Lecture 9 - Nonlinear waves in a variable medium

Lecturer: Roger Grimshaw. Write-up: Hélene Scolan

June 17, 2009

1 Introduction

The usual Korteweg-De-Vries equation, which assumes a uniform background state, is not
sufficient to describe internal solitary waves in the coastal ocean. Indeed, the topography
can vary horizontally, and the waves produced are not clean wave trains. This can be seen
for example in the measurements of currents in the Australian Northwest Shelf reproduced
in Figure 1.
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Figure 1: Time series of isotherm displacements and onshore currents are shown from 3 moorings,
(Slope, Break and Shelf), located in 78 to 109 m water depths, and a few kilometers apart at the
outer edge of the Australian Northwest continental shelf. The plots show a variety of nonlinear wave
forms including bores on both the leading and trailing faces of the long internal tide, as well as short
period (approximately 10 minutes, close to the buoyancy period) internal solitary waves. [After
Holloway and Pelinovsky, 2001]. An Atlas of Oceanic Internal Solitary Waves (February 2004) by
Global Ocean Associates Prepared for Office of Naval Research Code 322 PO
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By incorporating a variable medium in the model, one can build the variable coefficient
Korteweg-de Vries equation and find asymptotic and numerical solutions of the problem.

2 Waves in inhomogeneous medium

2.1 Linear waves and wave-action conservation law

First, we recall the properties of linear waves propagating through an inhomogeneous
medium. Because of the presence of the variable background, the usual wave equation
is modified. In many examples, the wave equation becomes

Uy — (02(x)ux)x =0 (1)

where the wave speed c¢(z) varies with position (for example c¢(x) = /gh(z) for waves
supported by the shallow-water equations, see Lecture 8).

We assume that the medium is “slowly varying” which means that the lengthscale L
over which the medium changes is greater than the typical wavelength A (A < L) and
so the coefficient ¢(x) can be considered almost constant on the wave scale (¢ = c(ex)
with € < 1). The WKB approximation consists in looking for a solution close to the
solution for a homogeneous medium aexp(—iw(t — z/c)). Using an ansatz of the form
a(z,t) exp(—iw(t — 7(z))) with 7(z) = [ ;%_;0)7 and developing an asymptotic expansion in
1
c(z)

More generally (i.e. for wave equations not necessarily in the form of (1)), the WKB
asymptotic solution can be written: u ~ a(z,t)f(t — 7(z))) where 7(z) = [ % and where

the powers of €, it can be shown that a(z,t) (proof in [5] for example).

the phase t — 7(z) is assumed to vary rapidly compared with the amplitude function a(z,t)
and the speed c¢(z). Then it can be shown that a(z,t) verifies:

(a®)¢ + (ca?)y = 0 (2)

This equation is called the wave action conservation law for wavetrains in slowly spatially
varying medium.

The most general form of the wave action conservation law, for waves propagating in a
non-uniform, time-dependent medium which may also sustain a mean flow U is

(5 (E).

where E is the wave energy density (which is usually related, but no necessarily equal to
the square of the wave amplitude), w is the intrinsic frequency defined by

O=w-k-U,

(i.e. the frequency of the wave seen by an observer moving with a mean flow if there is one)
and ¢, the group velocity. For more information about this conservation law see [2]. The
quantity E/w is called the wave action density, so that the wave action flux is %cg (cg =c
if the medium is weakly dispersive).
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This final equation can be interpreted in the following way: in the limit where @ is
constant (i.e the medium does not vary with time or there is no mean flow) then the wave
action conservation law reduces to an energy conservation law. If @ is not constant, then
energy density is not conserved, but the wave action density E/w is.

2.2 Non linear waves: variable-coefficient KDV equation

To describe nonlinear internal waves in a variable medium, we begin with the basic non
linear KdV equation:

Ut + Cug + puly + 5“969090 =0 (4)

in which we introduce the possibility of a variable background. Thus the linear phase speed
and the coefficients © and ( have a spatial dependency. Furthermore, another term is
needed if we want the variable-coefficient KdV equation to verify the general wave-action
conservation law (3) in the limit where non-linear terms are negligible:

c
up + c(T)ugy + %u + p(z)uuy + () ugrr = 0. (5)
This additional term is written so that in the linear wave theory u; + c(z)u, + C2QQ””U =0
Qu?

)¢ + (Qu?); = 0. Then, Qu? can be interpreted as the wave action

2
flux (and so the wave-action density is 2% since ¢ ~ ¢, in the long wave/weak dispersion
c g

limit). The exact expression for () depends on the original physical problem considered.

is transformed into (=~

To maintain the balance between terms in the new equation including the effect of
variable medium (5), we need the dispersion term, the non-linearity and the weak inhomo-
geneity term to be of the same order of magnitude. If 8% ~ € < 1 and we suppose u ~ €
and % ~ €’ the terms will be of the same order of magnitude if a+b = 2a+1 = a+3 which

gives a = 2 and b = 3. So % scales as €3. This implies that the variable-medium KdV is

only valid in the limit where the medium varies very slowly compared with the horizontal
scale of the wave.

As in the homogeneous KdV, it is useful to recast the governing equations in a moving
coordinate system which follows the propagation of the wave, i.e. perform a change of
variable in which { ~ x/c — t where ¢ is the phase speed. Here, the procedure is slightly
more complex since ¢ may vary with position. By analogy with the WKB approximation

technique, we introduce
xr

B dz’
T / (@)’
0
This change of coordinate can be viewed as a mapping of the original spatial coordinate
into a time-like coordinate, since the new variable 7 is simply the travel time between the

original position of the wave and its present location. If we also use the change of variable
X =71 —t, we then have

U = —Ux (6)
ux Uy
_oux | ur 7
u s (7)
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When the background varies very slowly compared with the size of the wave, it can be
demonstrated that 0/0T < 9/0X, so that
ux

Uy ™ - (8)

Then, within the balance seen before the equation can be written:

u7+%u+%uux+cﬁ3ux)(x:0. (9)
The two equations (5) and (9) are asymptotically equivalent and differ just by terms of
O(€"). Tt is interesting and important to note that the coefficients p, 8 and ¢ now vary
with the time-like variable 7. Physically this simply models the fact that as the wave
propagates through the inhomogeneous medium, it “sees” a slowly time-dependent, but
nearly homogeneous background around itself.
The more commonly used form of the KdV equation is obtained by putting A = Q'/2u
which gives the variable-coefficient KdV equation:

A +aAAx + Nxxx =0 (VKDV)

a and \ = ﬁ
c 3
It can be verified that the variable-coefficient KdV has two conservation laws:

where oo =

d o

— [ Adx = 1

= [ aax o (10)
4 7OA2dX =0 (11)
dr e

They are often referred as conservation of “mass” and momentum even if these are not the
physical ones. The latter equation is in fact the conservation of the wave action flux. The
former is asymptotically that for the physical mass.

3 Slowly varying periodic waves

3.1 Asymptotic expansion

As we suppose that the medium is slowly varying, we write « = «(T) and A = (T
with T' = o7 with ¢ < 1. We can develop a multiscale expansion in powers of the small
parameter o for a modulated periodic wave by looking for solutions of the kind:

A= A(](@,T) + O'Al(e,T) 4+ ...

where A is periodic in the phase § = k(X — 1 fT V(T)dT) with a fixed period of 27, where
k is a fixed constant and V remains to be determined.

83



0A;  0A;00 0A; 0T k 04 .
As =50 5r + 5T 5y — Ajp - (—;V(T)) + A;7 -0 and —— = kA, the expansion

. or. [ 0
introduced in the vKDV gives:

O(UO) : —V Apg + aApAgg + /\]{72140999 =0 (12)
1
O(0): =V A+ a(AoAr)g + Ak* Arges = — g Aor (13)
These are ordinary differential equation in 6 with 7" as a parameter. A solution of (12)

can be written:
Ag = a{b(m) + en*(v0;m)} + d,

where

b= - = 12mM2k?, V =ad + —
o mK(m)’ aa mAY k=, aa + 3

l—m  E(m) aa{2;nm fﬁ%}

This solution is a typical cnoidal wave cn(z;m), which is a Jacobian elliptic function
of modulus m (0 < m < 1). The functions K(m) and E(m) are the elliptic integrals of
the first and second kind, a is the amplitude and d is the mean value of A over one period
v = K(m)/m, and the spatial period is 27 /k.

This solution contains three free parameters which depend on T": for example the am-
plitude a, the mean level d and the modulus m. We can consider the two limit cases:

e m — 1: This is the solitary wave case.
Indeed, b — 0 and cn?(z) — sech?(z). v — oo and k — 0 with vk = K held fixed.

e m — (: This gives sinusoidal waves of small amplitude a ~ m and wavenumber k.

3.2 Modulation equations

To completely describe the solution we must now find how a, d and m depend on the slow
variable T'. There are two methods for this: the Whitham avering method or the asymptotic
expansion continued at higher level.

3.2.1 Whitham averaging method

The method is developed as follows:
e Step 1: Determine the three conservation laws for the vKDV equation.
e Step 2: Insert the periodic cnoidal wave into the conservation laws.

e Step 3: Average over the phase 6.
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Conservation laws: We already have the mass and momentum conservation laws (10)
and (11):

21 21
0 B 0 210
0 0

Since we are dealing with slowly varying waves, an additional conservation law is derived
from the law of “conservation of waves” (or “conservation of crests”). Indeed for slowly
varying waves we have the definitions k = g—)% and w = —% so that:

kr +wx = 0.

Since w does not depend on X, k is constant.

Substitution of cnoidal wave into conservation laws.
e The mass equation implies that the mean level d is constant.

e After averaging over 6, the momentum equation produces a relationship between a

and m:
27

1
a? 2—/cn4(’y€;m)d9— b(m)? 3 = constant
T
0

2

= a—{(2—3m)(1—m)+w

K(m)

which uniquely determines the evolution of the modulus m:

— 3m?2b(m)? ; = constant
- m (m)} constan

o?
F(m) = K(m)?{(4 — 2m)E(m)K(m) — 3E(m)* — (1 — m)K(m)?} = constantp

since o and A vary with T in a known way.

The function F(m), as seen in Figure 2 for example, is usually a monotically increasing
function of m so if a/\ increases, m increases too. This implies that if the dispersive
coefficient A tends to zero then m tends to 1 and the waves become more like solitary
waves.

For example for water waves, ¢ = v/gh, Q = ¢, . = 3¢/2h and 3 = ch?/6 which leads
to a/\ oc h~9% and F(m) o< h=%/2. As the wave approaches the beach h — 0 and
m — 1, which means that the wave gradually transforms into a solitary wave. It’s
amplitude goes as h~3/* so that the surface elevation varies as h~!.
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Figure 2: F'(m) in the case of water waves.

3.2.2 Asymptotic expansion continued

To find the conservation laws, we can also alternatively continue the method of asymptotic
expansion to the next order. As A; must be periodic, we must force the right-hand side of
(13) to be orthogonal to the periodic solutions of the adjoint to the homogeneous operator
on the left-hand side (see the discussion for this point in Lecture 6).

Indeed let us define the operator L as

0 , 0

Then (13) can be written: L(A;) = F where F = —A%.
By definition, the adjoint L verifies for any periodic function B and A;:

< BL(A;) >=< AL (B) >

where < >= fo% df. Thus if B is a solution of L"(B) = 0, < BF >=< BL(A;) >=<
A L"(B) >=0.
The adjoint equation L™ (B) =0 is :

—V By + aAgBy + )\k‘23999 =0

B =1 and B = Aj are two periodic solutions of this equation. A third solution can be
found but is not periodic. So we have two conditions < 1(—%) >=0and < Ao(—A%) >=
0 which coincide to the statement that d is constant and to the momentum conservation
law equation (14).
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4 Slowly varying solitary waves

It is important to note that the results for a slowly-varying periodic wave cannot directly
be extrapolated to the solitary-wave case: indeed, the limit m — 1 requires k¥ — 0 and so
the period becomes infinite. Accordingly, the condition that the local period (1/kV") should
be much smaller than the scale of the variable medium (1/0) is no longer satisfied.

Thus, we must refine the definition of “slowly-varying” for the case of solitary waves.
The solitary wave will be considered slowly-varying if the half-width is much less than the
scale of the variable medium (1/0). An asymptotic expansion can then be developed in the
same way as before but with a new expression for the phase:

T
1
=X — E/V(T)dT.

A is not required to be periodic in ¢, and is defined in —oco < ¢ < oo and bounded in
¢ — Foo. Without changing the problem we can choose A > 0 so that small-amplitude
waves propagate in the negative z-direction (a transposition A, z with —A, —x gives the
other side). We can also assume A — 0 as ¢ — oo without imposing anything in the other
boundary condition as ¢ — —o0.

The resulting ODEs of the asymptotic expansion are:

—VA(]d) + OfAOA(]d) + )\A0¢¢)¢) =0 (15)
—VA1¢ + a(A0A1)¢ + )\A1¢¢¢ = —Ayp. (16)

The solution Ay is now a solitary wave: A = asech?(K ) with V = 9 — ANK? and only
has one free parameter (a for instance). A background d can be added, but is constant and
can be removed by a Galilean transformation.

At the next order, we require that A; — 0 as ¢ — oo. This imposes a new compatibility
equation < B(—Agr) >= 0 where <>= ffooo d¢ and with the adjoint equation L"(B) = 0:

—VB¢ + aAoB¢ + )\B¢¢¢ = 0.

Among the two possible bounded solutions B = 1 and B = Ay, only the latter satisfies
the condition A; — 0 as ¢ — oo. So there is only one orthogonality condition which can
be imposed which corresponds to the right-hand side of (16) being orthogonal to Ag ie
< AO.(—AOT) >=101ie:

8 [e.9]
o7 / A3dg = 0. (17)

Even though there is only one equation this time, it is enough to determine the evolution
of the free-parameter a. Substituting the sech? solution into the condition (17) yields

3 o
a’ = constantx

which agrees with the limit m — 1 of the periodic wave case.
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4.1 Trailing shelf

A problem nevertheless occurs with the preceeding derivation since the vKDV equation has
two conservation laws (momentum and mass) whereas only one condition can be imposed
(17), which happens to coincide with the momentum equation (11). This means that
for solitary waves we can not simultaneously require conservation of the total mass and
momentum. This can also be seen by examining the solution of (16) for A;: indeed if we
integrate in ¢, with the boundary condition 47 — 0 as ¢ — oo and A; — Hj as ¢ — —o0
and using the properties of Ay we get:

VHl — _% where MO = / AO dQS and H1 = (18)

oT
which illustrates how the “total mass” changes as the solitary wave propagates.

The solution to this problem consists in constructing a “trailing shelf” A such that
A = Ag+ As. Ag is of small amplitude O(o) but with a long length-scale O(1/0) which
has O(1) mass but O(c¢) for the momentum. It is located behind the solitary wave and
to leading order has a value independent of T' so that A; = €As(X) with X = oz for

X < ¢(T) = fV(T)dT.

trailing shelf u, = O(o)

[ s

< > <
< > <

0™ ow)

Figure 3: Trailing shelf residing behind the solitary wave.

The trailing shelf is determined by its value at the location X = ¢(7T') of the solitary
wave, in particular A4(¢(T')) = Hi(T). It can have a negative or positive polarity depending
on the sign of Aap and so on the growth or decay of the wave amplitude. It may be verified
that the slowly-varying solitary wave and the trailing shelf together satisfy conservation of
mass. Continuing the expansion to higher orders in ¢ reveals how the shelf itself evolves
and generates secondary solitary waves.

4.2 Critical case
If we reconsider the expression for the free parameter a:
a® = constanta
N A

we see that there is a critical point when o = 0 where we may expect a dramatic change in
the wave structure. Indeed, the wave amplitude goes to 0 if @« — 0, and decreases as |a|1/ 3
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Figure 4: A =1 and « varies from -1 to 1. Upper panel: a = 0. Lower panel: o =1

while the mass M of the solitary wave only grows as ]a\_l/ 3. Meanwhile, the amplitude

A, of the trailing shelf grows as |a|_8/ 3 with the opposite polarity of the wave.

Essentially the trailing shelf passes through the critical point as a disturbance of the
opposite polarity to that of the original solitary wave, which then being in an environment
with the opposite sign of «a, can generate a train of solitary waves of the opposite polarity,
riding on a pedestal of the same polarity as the original wave. Figure 4 shows for instance
the possibility of conversion of a depression wave (with a positive shelf) into a train of
elevation waves riding on a negative pedestal. The mean level of the new wave-train is
negative corresponding to the initial negative mass of the depression wave.
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