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1 Introduction

There has been much interest in investigating the transition to turbulence of linearly

stable shear flows from a dynamical systems viewpoint [Lanford(1982), Kerswell(2005),

Eckhardt et al.(2007)]. Here an instantaneous velocity field is pictured as a point in an

infinite-dimensional phase space, with laminar flow being a linearly stable fixed point. Other

invariant solutions exist, forming a “scaffold” for turbulent dynamics. Turbulence is imag-

ined as a path in phase space moving between these invariant solutions. In this project

we focus on one such invariant solution for plane Couette flow, in which the shear flow is

established by moving two parallel plates past each other. A sketch of the geometry of the

plane Couette system is shown in Figure 1.

The first of these invariant solutions was found by Nagata [Nagata(1990)], though many

more have been found since [Gibson et al.(2009)]. Due to the vast computational expense

required to work with these solutions, the majority of these solutions have been found in

small domains that are periodic in both span-wise and stream-wise directions. However,

observations of turbulent flows show localized turbulent regions coexisting with laminar

regions [Emmons(1951), Tillmark(1992)]. A first invariant solution exhibiting this localized

nature was presented in [Schneider et al.(2010a)], with the solution remaining periodic in

stream-wise direction, but localized in the span-wise direction. In this project, building

on the work outlined above, we try to provide more insight into these localized invariant

solutions.

We aim to answer two main questions in this project. Our first goal is to determine

what behavior should be expected for localized invariant solutions of plane Couette flow.

To investigate this we first review the observations from for the first localized solution
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Figure 1: A sketch of the plane Couette system. Two plates separated by a distance of 2L
are moved past each other with a velocity difference of 2U , establishing a shear flow in the
viscous fluid between the plates.
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Figure 2: Plots of x-averaged streamwise velocity for the two localized solutions presented
in [Schneider et al.(2010b)].

[Schneider et al.(2010b)], which show a distinctive bifurcation behavior known as homo-

clinic snaking. We then use continuation methods to investigate the bifurcation structure

of the second solution, and compare the two solutions to see what similarities and differ-

ences they share. The second goal is to investigate how more localized solutions could be

generated. We analyze the symmetry breaking process during localization, and predict the

number of localized “versions” of a periodic solution that may exist. All of the numerical

calculations in this project are performed using the Channelflow package developed by John

Gibson, and approximately 25,000 hours of CPU time was used to produce the results.
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Figure 3: A plot of the bifurcation diagram from [Schneider et al.(2010b)]. We clearly
see the homoclinic snaking structure, and the reattachment to the periodic solution from
[Nagata(1990)].

2 Review of the first localized solution

[Schneider et al.(2010b)] presented a continuation study for the first localized solution ever

found for plane Couette flow. The periodic counterpart for this localized solution is the

original invariant solution presented in [Nagata(1990)], and there exist two distinct versions

of the solution, with flowfields shown in Figure 2. Continuing the pair of solutions in Re,

for a fixed value of the x-dimension of the periodic domain, Lx, produced the bifurcation

diagram shown in Figure 3. Here D is a volume normalized dissipation rate, and can be

thought of as a measure of how turbulent the solution is. The two solutions intertwine in

a sequence of saddle-node bifurcations to form a structure that transitions to higher values

of D over a relatively short interval in Re. One of the solutions reattaches to the periodic

solution, shown in black, while the other solution follows the upper branch to high Re.

This sort of structure has also been observed in an entirely different system, the Swift-

Hohenberg equation,
∂u

∂t
= ru−

(
∂2

∂x2
+ q2c

)2

u+ f(u), (1)
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Figure 4: Plots showing the velocity field on the midplane. In-plane velocities are indicated
with arrows and streamwise velocity is indicated with color. The top pair of plots show the
flowfield at two adjacent saddle-node bifurcations on the snake, and the bottom plot show
the marginal eigenfunction at the upper bifurcation.

where r is the control parameter, qc is a parameter, and f(u) is a nonlinear function. The

phenomena is known as homoclinic snaking [Burke and Knobloch(2007)], and describes how

a spatially localized solution of the above equation expands to fill the periodic domain it

sits in. As the solution grows, structure is added at the edges, while in the internal region

the solution does not change. Thus, to further test the similarities between the results

in [Schneider et al.(2010b)] and homoclinic snaking in the Swift-Hohenberg equation, we

can examine the flow fields at different points on the snake. Throughout this project we

take x = (x, y, z) with y being the direction perpendicular to the plates, x parallel to the

direction of shear, and z the spanwise coordinate. These coordinate directions are then used

to define the velocity vector u = (u, v, w). Figure 4 shows flowfields on the midplane for the
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Figure 5: A plot of x-averaged streamwise velocity for the new localized solution.

first two saddle node bifurcations in Figure 3, along with the marginal eigenfunction for the

second bifurcation. From the marginal eigenfunction we can clearly see that the solution

is adding structure at the edges of the localized solution, while the central part remains

relatively unchanged. As we move up the snake the solution achieves higher values of D by

expanding the non-laminar region, but keeping the magnitude of the local dissipation rate

roughly constant.

In the next section we present the results of a continuation study on a second localized

solution. We want to compare the observations of this second solution with the results sum-

marized above, to allow us to see what behavior is generic for localized invariant solutions,

and specifically if homoclinic snaking is a feature of all localized solutions of plane Couette

flow.

3 Continuation of second solution

We now use continuation methods to investigate a second localized solution. This localized

solution was found by [Gibson and Brand(2011)] based on an understanding of the func-

tional form of the fronts between laminar and turbulent regions. It is a localized version

of the periodic solution EQ7 from [Gibson et al.(2009)]. Figure 5 shows a plot of the x-

averaged streamwise velocity, allowing us to directly compare with the previous localized

solution shown in Figure 2. We notice that the variations in velocity for the new localized

solution are less pronounced, in agreement with the observation that this new solution exists

at a much lower dissipation.

To allow us to plot the bifurcation diagrams, in the following we describe flowfields by
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Figure 6: A plot of the bifurcation diagram generated by continuing in Re with Lx = 3π.

the simple measure,

D =
1

2Lx

∫ Lz/2

−Lz/2

∫ 1

−1

∫ Lx/2

−Lx/2
v(x)dxdydz, (2)

where v is the velocity perturbation found by subtracting the laminar profile away from the

full velocity field, and Lx, Lz are the streamwise and spanwise dimensions of the periodic

domain. We do not normalize by Lz since our solutions are localized in Lz, and thus any

measure of them should also be independent of Lz. Since the solution is independent of Lz,

we have just two controlling parameters Re and Lx to continue in.

3.1 Isolas

To begin we continue in Re, fixing Lx = 3π, producing the results shown in Figure 6. We

observe a closed isola in the (Re,D) plane, in sharp contrast to the homoclinic snaking

observed with the first localized solution. We also note that the solution is relatively

constant over a wide range of Re. Such closed isolas have also been observed in studies of

localized solutions in the Swift-Hohenberg equation [Burke and Knobloch(2006)]. Recalling

that for the previous localized solution higher values of D were attained by approximately
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Figure 7: A plot of the averaged energy as a function of z for three points on the Lx = 3π
isola. The solution with the lowest value of Re is plotted in red, the highest value of Re in
black, and the intermediate value of Re in blue.

fixing the maximum size of the velocity perturbations, but expanding the solution to fill

more of the domain, we now plot the energy in the velocity fluctuations, averaged in the

x and y-directions, as a function of z at three points on the closed curve; the two extreme

values of Re and one intermediate value. This is shown in Figure 7. We see that the

structure of the solutions remains relatively constant, while changes in D are achieved

by varying the amount of energy in each of the oscillations. This is in agreement with

the observations of isolas in the Swift-Hohenberg equation in [Burke and Knobloch(2006)],

which show that around an isola the number of oscillations in the solution is unchanged.

We can also compute the spectrum of the solution at a selection of points, finding that

at all points the solution has a low number of unstable directions. This is important for

the dynamical systems view of turbulence since points in phase space with few unstable

directions may be approached more often than ones with many unstable directions.

Next we continue the original localized solution in Lx, producing the results in Figure 8.

This time we do not observe a closed curve, instead seeing a relatively constant value of D
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Figure 8: A plot of the bifurcation diagram generated by continuing in Lx with Re = 400.

over a range of Lx with the two ends of the curve moving towards higher values of D. Our

previous continuation in Re with Lx = 3π had two values at Re = 400, corresponding to

the two points on the curve for Lx = 3π. As before, when we examine the flowfields along

the curve in Figure 8 we see relatively little change in the structure, with higher values of

D be attained by increasing the magnitude of the velocity fluctuations not increasing the

fraction of the domain the localized solution occupies.

Now we use the solutions found at different values of Lx to begin new continuations

in Re, shown in Figure 9. For Lx = 2.9π, 3π, 3.1π we see very similar behavior to before.

However, for Lx < 2.9π we see a region of higher curvature developing for low values of

Re. For these values of Lx we take the second solution at Re = 400, which exists at a

higher value of D, and continue in Lx. We discover that the reason for the change in

behavior around Lx = 2.9π is due to the existence of another solution branch, shown in red

in Figure 10. Continuing the new curve in one direction leads to a roughly constant value

of D extending to far higher values of Lx than previously observed. Extending the curve in

the other direction we see some curves before the solution branch rapidly moves to higher
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Figure 9: A plot of the bifurcation diagrams generated by continuing in Re for a range of
Lx values.

values of D.

3.2 Searching for snaking

So far we have seen no evidence of homoclinic snaking, but the existence of the new curve

for Lx ∈ [2.9π, 3.1π] demonstrates the existence of further curves in the (Re,D) plane, to

go with the isolas already observed. Choosing Lx = 2.9π we track this new curve, shown

in red in Figure 11. We observe dramatically different results, with the new curve showing

snaking like behavior and moving to much higher values of D in a relatively narrow range of

Re. Similar results are seen when continuing solutions from the new branch in the (Lx, D)

plane in Re. Fixing Lx = 4π and continuing in Re we produce the results seen in Figure 12.

As in Figure 11 the curve proceeds to high values of D in a narrow range of Re, exhibiting

some bends. To test if this could be another instance of homoclinic snaking we examine the

flow fields. Figure 13 shows the averaged energy as a function of z for three points along the

Lx = 4π curve. We observe that, while there is some evidence of additional structure being

added at the edge of the localized solution, as before the higher values of D are achieved

by increasing the magnitude of the velocity fluctuations. A similar investigation of the

flowfields along the Lx = 2.9π curve gives the same result.
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Figure 10: A plot of the bifurcation structure in the (Lx, D) plane, for Re = 400, with the
new branch included.

3.3 Bifurcation behavior summary

To summarize we have found that homoclinic snaking is not a feature of all localized so-

lutions of plane Couette flow. The bifurcation behavior shown by our localized solutions

very different to that observed in [Schneider et al.(2010b)]. For some continuations in Re

we see closed curves, as in some continuation studies of the Swift-Hohenberg equation

[Burke and Knobloch(2006)]. The physical properties of the solutions also vary consider-

ably. When compared with the first localized solution, our localized solution exists at much

lower dissipation values, and remains there for a wide range of Re and Lx. Our solutions

also retains the property of having a relatively low number of unstable directions, and im-

portant property for the dynamical systems view of turbulence. Several branches at higher

values of D are still open for further continuation, and these may provide a route to the

values of D seen with the previous solution. Having discussed the bifurcation behavior

for localized solutions, we next discuss further work aimed at finding additional localized
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Figure 11: A plot of the (Re,D) bifurcation diagram for Lx = 2.9π, showing the two distinct
branches.

solutions.

4 Symmetry breaking during localization

The localized solution discussed in this project is just the second one discovered, despite

the existence of many solutions in spanwise periodic domains. We will now address our

second goal of investigating how additional localized solutions could be generated. New

work examining the fronts between laminar and turbulent regions has shown how more

localized solutions could be constructed using the many periodic solutions currently known

[Gibson and Brand(2011)]. We now examine the symmetries of both localized solutions,

and try to find general relations between these and the symmetry groups of the periodic

parent solutions. We hope that this will provide useful guidance when attempting to find

future localized solutions, and we also make a prediction for the number of localized versions

of each periodic solution.

First we define the symmetry groups for the exact solutions using the notation in
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Figure 12: Bifurcation diagram generated by continuing in Re with Lx = 4π.

−5 0 50

1

2

3

4

5x 10−3

z

Av
er

ag
ed

 e
ne

rg
y

Figure 13: A plot of the averaged energy as a function of z for three points on the Lx = 4π
curve.
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[Gibson et al.(2009)]. Plane Couette flow in a periodic box allows symmetries of the form

[u, v, w](x, y, z) = [sxu, syv, szw](sxx+ τxLx, syy, szz + τzLz). (3)

Here sx, sy and sz define the reflection symmetries in x, y and z respectively, with τx and

τz setting the shift in the x and z directions. An individual symmetry can then be fully

described using the notation

(1, sx, sy, sx; τx, τz).

Obviously solutions can satisfy multiple symmetries, which themselves can be combined to

form a symmetry group for the solution. We can analyze the symmetries of solutions by

investigating the generators of the symmetry groups.

First we examine the localized solution presented in [Schneider et al.(2010a)], which is

a localized version of the first periodic solution found in [Nagata(1990)]. The symmetry

group for the periodic solution has two generators,

(1, 1, 1,−1; 0.5, 0)

(1,−1,−1,−1; 0, 0.5)

This led to two localized solutions, one a strict equilibrium, the other a travelling wave.

Each of these solutions has a symmetry group with a single generator,

(1, 1, 1,−1; 0.5, 0)

for the travelling wave, and,

(1,−1,−1,−1; 0, 0)

for the equilibrium.

Next we turn to the localized solution studied in this work. In this case the periodic

parent has a symmetry group with three generators,

(1,−1,−1, 1; 0, 0)

(1, 1, 1,−1; 0, 0.5)

(1, 1, 1,−1; 0.5, 0)
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This leads to a localized solution that has a symmetry group with just two generators,

(1,−1,−1, 1; 0, 0)

(1, 1, 1,−1; 0, 0)

From this limited set of examples we now extrapolate some general rules. The localiza-

tion process breaks one of the symmetry generators of the periodic parent solution, leading

to a symmetry group with one fewer generator. Any shift in the Lz direction is eliminated.

In [Schneider et al.(2010a)] two solutions were found, corresponding to breaking each of

the generators of the Nagata solution in turn. For the new solution discussed here we have

broken a single generator, allowing us to tentatively predict the existence of two more lo-

calized versions of the periodic solution, corresponding to breaking the other two periodic

generators. Even more speculatively we can predict the existence of three more, giving six

in total, if localized solutions can be formed from any subgroup of the periodic symmetry

group.

5 Discussion

In this project we analyzed the physical flowfields and bifurcation structure for a localized

exact solution for plane Couette flow. By making comparisons with the first such solution

we can begin to determine what behavior is generic for localized solutions of plane Couette

flow, and what is specific to individual solutions.

The previous localized solution showed a distinctive bifurcation behavior, identical in

form to the homoclinic snaking seen in the Swift-Hohenberg equation. Despite an extensive

parameter search we can find no evidence for homoclinic snaking in this solution, suggesting

that this bifurcation structure is not an essential feature of all localized solutions. However,

we did find closed curves in the bifurcation diagram, similar to the isolas observed in some

studies of the Swift-Hohenberg equation. In contrast to the previous study, for which

solutions existed in a narrow range of Re, we found relatively unchanged solutions over

a wide range of Re and Lx. The solutions presented in this study also exist at far lower

dissipation values than previous observations.
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To conclude, localized solutions for plane Couette flow can experience a wider range of

behavior than that reported in [Schneider et al.(2010b)]. Solutions can exist over a wider

range of Re, Lx and D then previously observed, and do not necessarily show the distinctive

homoclinic snaking bifurcation behavior. However, there may still be a link to the Swift-

Hohenberg equation, as shown by the isolas observed in this study.
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