amplitude features linear, non-dispersive
waves governed by (5), which all travel with speed

√
gh. For long waves of moderate

amplitude, all traveling in approximately the same direction in water of uniform depth, a
better approximation is the KP equation (8). It can be shown that the KP equation is
completely integrable and admits solutions of the form[7]

f(ξ, ζ, τ) = 12
∂2

∂ξ2
log Θ, (10)

where Θ is a Riemann theta function of genus G. The genus is an integer corresponding to
the number of independent phases in the solution. For example, solutions of genus 1 are
the one-dimensional and periodic cnoidal wave solutions of the KdV equations discussed
in Lectures 3, 5, and 6. Real cnoidal waves are shown in Figure 3; they propagate in the
direction perpendicular to the wave crests with a coherent and permanent structure.

As discussed in Lecture 4, complete integrability guarantees the existence of quasi-
periodic solutions obtained from (10), such as two-phase solutions of the KP equation. They
are described by (10) with a Riemann theta function Θ of genus 2. The surface patterns
are quasi-periodic in the sense that they cannot be characterized by a single period. The
patterns are hexagonal in shallow water, as reproduced in Figure 4. The two-phase solutions
can be interpreted as a combination of two cnoidal waves that meet at an angle, where a
shift in phase occurs due to their interaction. The two-phase solutions agree remarkably
well with surface patterns observed in laboratory experiments, demonstrating that the KP
equation accurately describes real phenomena [3]. The excellent agreement between the
theory and the experiments supports the existence of permanent patterns in the ocean,
such as the approximately periodic patterns observes along the shoreline of Duck, North
Carolina, as shown in Figure 5.
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Figure 4: Two-phase solution of the KP equation propagating in the x direction with weak disper-
sion in the y direction [4].
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Figure 5: Nearly periodic ocean waves with two-dimensional patterns along the shoreline of Duck,
North Carolina.

Several open problems remain regarding these periodic wave patterns. Although it has
been proved that they should exist in water of any depth [2], only the simplest patterns
have ever been discovered. The KP equation admits other periodic solutions of permanent
form with genus G > 2, which have not been explored yet. Another fundamental unsolved
problem concerns the stability of these two-dimensional wave patterns of permanent form. A
stability analysis of the patterns could determine whether one should expect to encounter
them in nature or not, and how frequently. Another important problem is the effect of
variable topography on the wave patterns, as is the case near shore. A better understanding
of these problems could provide useful insight into the dynamics of surface waves in the
ocean.
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