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1 Introduction

Climate variability at decadal time scales has been an emerging area of interest in recent
years. Evidence reported in [1, 2, 3] suggests that the North Pacific ocean-atmosphere system
exhibits variability of an oscillatory nature at the time scale of a few decades; it is hypothesized
that the ocean-atmosphere coupling plays an important role in the generation of this decadal
variability. Similar oscillatory modes have also been observed in the Atlantic [4]; however
in this case the existence of a strong thermohaline circulation makes unclear the role of the
wind-driven flow in the generation of the oscillations.

The North Pacific decadal oscillations have also been found in various coupled GCMs
(Global Climate Models) (e.g. [5, 3]). The sea surface temperature anomalies 1) are large-
scale, extending almost across the entire Pacific basin, and 2) have dipolar structure, with the
positive and the negative anomalies flipping signs every half-period.

In this work, an idealized model for the large-scale, coupled dynamics of the mid-latitude
wind-driven oceanic circulation and the atmosphere has been derived. In this model, the ocean
and the atmosphere are coupled through wind stress and heat fluxes at the air-sea interface.
The equations are based on global heat and global momentum balances, along the same lines as
in [6]. However, the model is significantly simpler than in [6], and allows a good understanding
of the physics involved. In particular, it is able to capture the sustained oscillations at decadal
time scales, consistent with the above mentioned observations and numerical models.

2 The Model

The geometry of the model consists of an oceanic box with 0 < x < Lx as the zonal coordinate,
0 < y < Ly as the meridional coordinate and −H < z < 0 as the vertical coordinate. The
atmospheric box representing the troposphere has the same meridional extent.

In what follows the heat and mechanical balances of the atmospheric and oceanic parts are
considered, which lead to the set of equations that describe the model.

2.1 Oceanic Mechanical Balance: Potential Vorticity Equation

The quasi-geostrophic equivalent barotropic potential vorticity equation on a mid-latitude beta
plane is considered. After integrating in z and neglecting the relative vorticity term (whose



contribution is small for large-scale motions), the ocean flow is governed by,
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Here, ψ represents the depth averaged streamfunction, R is the deformation radius, c = βR2

is the speed of the long Rossby waves, ρw is the sea-water density, τs represents the zonal
component of the atmospheric surface wind stress and δ << Lx is the width of the western
boundary layer.

Taking τs to be constant in x, τs = τ̄s(y, t), where the overbar stands for zonal average,
and imposing the boundary conditions ψ = 0 at x = 0, Lx, the solution of (1) can be expressed
in the form:

ψ = ψI(x, y, t) − ψI(0, y, t) exp(−x/δ) +O(δ). (2)

Here, ψI is the depth-averaged streamfunction in the interior and is determined by the wind-
stress curl through the relation,
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Therefore, the zonally averaged meridional velocity in the interior has the form:
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Note that v̄I at a given time t, is fully determined by the wind stress curl at the times from
t−Lx

c
to the actual time t, where Lx

c
represents the time that it takes a Rossby wave to cross the

basin. This equation represents the baroclinic response of the ocean to an imposed wind-stress
through propagation of Rossby waves from the eastern boundary. In this idealized formulation,
the time that it takes the ocean to adjust to a given wind stress is given by the Rossby wave
crossing time Lx

c
and is of the order of ten years. If the wind stress undergoes changes at shorter

time scales, the ocean-atmosphere system finds itself in a dynamical situation in which the
ocean is continuously trying to be in Sverdrup balance with the overlying wind. In doing so,
Rossby waves are continuously being generated in the eastern boundary and moving westward
carrying with them information about the wind that was blowing at the times they were
formed. Therefore, this is the equation that contains the memory of the system.

The following section details how to determine this wind-stress curl, ∂τ̄s

∂y
.

2.2 Atmospheric Momentum Balance: Zonal Momentum Equation

The natural way of representing large-scale, mid-latitude, atmospheric dynamics in a simple
fashion, is to consider the modification by the baroclinic eddies of the mean zonal flow. Specif-
ically, we consider the zonally averaged x-momentum equation, which for quasi-geostrophic
motions on a mid-latitude beta plane is given by,
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The overbar stands for the zonal average and the prime stands for the departure from the
average, fo and ρa are the Coriolis parameter and atmospheric density respectively and the
last term represents vertical transfer of zonal momentum by the stress, τ̄ . Integrating over the
vertical direction and assuming steady equilibrium, one finds:

−

∫

∞

0
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∂(u′v′)

∂y
dz = τ̄s. (6)

This equation represents the zonally and vertically averaged momentum budget for the at-
mosphere. The zonally averaged wind stress is balanced by the horizontal convergence of
momentum flux by the eddies in the entire troposphere.

Using the definition of quasi-geostrophic potential vorticity,
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ρa

∂

∂z
(
ρa

S
θ) (7)

where q and θ represent potential vorticity and potential temperature respectively and S is
the static stability of the atmosphere which is taken to be constant for simplicity, it is possible
to relate the zonally averaged eddy fluxes of momentum, heat and potential vorticity. The
relation between these three fluxes is given by,
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where ~FE−P is the Eliassen-Palm flux. This relation allows the wind stress curl to be expressed
in terms of θ and q, which, unlike the momentum u, are conserved following the particle
trajectories. This is a desired property when considering the parameterization of eddy fluxes.

2.2.1 Parameterization of Eddy Fluxes

The classical way of parameterizing eddy fluxes uses an analogy with molecular diffusion,
considering them proportional to the mean gradients. Thus, the eddy flux divergence is pa-
rameterized as:

∂(q′v′)

∂y
= −k

∂2q̄

∂y2
(9)

∂(θ′v′)

∂y
= −k

∂2θ̄

∂y2
(10)

where the parameter k represents the eddy diffusivity, i.e. the rate of change of mean square
displacement of θ̄ and q̄ by baroclinic eddies. In the present model this parameterization is
simplified by considering relaxation to the planetary average, that is,
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∂y
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∂(θ′v′)
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The subscript “A” stands for the meridional average and ν is the eddy relaxation rate. Fol-
lowing [7] and having in mind the fact that eddy activity is higher near the surface, ν is taken
of the form: ν = νo exp(−z/d). For the purpose of the present work, this parameterization is
qualitatively similar to the classical diffusion analogy, while being simpler.

Because large scales are the focus of this work, relative vorticity is neglected compared to
planetary vorticity and vortex stretching, similarly as in the ocean momentum budget.

Finally, considering the change with height of the atmospheric density ρa = ρo exp(−z/D),
and defining the effective eddy scale-height: 1
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The boundary conditions are no net wind stress:
∫ Ly

0
τ̄s = 0, in addition to τ̄s = 0 at

y = 0, Ly. The requirement of no net wind stress determines the constant d. The wind stress
curl as expressed in the previous equation depends on the zonally average surface potential
temperature θ̄s. Finding an expression for this variable is, therefore, the next step in the
derivation of the model.

2.3 Atmospheric Heat Balance: Potential Temperature Equation

The zonally averaged thermodynamic energy equation for the atmosphere is:
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where Cpa represents specific heat and Q̄ is the diabatic heat flux. Since the typical time
scales of atmospheric potential temperature changes, in response to variations in the sea surface
temperature, are of the order of weeks, and therefore, much shorter than the typical time scales
of evolution of the latter (of the order of years), it is reasonable to neglect the time derivative of
θ̄ and assume that the atmosphere adjusts instantaneously to the ocean. Integrating vertically,
the remaining equation gives a balance between the horizontal heat flux divergence by eddies
in the troposphere and the net diabatic heat fluxes at the vertical boundaries, that is,
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∫

∞

0
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∂(θ′v′)
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dz = F − rλ(θ̄s − T̄s). (15)

Here F represents the net radiative incoming flux at the top of the atmosphere and it is given
by the difference between the net incoming solar radiation, FSOLAR and the outgoing long-
wave radiation, FLONG−WAV E . The first one is a prescribed function of latitude chosen to
be,

FSOLAR = Fo + F̃1(y) = Fo + F1cos(
πy

Ly
), (16)

the latter is estimated by linearizing the gray Stefan-Boltzmann law and is given by,

FLONG−WAV E = A+Bθ̄s. (17)



The second term of the right hand side of (15) denotes the exchange of heat flux at the
air-sea interface. It is a typical bulk formulae equation which represents relaxation to the
zonally averaged sea surface temperature T̄s with λ being the bulk transfer coefficient and r
being the fraction of the earth’s surface that is covered by oceans.

Using the eddy flux parameterization in (12), the final expression for the zonally averaged
atmospheric potential temperature is,

(θ̄s − θ̄sA) = (1 − a)

(

(T̄s − θ̄sA) +
F̃1

rλ

)

(18)

where 0 < a < 1, is given by a = 1 −
rλ

Cpaνoρode+B+rλ
and contains the contribution from the

baroclinic eddies.
The next and final step needed to close the system is to find an expression for the sea

surface temperature as a function of the known variables.

2.4 Oceanic Heat Balance: Upper Ocean Heat Content Equation

It is assumed, for simplicity, that the temperature T of the model oceanic layer is independent
of depth (T = Ts). The vertically integrated heat balance equation is:
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Where ε is the heat diffusivity coefficient and (u, v) is now the oceanic wind-driven velocity.
Note that, except from the western boundary layer balance, this is the only equation where a
viscous or diffusive term has been introduced explicitly. In the absence of this term, the warm
waters that are transported poleward by the subtropical gyre and the cold waters that are
transported equatorward by the subpolar gyre would meet somewhere in the middle forming
a discontinuous front. Therefore, this term, represents the only way of direct communication
between the gyres which in the present formulation mostly “feel” each other through the
atmosphere.

Since the atmospheric model only “sees” the zonally averaged oceanic temperature, the
natural way to proceed is to separate T into its zonally averaged part, T̄ and its departure from
the average, T ′. The upper ocean heat content (19) can then be split into the two equations:
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Here (18) has been used to write θ̄s as a function of T̄ , and a new variable T̃ has been introduced
for convenience. It represents the zonally averaged oceanic temperature after removing the
meridionally averaged value of the atmospheric surface potential temperature, so that T̃ =
T̄ − θ̄sA.



The first thing to notice is that the relaxation rate for T̃ is smaller than that for T ′ by
the factor a(< 1). This is because the atmospheric potential temperature depends on T̃ not
on T ′. Therefore, on the time scales over which T̃ changes, T ′ rapidly reaches equilibrium.
The next step is to look for an expression that diagnostically relates T ′ to T̃ . In the limit
v

Ly
<< λ

CpaρwH
, the term v ∂T̃

∂y
balances the relaxation term −λ

CpwρwH
T ′. This approximation is

not strictly valid in the range of parameters used later, however it is qualitatively correct.
This diagnostic relation allows to express the advective term in the T̃ equation in the

following way,
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so that the effect of meridional advection by the gyres on the zonally averaged temperature is
down mean gradient temperature diffusivity proportional to v2.

Moreover, it can be shown that the largest contribution to v2 comes from the western
boundary layer velocity, vBL, so that at first order in δ, v2 can be expressed as,

v2 =
1

Lx

∫ Lx

0

dx(vI
2 + vBL

2 + 2vIvBL) ' v2
BL '

v̄2
ILx

2δ
. (23)

The final expression for the evolution of the oceanic temperature is,
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with boundary conditions of no normal heat flux, ∂T̃
∂y

= 0 at y = 0, Ly. Here ∆ = 2δ
Lx

.
This last equation, together with (4), (13) and (18) compose the closed set of equations of

the model.

2.5 Final set of equations

In order to simplify the notation, the following redefinition of variables will be used from here
on: T = T̃ , θ = θ̄s − θ̄sA, τ = τ̄s, and v = v̄I . The system of equations is non-dimensionalized
using,
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The set of equations in their non-dimensional form are given by,

θ = (1 − a)[T + f(y)] (30)
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where to is the non-dimensional delay time given by the ratio of the Rossby wave crossing time
and the oceanic temperature decay time, and the asterisks have been dropped.

Combining (30), (31) and (32) into a single equation for the velocity v as a function of the
temperature T , one finds,

v = −(y −
1

2
) − γ(1 − a)f(y) − γ(1 − a)

1

to

∫ t

t−to

T (y, t′)dt′. (39)

This relation, given v at t = 0, can also be expressed as:

∂v

∂t
= −γ(1 − a) (T (y, t) − T (y, t− to)) (40)

The final model set of equations is reduced to the equations (33) and (39). The advantages
of this formulation are:

• Simplicity (only one dimension in space, and only two dependent variables, v and T )

• No need to resolve the boundary layer explicitly
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Figure 1: Latitudinal dependence of various physical magnitudes at a given time
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Lx = 0.825 × 107m ρo = 1.25kg m−3 A = 200Wm−2 S = 5 × 10−3 K m−1

Ly = 107m ρw = 1000kg m−3 B = 2.475Wm−2K−1 β = 2 × 10−11m−1s−1

H = 103m Cpa = 1000JK−1kg−1 F1 = 125Wm−2 fo = 10−4s−1

∆ = 0.015 Cpw = 4000JK−1kg−1 λ = 23Wm−2K−1 R = 2.8 × 104m
D = 104 m νo = 10−6s−1 r = 0.3 σ = 3 × 10−3

Table 1: Parameter values

3 Results and Discussion

The system of equations presented in the previous section is solved numerically using Crank-
Nicholson scheme for the integration of the temperature equation, centered differential scheme
for the spatial derivatives and the trapezoidal rule to solve the integral in time for the velocity
equation. At each time step, t+dt, the knowledge of the temperature field at times from t− to
to t is required. The radiative equilibrium temperature is used as the initial guess and it is
assumed that the previous history of the temperature field, when unknown, is constant in time
and equal to the initial condition.

A Hopf bifurcation is found when moving in the parameter space increasing the importance
of the non linearity with respect to the diffusivity. This corresponds to an increase in the ratio
µ
σ

in (33). The results presented below have been obtained at a point in the parameter space
near the bifurcation point and inside the region of sustained oscillations.

A list of the parameter values used in this calculation is presented in table 1.
Figure 1 shows a snapshot of the oceanic temperature and its meridional gradient,of the

wind-driven oceanic velocity and of the oceanic heat flux, as well as the atmospheric poten-
tial temperature and wind stress fields as a function of latitude for a given time. They all
have realistic values, although the equator to pole oceanic temperature difference, the oceanic
velocity and the wind stress are weaker than observed. A contour plot of the corresponding
oceanic streamfunction is presented in figure 2. Note that in this figure (and from here on),
the displayed meridional extent is the central region between the two minima of wind stress,
where the subpolar and subtropical gyres are enclosed.

3.1 The oscillations

The evolution of the oceanic temperature and velocity fields during about 3/2 of an oscillation
period is presented in figure 3. Their corresponding anomalies are shown in figure 4. The basic
features of the oscillations are:

• They are decadal oscillations with a period of about 40 years (slightly more than twice
the delay time (17 years)).

• They are large-scale, extending over most of the basin.
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Figure 3: Time evolution of oceanic temperature and velocity
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Figure 4: Time evolution of oceanic temperature and velocity anomalies
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Figure 6: Time evolution of oceanic meridional temperature gradient and heat flux anomalies



• They are small in amplitude, with a root meansquare variance of about 1% in the oceanic
temperature and about 10% in the oceanic velocity.

• They are characterized by temperature anomalies, which are antisymmetric about the
zero wind stress curl line, and which flip signs in each phase of the oscillation.

• The oceanic temperature and velocity fields are 90 degrees out of phase.

Figure 5 shows the time evolution of the temperature and the velocity anomalies (normal-
ized by their mean values), at a fixed latitude (y = 3500km) in the subtropical gyre. Consider
the point in time in which there are no temperature anomalies and the circulation in the gyres
is weakest. This corresponds to point A in figure 5. As time goes on, the subtropical gyre be-
comes warmer while the subpolar gyre becomes colder,(point B in figure 5). As a consequence,
the meridional temperature gradient is reinforced, which causes an increase in the wind-stress
curl. If the ocean responded instantaneously, the resulting stronger circulation in the gyres
would advect temperature opposing to the temperature gradient anomaly until equilibrium is
reached. However, in the presence of a lag time, the velocity in the gyres depends not only on
the actual, increased wind-stress but also on the wind-stress which was forcing the ocean in
the past 17 years. At that time, there was a negative temperature anomaly in the subtropical
gyre and a positive one in the subpolar gyre and therefore a reduced wind-stress curl. The
reduced velocity allows the temperature anomaly to grow until about 10 years later, when the
effect of the increased temperature spins up the gyre. Thus, it is not until some years, that the
oceanic circulation anomaly starts changing sign in response to the variations in temperature
(point C in figure 5). As the circulation becomes stronger, it begins to reduce the temperature
anomaly and eventually changes its sign. Then, the second phase of the oscillation starts,
(point D in figure 5).

Note that the storage term in the oceanic temperature equation plays an important role. In
its absence an initial perturbation in meridional distribution of oceanic temperature would be
“instantaneously” damped through heat transport and fluxes at the air-sea interface, arresting
the oscillations. Also note that this would not be the case if, in the delay equation (40), the
temperature modes at time (t− to) had a larger amplitude than those at time t.

The evolution of the oceanic meridional temperature gradient and of the oceanic heat flux
anomalies are shown in figure 6.

4 Conclusions and Future Work

• An idealized model for the coupled large-scale dynamics of the midlatitude atmosphere
and the wind-driven ocean circulation has been derived.

• In this model, the ocean and the atmosphere are coupled through wind stress and heat
fluxes at the air-sea interface.



• The formulation can be reduced to two equations. One describes the time evolution of
the oceanic temperature and the other represents the transient oceanic velocity response
to the wind-stress curl.

• Sustained oscillations at decadal time scales have been found which resemble those found
in the observations and in the results of more comprehensive numerical models. They
have small amplitude and large-scale meridional extent.

• These oscillations owe their existence to the time lagged response of the ocean to changes
in the wind stress curl associated with Rossby wave propagation. An adjustment time
of the oceanic temperatures to changes in the circulation is also required.

Areas of future work could include:

• Further exploration of the parameter space.

• Analysis of the solutions in comparison with observations as well as with results from
coupled GCMs.

• Addition of an asymmetric component in the radiative forcing. Can we obtain chaotic
behavior?.

• Multiple equilibria?. Equations (33) and (39) can be simplified further by considering
the spatial extension in Fourier series of T and v and retaining only the mode that is
directly forced by radiation. As a result, the system is reduced to two ordinary differential
equations in time. A calculation of the steady states of this system for different parameter
values led to multiple equilibria for sufficiently small values of ∆, i.e. for the case of a
narrow western boundary layer. An exploration of the possible existence and causes of
multiple equilibria in the non-truncated system could be a next step.

• Teleconnections. The mechanisms by which the ocean basins communicate with each
other through the atmosphere are still not well understood. The model presented here
can be expanded to represent two ocean basins (which would have different delay times)
so that it can be used to explored these mechanisms.
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