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1 Introduction

The water vapor channels on the United States’ GOES 10 and GOES 8, the European
METEOSAT, and the Japanese GMS geostationary satellites measure long-wave radiation
of wavelength 5.7–7.1 µm. Images at these wavelengths do not show any surface features
of the Earth, since the radiation emitted by the surface at 5.7–7.1 µm is entirely absorbed
by low-level atmospheric water vapor. Rather, they reveal planetary and synoptic scale
variations of water vapor in the middle and upper troposphere.

In regions of subsidence, where the large-scale vertical motion is downward, the tropo-
sphere becomes filled with dry air from the upper troposphere, and the 5.7–7.1 µm radiation
received by the satellite comes primarily from the relatively warm lower troposphere. When
the large-scale vertical motion is upward, the cold upper troposphere becomes saturated (or
nearly so) with humid air from the surface, and the 5.7–7.1 µm radiation seen by the satel-
lites is the cold water vapor in the upper troposphere. In this way the “equivalent black
body temperature” of the 5.7–7.1 µm radiation is a proxy for the vertical motion field. An
empirical connection between water vapor and vertical motion is confirmed in [9] and [11],
in which a correlation is found between convergence of the mean circulation of the upper
troposphere (implying subsidence, by continuity) and dry regions in the satellite images.

In the absence of tropical storms, water vapor images of the low latitude East Pacific are
often dominated by two features, the moisture rich Intertropical Convergence Zone (ITCZ)
and “black holes,” vast regions of low humidity. As shown in Figures 1-3, images taken
during the northern hemisphere summer, the ITCZ forms a band of convection across the
thermal equator in the East Pacific, centered at approximately 80 N. North and south of
the ITCZ are the arid regions, centered, in Figure 1, at 1450 W, 160 N and 1300 W, 80 S.
The black hole in the southern (winter) hemisphere is comparable in size to the continental
United States. In the far west we see a second region of deep convection over Indonesia,
associated with the warm La Nina West Pacific.

We seek to explain the shape, particularly the north-south and east-west asymmetries,
the intensity, and the time evolution of these East Pacific water vapor black holes as a
product of the circulation driven by deep convection in the ITCZ. In the spirit of this
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Figure 1: GOES 10 Water Vapor Image, July 27, 2001 1800z. The longitude and latitude
interval is 150. The center meridian is 1350 W, and crosses the equator at the center of the
image. Green, yellow, and red indicate areas where the upper troposphere is rich in moisture
(increasing from green to red). Blue, purple, and black colors indicate an increasingly dry
upper troposphere.

summer’s GFD program, we have built a conceptual model of the tropical atmosphere to
aid us.

1.1 The Basic Model

We begin with stratified β-plane atmosphere extending to infinity in both x and y. We
next linearize about a basic state at rest and perform a vertical mode transformation, as
in [1]. This separates the motion of the atmosphere into baroclinic modes, each obeying an
independent set of equations equivalent to the linearized shallow water system.

We next assume that the latent heat release excites only the first baroclinic mode. The
vertical profile of the first mode takes a form similar to a cosine wave from 0 to π. Fluid
on the bottom flows opposite that on top, connected by a smooth profile with no motion at
a node near the midpoint of the atmosphere. We can view the shallow water equations as
prescribing flow at the base of the atmosphere, and then use the sinusoidal vertical profile
to complete the picture. Deep convection in this simple system has the effect of transferring
mass from the lower layer to the upper layer. We thus prescribe a mass sink in our lower
layer to model the effect of the ITCZ, or any other regions of deep convection. Given our
forcing, we solve for the resulting subsidence field, and hence the water vapor field, to find
the black holes.
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Figure 2: GOES 10 Water Vapor Image, July 28, 2001 1800z

Figure 3: GOES 10 Water Vapor Image, July 29, 2001 1800z
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We are following in the footsteps of A. E. Gill, who with others studied this model
extensively in the 1980’s in [2], [5], and [8]. We do not, however, make the long wave
approximation, following rather the original eigenvalue formulation of Matsuno [7] in 1966,
later developed in [12], where the time dependent evolution of tropical circulation around the
amazon basin was studied. In contrast to [12], however, we attempt to include dissipation
and Newtonian cooling in our model. We are thus applying a tried and true theory, seeking
to focus a new application; the formation of water vapor black holes.

2 Theory

2.1 The Linearized Equatorial β-Plane

Consider the motions of an incompressible, forced, shallow water fluid on the equatorial
β-plane. In our model, this shallow water layer corresponds to the lower layer in the first
baroclinic mode. The governing equations, linearized about a resting basic state, are

∂u

∂t
− βyv + g

∂h

∂x
= −εu, (1)

∂v

∂t
+ βyu + g

∂h

∂y
= −εv, (2)

∂h

∂t
+ h̄

(

∂u

∂x
+

∂v

∂y

)

= −εh − S, (3)

where u and v are velocity components in the x- and y-directions, respectively, h is the
deviation of the fluid depth from the constant mean depth h̄, βy is the Coriolis parameter,
ε is the constant Rayleigh friction and Newtonian damping coefficient, and S(x, y, t) is
the lower layer mass sink. Before solving (1)–(3) it is convenient to put the problem in

nondimensional form. We define c = (gh̄)
1

2 as the constant gravity wave speed based on

the mean depth h̄. As a horizontal length scale let us choose L = (c/β)
1

2 . Similarly, let

us choose as a unit of time T = (βc)−
1

2 . Data from the ITCZ in the Pacific (specifically
the Marshall Islands) and in the Atlantic [1] suggests that, for the first baroclinic mode,
c ≈ 7.5 × 101 m/s and h̄ ≈ 5.7 × 102 m, so that L ≈ 1.8 × 103km and T ≈ 0.28 day. For
now, we choose c as the unit of speed and h̄ as the unit of depth, so that (1)–(3) reduce to
the nondimensional form

∂u

∂t
− yv +

∂h

∂x
= −εu, (4)

∂v

∂t
+ yu +

∂h

∂y
= −εv, (5)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
= −εh − S, (6)

where all the independent variables x, y, t, all the dependent variables u, v, h, the parameter
ε and the function S(x, y, t) are now nondimensional. The system (4)–(5) can also be written
in the more compact form

∂w

∂t
+ Lw = −εw − S, (7)
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where

w(x, y, t) =





u(x, y, t)
v(x, y, t)
h(x, y, t)



 , S(x, y, t) =





0
0

S(x, y, t)



 , L =





0 −y ∂/∂x
y 0 ∂/∂y

∂/∂x ∂/∂y 0



 . (8)

The potential vorticity (PV) principle associated with (4)–(6) is

∂q

∂t
+ v = −εq + yS, (9)

where

q =
∂v

∂x
−

∂u

∂y
− yh (10)

is the potential vorticity anomaly. The total energy principle associated with (4)–(6) is

∂

∂t

[

1
2

(

u2 + v2 + h2
)]

+
∂(uh)

∂x
+

∂(vh)

∂y
= −2ε

[

1
2

(

u2 + v2 + h2
)]

− hS, (11)

or, in integral form

∂

∂t

∞
∫

−∞

∞
∫

−∞

1
2

(

u2 + v2 + h2
)

dxdy = −2ε

∞
∫

−∞

∞
∫

−∞

1
2

(

u2 + v2 + h2
)

dxdy −

∞
∫

−∞

∞
∫

−∞

hSdxdy.

(12)
The energy principle suggests an inner product,

(f ,g) =

∞
∫

−∞

(f1g
∗
1 + f2g

∗
2 + f3g

∗
3)dy, (13)

given

f =





f1

f2

f3



 , g =





g1

g2

g3



 , (14)

where we use the ∗ symbol to denote the complex conjugate, anticipating work with complex
numbers. We have defined our inner product with respect to y in preparation for a Fourier
transform of our equations in x. We may now write our energy principle in more compact
form,

∞
∫

−∞

1

2
(w,w)dx = −2ε

∞
∫

−∞

1

2
(w,w)dx −

∞
∫

−∞

∞
∫

−∞

hSdxdy. (15)

2.2 The Matsuno Eigenvalue Problem

Our goal is to solve (7) for w(x, y, t) subject to a specified initial condition w(x, y, 0) and
mass sink S(x, y, t). By first solving the inviscid, unforced system,

∂w

∂t
+ Lw = 0, (16)
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our goal becomes easier. Let us search for solutions of the form u(x, y, t) = U(k, y)ei(kx−ωt),
v(x, y, t) = V(k, y)ei(kx−ωt), and h(x, y, t) = H(k, y)ei(kx−ωt), where k is the zonal wave
number and ω the frequency. Hence in our vector notation, we make the substitution

w(x, y, t) = K(k, y)ei(kx−ωt), (17)

where

K(k, y) =





U(k, y)
V(k, y)
H(k, y)



 , (18)

into (16). The substitution results in the eigenvalue problem,

−iωK + L̂K = 0, (19)

where

L̂ =





0 −y ik
y 0 d/dy
ik d/dy 0



 . (20)

The adjoint of L̂ with respect to the inner product (13) is the operator L̂† which satisfies

(L̂f ,g) = (f , L̂†g) (21)

for all f(y) and g(y) satisfying the boundary conditions, that is (f, g) < ∞. Our operator
L̂ is skew-Hermitian, as L̂† = −L̂, so that (21) becomes

(L̂f ,g) = −(f , L̂g). (22)

The skew-Hermitian property dictates that the eigenvalues of L̂ are purely imaginary, so
that we have a mathematical basis for looking for wave-like solutions (solutions where ω is
purely real). In addition, the eigenfunctions form a complete orthogonal set. Hence there
exist a set of eigenfunctions Ki that span all functions f satisfying (f, f) < ∞ with

(Ki,Kj) = 0 (23)

if i 6= j.
The eigenvalue problem was solved in [7], which revealed that (19) has bounded solutions

as y → ±∞, only if ω2 − k2 − k/ω is an odd integer, that is, only if

ω2 − k2 − k/ω = 2n + 1, (24)

with n = 0, 1, 2, . . . We shall denote the solutions of this cubic equation by ωn,r, since the
frequency will depend on the particular odd integer 2n + 1 chosen, and where the subscript
r = 0, 1, 2 indicates which of the three roots of the frequency equation we are discussing.

For n > 0 our dispersion relation (24) separates nicely into three modes: low frequency
Rossby waves which always propagate to the west (ω has the opposite sign of k) and high
frequency westward and eastward propagating inertial gravity waves. We have given the
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modes the subscripts 0, 1, and 2, respectively. Approximate values for the frequencies are
given below. They are more accurate for large n.

ωn,0 ≈
−k

k2 + 2n + 1
(25)

ωn,1 ≈ −(k2 + 2n + 1)
1

2 (26)

ωn,2 ≈ (k2 + 2n + 1)
1

2 (27)

For n = 0, (24) factors to (ω0,r +k)(ω2
0,r −kω0,r −1) = 0, yielding two mixed modes and one

forbidden mode ω0,1 = −k that cannot be normalized. The allowable waves have Rossby
and gravity wave character.

ω0,0 =
k − (k2 + 4)

2
(28)

ω0,2 =
k + (k2 + 4)

2
(29)

Let Kn,r denote the eigenfunction corresponding to rth root of (24) given n.

Kn,r = An,re
− 1

2
y2





−1
2(ωn,r + k)Hn+1(y) − n(ωn,r − k)Hn−1(y)

i(ω2
n,r − k2)Hn(y)

−1
2(ωn,r + k)Hn+1(y) + n(ωn,r − k)Hn−1(y)



 , (30)

where
An,r = π− 1

4 {2nn![(n + 1)(ωn,r + k)2 + n(ωn,r − k)2 + (ω2
n,r − k2)2]}−

1

2 (31)

is a normalization constant which assures that

(Kn,r,Kn,r) = 1 (32)

The Hermite polynomials Hn(y) are given by H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2,
H3(y) = 8y3 − 12y, · · · , with recurrence relation Hn+1(y) = 2yHn(y) − 2nHn−1(y).

We have not quite found all the solutions of (19), because it is possible to have the
trivial solution V = 0, but nontrivial U and H. If we expand (19) with V = 0 we find that

−ωU + kH = 0 (33)

yU +
dH

dy
= 0 (34)

−ωH + kU = 0. (35)

The first and third of these can be considered as two linear, homogeneous algebraic equations
for U and H. Requiring the determinant of the coefficients to vanish gives ω2 = k2, with
solutions ω = ±k. When ω = −k, H = −U and (34) becomes dU/dy = yU , with solution

U ∼ e
1

2
y2

. This solution must be discarded since it is not bounded as y → ±∞. When
ω = k, H = U and (34) becomes dU/dy = −yU , with solution U ∼ e−

1

2
y2

. This solution is
acceptable. Thus, we have found the additional (Kelvin wave) eigenfunction

K−1 = A−1e
− 1

2
y2





1
0
1



 , (36)

with corresponding eigenvalue (dispersion relation) ω−1 = k. The subscript −1 is chosen
because the dispersion relation ω = k is a solution of ω2 − k2 − k/ω = 2n+1 when n = −1.
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2.3 The Normal Mode Transformation

We may now use our eigenfunctions to decompose the forced, damped problem into normal
modes. First, we introduce the Fourier transform pair in x,

u(x, y, t) = (2π)−
1

2

∞
∫

−∞

û(k, y, t)eikxdk, (37)

û(k, y, t) = (2π)−
1

2

∞
∫

−∞

u(x, y, t)e−ikxdx, (38)

where k is the zonal wavenumber. Similar transform pairs exist for v(x, y, t) and v̂(k, y, t),
for h(x, y, t) and ĥ(k, y, t), and for S(x, y, t) and Ŝ(k, y, t). We can now write (7) as

∂ŵ

∂t
+ L̂ŵ = −εŵ − Ŝ, (39)

where

ŵ(k, y, t) =





û(k, y, t)
v̂(k, y, t)

ĥ(k, y, t)



 , Ŝ(k, y, t) =





0
0

Ŝ(k, y, t)



 , (40)

and L̂ is defined as in (20).
Our second task is to transform (39) in y. As our eigenfunctions Kn,r(k, y) satisfy the

orthonormality condition

(

Kn,r(k, y),Kn′,r′(k, y)
)

=

{

1 (n′, r′) = (n, r)

0 (n′, r′) 6= (n, r)
, (41)

we can set up a transform pair

ŵn,r(k, t) = (ŵ(k, y, t),Kn,r(k, y)) , (42)

ŵ(k, y, t) =
∑

n,r

ŵn,r(k, t)Kn,r(k, y). (43)

Taking the inner product of (39) with Kn,r(k, y), we obtain

(

∂ŵ(k, y, t)

∂t
,Kn,r(k, y)

)

+
(

L̂ŵ(k, y, t),Kn,r(k, y)
)

=

−ε (ŵ(k, y, t),Kn,r(k, y)) −
(

Ŝ(k, y, t),Kn,r(k, y)
)

∂

∂t
(ŵ(k, y, t),Kn,r(k, y)) −

(

ŵ(k, y, t), L̂Kn,r(k, y)
)

= −εŵn,r(k, t) − Ŝn,r(k, t)

dŵn,r(k, t)

dt
− (ŵ(k, y, t), iωn,rKn,r(k, y)) = −εŵn,r(k, t) − Ŝn,r(k, t)

dŵn,r(k, t)

dt
+ iωn,r (ŵ(k, y, t),Kn,r(k, y)) = −εŵn,r(k, t) − Ŝn,r(k, t)
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so that
dŵn,r(k, t)

dt
+ (ε + iωn,r)ŵn,r(k, t) = −Ŝn,r(k, t). (44)

Equation (44) is the transformation to spectral space of the original system (7) and has
solution

ŵn,r(k, t) = ŵn,r(k, 0)e−(ε+iωn,r)t −

∫ t

0
Ŝn,r(k, t′)e−(ε+iωn,r)(t−t′)dt′. (45)

When this spectral space solution is inserted into (43), we obtain the vector equation

ŵ(k, y, t) =
∑

n,r

ŵn,r(k)Kn,r(k, y), (46)

Taking the inverse Fourier transform of (46) and breaking back into component form, we
obtain our final physical space solutions

u(x, y, t) = (2π)−
1

2

∞
∫

−∞

∑

n,r

ŵn,r(k)Un,r(k, y)eikxdk, (47)

v(x, y, t) = (2π)−
1

2

∞
∫

−∞

∑

n,r

ŵn,r(k)Vn,r(k, y)eikxdk, (48)

h(x, y, t) = (2π)−
1

2

∞
∫

−∞

∑

n,r

ŵn,r(k)Hn,r(k, y)eikxdk. (49)

According to (47) – (49) the general solution of our initial value problem consists of a
superposition of normal modes. The superposition involves all zonal wavenumbers (integral
over k), all meridional wavenumbers (sum over n), and all wave types (sum over r).

It should be noted that typical superpositions of many normal modes result in spatial
patterns which differ greatly from individual normal modes. We found that the wn,r decay
exponentially with n for all choices of k. Thus, given a specified degree of accuracy, we can
select an N so that the partial sum of all modes n < N meets the requirement. In general,
we found that N = 200 gave very good results.

It was also necessary to perform the Inverse Fourier Transform via a numeric approxi-
mation to the integral. A simple mid-point rule numeric integration was sufficient.

2.4 Forcing

We consider cases where the time evolution of the forcing is separable from its spatial
dependence.

S(x, y, t) = (πab)−1e−x2/a2

e−(y−y0)2/b2S̃(t), (50)

where y0 is the center of the Gaussian shaped mass sink and a and b control the spatial
extent in x and y. The factor (πab)−1 has been included so that

∞
∫

−∞

∞
∫

−∞

S(x, y, t)dxdy = S̃(t), (51)
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i.e., the rate of total mass removal is independent of the choices of a and b.
The Fourier transform of this forcing is

Ŝ(k, y, t) = (πab)−1(2π)−
1

2 e−(y−y0)2/b2S̃(t)

∞
∫

−∞

e−x2/a2

e−ikxdx (52)

= 2−
1

2 (πb)−1e−(y−y0)2/b2e−
1

4
k2a2

S̃(t). (53)

Then, using (42), we obtain

Ŝn,r(k, t) =
(

Ŝ(k, y),Kn,r(k, y)
)

=

∞
∫

−∞

Ŝ(k, y, t)Hn,r(k, y)dy

= 2−
1

2 (πb)−1e−
1

4
k2a2

S̃(t)

∞
∫

−∞

e−(y−y0)2/b2Hn,r(k, y)dy

= 2−
1

2 (πb)−1e−
1

4
k2a2

An,rS̃(t)

·

∞
∫

−∞

e−(y−y0)2/b2e−
1

2
y2 [

−1
2(ωn,r + k)Hn+1(y) + n(ωn,r − k)Hn−1(y)

]

dy.

From [3] we have

∞
∫

−∞

e−(y−y0)2/b2e−
1

2
y2

Hn(y)dy =

(

2πb2

2 + b2

)
1

2
(

2 − b2

2 + b2

)
n
2

e−y2
0
/(2+b2)Hn

(

2y0

(4 − b4)
1

2

)

(54)

for 0 < b < 2
1

2 . (For b > 2
1

2 , there exists a recursion formula to solve the integral, but the
modulus of the forcing term will increase with n, making for poor convergence.) Utilizing
(54), we finally obtain

Ŝn,r(k, t) = π− 1

2 An,r(2 + b2)−
1

2 e−
1

4
k2a2

e−y2
0
/(2+b2)S̃(t) (55)

·

{

−1
2(ωn,r + k)

(

2−b2

2+b2

)
n+1

2

Hn+1

(

2y0

(4−b4)
1
2

)

+ n(ωn,r − k)
(

2−b2

2+b2

)
n−1

2

Hn−1

(

2y0

(4−b4)
1
2

)}

,

for all modes with the exception of the Kelvin wave, which takes a similar (and simpler)
form.

To focus on the time dependence, (55) can be viewed as a function S̆n,r of n, r, k, a,
and b multiplying the time dependent part,

Ŝn,r(k, t) = S̆n,r(k)S̃(t). (56)

If we separate ŵn,r(k, t) = w̆n,r(k)w̃n,r(t) also, (44) yields,

w̆n,r(k)

(

dw̃n,r(t)

dt
+ (ε + iωn,r)w̃n,r(t)

)

= −S̆n,r(k)S̃(t) (57)
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Figure 4: S̃(t)

We can now take w̆n,r(k) = −S̆n,r(k), leaving

dw̃n,r(t)

dt
+ (ε + iωn,r)w̃n,r(t) = S̃(t), (58)

which has solution, following (45),

w̃n,r(t) = e−(ε+iω)t





t
∫

0

e(ε+iω)t′ S̃(t′)dt′ + w̃n,r(0)



 . (59)

If S̃(t) converges to a steady value, S̃, the solution will converge to the steady state solution,
where

w̃n,r(t) =
S̃

(ε + iω)
. (60)

We experimented with four different forcing functions, shown in Table 1 (and in Fig-
ure 4), hoping to model the onset and termination of convection. Forcing F1 is the Rossby
adjustment problem, in which an atmosphere at rest adjust to a sudden, steady release of
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Type S̃(t) w̃n,r(0) w̃n,r(t)

F1 S0 0 S0(1 − e−(ε+iω)t) 1
ε+iω

F2 0 S0

(ε+iω) S0e
−(ε+iω)t 1

ε+iω

F3 S0(1 − e−γt) 0 see (61)

F4 S0

2 (1 − cos(γt)) 0 see (63)

Table 1: Forcing Functions

latent heat. Such forcing has been modeled before, but with the long wave approxima-
tion [5]. F2 is the adjustment problem in reverse, in which we shut off the heating in an
atmosphere in equilibrium with a steady forcing. F3 was chosen as a simple, more realistic
way to model the onset of convection. F4 attempts to capture the response to both the
onset and termination of heating.

Forcing F3 yielded the following solution,

w̃n,r(t) = S0

(

1

(ε + iωn,r)
−

e−γt

(ε − γ + iωn,r)
+

γe−(ε+iωn,r)t

(ε2 − ε − ω2
n,r) + iωn,r(2ε − γ)

)

. (61)

In the the limit γ � ε, that is, when the rate at which the forcing turns on is fast relative
to the rate of dissipation, (61) approaches the solution to forcing F1. In the other extreme,
ε � γ, (61) reduces to

w̃n,r(t) =
S0

(ε + iωn,r)
− (1 − e−γt). (62)

in which the atmospheric response is always in equilibrium with the forcing. Forcing F4
results in

w̃n,r(t) =
S0

2

(

1 − e−(ε+iωn,r)t

(ε + iωn,r)
+

(ε + iωn,r)
(

e−(ε+iωn,r)t − cos(γt)
)

− γsin(γt)

(ε + iωn,r)2 + γ2

)

. (63)

In the limit ε � γ (slow forcing) it reduces to a form similar to (62) in which the response
is in equilibrium with the forcing at all times. In the opposite extreme, γ � ε, we find

w̃n,r(t) = S0

(

1 − e−(ε+iωn,r)t

2(ε + iωn,r)
−

sin(γt)

2γ

)

. (64)

The first term on the left hand side corresponds to a system adjusting as in forcing function
F1 to the average value of the forcing, S0/2, while the second term corresponds to a small
out of phase response to the forcing.

2.5 Subsidence

wnd, the nondimensional upward velocity, can be calculated directly from our shallow water
solutions. Shallow water continuity implies that

wnd =
∂h

∂t
= −

(

∂u

∂x
+

∂v

∂y

)

. (65)
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For the first baroclinic mode, w is zero at the top and bottom of the atmosphere, reaching
a maximum near the center. The complete vertical velocity profile takes on a form similar
to a sine wave from 0 to π. wnd, once properly dimensionalized, tells us the amplitude of
the z-velocity in the first baroclinic mode, and hence corresponds to the maximum velocity
found at the center of the vertical profile.

In spectral space,

W =
∂H

∂t
= −iωH (66)

for each mode. This enables us to calculate w analytically, the only error coming from the
fact that we truncate our sum at the Nth mode.

2.6 Comparison with Gill

The long wave approximation is made in the linearized equatorial β-plane model first pro-
posed by Gill in 1980 [2], and later developed further in [5, 8]. The only difference from
our model is that the ∂v

∂t and −εv terms are dropped from (2), based on scaling analysis,
leaving the modified y-momentum equation

βyu + g
∂h

∂y
= 0. (67)

The y-momentum equation hence reduces to simple geostrophic balance, and adjustment
in v becomes instantaneous. (1) and (3) remain the same. While Gill concisely solves this
system with the use of parabolic cylinder functions, analysis with Matsuno’s eigenfunctions
provides insight into the coupling between the inertial gravity and Rossby waves resulting
from the long wave approximation. (Note that, as v = 0 in the Kelvin wave, it is unaffected
by the long wave approximation.)

We proceed with the same analysis as before, applying a Fourier transform in x to reach
the Gill equivalent of (39)

∂

∂t





û(k, y, t)
0

ĥ(k, y, t)



+ L̂ŵ = −ε





û(k, y, t)
0

ĥ(k, y, t)



− Ŝ, (68)

where w, L̂ and S are defined as before in (20) and (40). We introduce the matrix

F =





0 0 0
0 1 0
0 0 0



 (69)

so that we may write (68) in a form more similar to (39), having now just two corrections
to account for the long wave approximation

∂ŵ

∂t
−

∂Fŵ

∂t
+ L̂ŵ = −εŵ + εFŵ − Ŝ. (70)
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We now express w a sum of the Kn,r as in (43) and take the inner product of (70) with a
particular Kn′,r′ ,
(

∂

∂t

∑

n,r

ŵn,rKn,r,Kn′,r′

)

−

(

∂

∂t
F
∑

n,r

ŵn,rKn,r,Kn′,r′

)

+

(

L̂
∑

n,r

ŵn,rKn,r,Kn′,r′

)

=

−ε

(

∑

n,r

ŵn,rKn,r,Kn′,r′

)

+ ε

(

F
∑

n,r

ŵn,rKn,r,Kn′,r′

)

−
(

Ŝ,Kn′,r′

)

. (71)

Applying the orthonormality condition of the Kn,r cleans up most of the terms, yielding
a result comparable to (44), modulo our correction.

dŵn′,r′

dt
+ (ε + iωn′,r′)ŵn′,r′ = −Ŝn′,r′ +

∑

n,r

(

ˆdwn,r

dt
+ εwn,r

)

(

FKn,r,Kn′,r′
)

. (72)

Looking closer at our correction term, we have

(

FKn,r,Kn′,r′
)

=

∞
∫

−∞

Vn,r,Vn′,r′dy

= An,rAn′,r′(ω
2
n,r − k2)(ω2

n′,r′ − k2)

∞
∫

−∞

HnHn′e−y2

dy. (73)

All is not lost, as the Hermite Polynomials have the property that

∞
∫

−∞

HnHn′e−y2

dy =

{

π
1

2 n!2n n = n′

0 n 6= n′
, (74)

so that, and making use of the definition of An,r, (31),

(

FKn,r,Kn′,r′
)

=

{

an′,r,r′ n = n′

0 n 6= n′
(75)

with

an,r,r′ =
∏

q=r,r′

(ω2
n,q − k2)

(

(n + 1)(ωn,q + k)2 + n(ωn,q − k)2 + (ω2
n,q − k2)2

) 1

2

. (76)

In light of these results the summation of n and r in (72) reduces to a sum over just r,
yielding

dŵn′,r′

dt
+ (ε + iωn′,r′)ŵn′,r′ = −Ŝn′,r′ +

∑

r

an′,r,r′

(

ˆdwn,r

dt
+ εwn,r

)

. (77)

The long wave approximation ties the evolution of the gravity and Rossby waves together
by coupling ŵn,0, ŵn,1, and ŵn,0. For each n, (77) gives us three coupled ODE’s, which can
be combined into one matrix differential equation,

A
dŵn

dt
+ Bŵn = Ŝn (78)
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where

A =





1 − an,0,0 −an,0,1 −an,0,2

−an,0,1 1 − an,1,1 −an,1,2

−an,0,2 −an,1,2 1 − an,1,1



 ,

B =





ε + iωn,0 − εan,0,0 −εan,0,1 −εan,0,2

−εan,0,1 ε + iωn,1 − εan,1,1 −εan,1,2

−εan,0,2 −εan,1,2 ε + iωn,2 − εan,2,2



 ,

and

ŵn =





ŵn,0

ŵn,1

ŵn,2



 , Ŝn =





Ŝn,0

Ŝn,1

Ŝn,2



 . (79)

We must make an exception when n = 0, for there is no K0,1 eigenfunction. In this case
we have just two coupled ODE’s, which can be represented by an otherwise similar two-
dimensional matrix equation.

The steady state solution to (78) is simply

ŵn = B−1Ŝn, (80)

provided of course that B is invertible. This is a fair assumption, as the the an,r,r′ corrections
are relatively small, so that B (and A, for that matter) are diagonally dominant. This
assumption is not necessarily accurate for the mixed modes corresponding to n = 0, and I
am not sure we can solve this equation for all forcing functions.

We must make a few more assumptions on the properties of A and B to solve the time
dependent version of (78). We first multiply by A−1 to obtain

dŵn

dt
+ A−1Bŵn = A−1Ŝn. (81)

Next assume that A−1B is diagonizable, so that there exist a constant, invertible matrix
P such that,

PA−1BP−1 = D, (82)

with D diagonal. We then multiply (81) by P, in preparation for defining a new time
dependent vector qn(t) = Pŵn(t) so that

dPŵn

dt
+ PA−1BP−1Pŵn = PA−1Ŝn (83)

dqn

dt
+ Dqn = PA−1Ŝn. (84)

In (84) we have decoupled the ODE’s, so that each component of qn may be solved individ-
ually with the same techniques used to solve (44), or, more elegantly, solved with a matrix
exponential,

qn = e−Dtqn(0) + e−Dt

t
∫

0

eDt′PA−1Ŝndt′. (85)
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Note that as D is diagonal,

eDt =





ed1t 0 0
0 ed2t 0
0 0 ed3t



 . (86)

Lastly, we obtain our coefficients

ŵn(t) = P−1qn(t). (87)

3 Results

3.1 The East Pacific, July 27-29, 2001

Figures 1, 2, and 3 reveal two large water vapor black holes evolving over the East Pacific.
In the first image, taken on July 27 at 1800z, we see the East Pacific ITCZ spanning over
6000 km, from 1500 W to Central America. The convection begins at 50 N in the west and
rises to 150 N in the east, its meridional extent varying from 500 to 1000 km. This position
of the ITCZ is typical during the northern hemisphere summer, as the ITCZ tends to follow
the thermal equator. Another large region of deep convection is visible at the western edge
of the image, centered over Papua New Guinea and Indonesia. Convection in this area is
especially strong during La Nina years. To the east we see a bit of seasonal convection over
the Amazon basin, and in the south, the South Pacific Convergence Zone (SPCZ) stretches
northwest to southeast from 1650 W, 150 S to 1200 W, 400 S.

A large, arid black hole centered at 1300 W, 70 S has already formed to south of the
East Pacific ITCZ, spanning nearly 80 degrees of longitude. At is widest point it spans
nearly 300 of latitude, over 3000 km. A smaller dry region has formed northwest of the the
East Pacific ITCZ, centered near 1450 W, 160 N.

The large black hole in the south reaches its apex 24 hours later on the 28th, Figure
2. The East Pacific ITCZ has extended further to the west, now stretching past 1550 W.
The broader convection in the east is still present. The southern black hole has intensified,
especially in the center, where we now see a “black hole” in the image. The northern black
hole has also increased in size, its eastern boundary now 500 km further west at 1650 W.

The broad convection in the eastern half of the ITCZ, especially between 120 and 1050

W, weakens by the 29th, as shown in Figure 3. Unfortunately for our linear theory, advection
seems to be playing a large role now. Intense convection in the ITCZ is now only in the
west, where it begins to merge into the West Pacific convection. The southern black hole
has been contorted, and has shrunk slightly. The northern black hole is less affected, though
it has been pushed slightly north by a new burst of convection.

3.2 Setting up the Model

We must model this complicated system with Gaussian regions of convection, as given by
(50). To simulate the East Pacific ITCZ, we selected parameters a and b to create an
elongated convection region with Gaussian folding distances in x and y of 2700 and 450 km,
respectively. y0 was selected so that the convection would be centered at 10.50 N.

178



The parameter ε determines both the momentum damping and Newtonian cooling rates
in our model. Following Gill, we based our value on the momentum damping rate, taking
ε = 1

3days [2]. (ε = 1
10days would be more appropriate for the Newtonian cooling rate. See the

Fellow’s report by Takamitsu Ito for a simulation in which this problem has been remedied.)
S0, the dimensional heating rate for the first baroclinic mode, is 57 m/day [1]. This value is
based on measurements taken over the Marshall Islands in the Pacific and from the GATE
survey of the Atlantic.

Note that we used a partial summation of normal modes truncated at N = 200 in all
the data we present. We approximated the Inverse Fourier Transform, an integral over
wavenumber k from −∞ to ∞, as a numeric integral from −10 to 10 with 128 point resolu-
tion. The truncation of the integral is based on the fact that the Fourier transform decays

as e
−a2k2

4 . We projected our β-plane solutions, which span to infinity in all directions, onto
maps by ignoring the sphericity of the globe in the tropics. The maps are included to
provide a better sense of scale and positioning.

The steady state subsidence field for the East Pacific ITCZ (labeled region A) is shown
in the top half of Figure 5. We show only contours of downward velocity, in units m/day.
This is the velocity at the center of the atmospheric column, where it is largest for the first
baroclinic mode. While the greatest subsidence rate is not even 2 m/day, the maximum
upward motion exceeds 50 m/day. If we equate drier air with greater subsidence, we already
see the basic features of Figures 1 - 3; two large subsidence regions with significant zonal
and meridional asymmetries with respect to the ITCZ.

To better compare our simulation with observations, we also included a first approx-
imation to the convection over the West Pacific. Convection in the region appears much
more stable, in bulk, through our observational period. We thus included a steady state
convection cell over Papua New Guinea as a backdrop for our time dependent simulation.
(A linear theory allows one to paste solutions together!) We centered this convection region
on the equator at 1600 E, with Gaussian folding distance of 900 km in both x and y. The
complete steady state subsidence field is shown in the lower half of Figure 5. Again, we
show only contours of downward velocity. A comparison with the upper half of the figure
reveals that the West Pacific Convection (labeled region B) increases the size and intensity
of the southern black hole. This brings our model yet closer to the observations.

As is demonstrated in Takamitsu Ito’s paper, the convection in the SPCZ does not affect
the tropical black holes very much, serving mostly to trim off the southwest corner of the
southern black hole. Convection in the South Pacific is generally less stable and more prone
to advection. We found (and will describe later) that the response of the subsidence field
to forcing becomes slower, smaller, and concentrated to the west as one moves poleward
from the equator, so that the fluctuating SPCZ does not have much of an effect on the East
Pacific subsidence fields.

As we observe a rather gentle evolution of the ITCZ convection in Figures 1 - 3, forcing
function F4 is the most appropriate. γ was selected so that the period of forcing is 5 days.
We are particularly interested in days 2-4, in which the convection reaches a maximum and
then begins to decay. S0 was set so that the average intensity of the forcing is consistent
with the experiment measurements.
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Figure 5: Subsidence (m/day) in Steady State Solutions
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3.3 The Time Dependent Simulation

Figures 6 through 11 show the subsidence fields in increments of one day. The small cartoon
in the bottom left hand corner of each figure illustrates the path of the forcing function, the
marker showing the current intensity. Subsidence in each figure is given in m/day. It should
be noted that our analytic technique gives us an exact solution for any time we choose, so
that each field is equally accurate. For the discussion in this section, we will equate low
humidity in the upper troposphere with subsidence.

We begin in Figure 6 with the steady state response of the West Pacific convection.
When the East Pacific convection begins, there is initially very little east-west or north-
south asymmetry in the subsidence field. (This will be further illustrated in the next
section.) After one day, Figure 7, some asymmetry has developed, but the solution is more
balanced than in the steady state. Note that the initial response is predominantly north
and south of the ITCZ.

By day 2, Figure 8, the response has spread further east and west, and the characteristics
of the steady state solution have developed. As we saw in Figures 1 and 2, the subsidence
region to south of the ITCZ is much larger, and centered east of the small northern black
hole.

When the convection begins to decline, as in Figure 9, we see the fastest response in
the south east. The peak subsidence in the southern black hole has pushed from 1200 to
1450 W. A second peak region of subsidence has moved east over South America, and will
propagate further east over the next few days of the simulation. This is a Kelvin wave
packet! It may be difficult to observe this movement in the real atmosphere, as there is
significant convection over the Amazon Basin.

By day 4, Figure 10, subsidence has ceased over much of the East Pacific, but held
strong in the west. It is remarkably consistent with Figure 3, in which the eastern half of
the southern black hole decays when the convection ceases. The northwestern subsidence
regions slowly propagates further westward, as seen in Figure 11, again consistent with
the movement of the actual northwestern black hole. Here we have a Rossby wave packet.
We also note that the subsidence lingers in the north much longer than in the south; the
asymmetry of the steady state has reversed.

3.4 Subsidence and Humidity?

In the steady state, the link between subsidence and humidity in the upper troposphere
has been established empirically. In our time dependent simulation, we tread upon shakier
ground in making comparisons. Our model only tells us the subsidence rate. In the future
we must study the time dependence between subsidence and the drying of the upper tro-
posphere. How long does it take the upper troposphere to dry out after subsidence begins,
or moisten after it ceases? We may need to look at the full vertical motion field to obtain
sound results.

3.5 Component Analysis

The Matsuno formulation of the equatorial β-plane response allows one to separate the at-
mospheric response into components, specifically the effect of Kelvin, Rossby, and westward
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Figure 6: Full Solution, Time = 0
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Figure 7: Full Solution, Time = 1 day
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Figure 8: Full Solution, Time = 2 days
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Figure 9: Full Solution, Time = 3 days
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Figure 10: Full Solution, Time = 4 days
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Figure 11: Full Solution, Time = 5 days
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Westward I. G. Response
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Figure 12: Components, Time = 1 day

and eastward propagating inertial gravity waves. In Figures 12 to 15 we present the total
response to each type of wave. Note that the total subsidence fields is not necessarily the
sum of these fields, as we have not shown the regions in which air is rising.

The east-west asymmetries in the response are the result of differences between Kelvin
and Rossby waves. The Kelvin response grows much faster than the Rossby response, as one
would expect based on the group velocities at which they propagate. The group velocity of
nearly nondispersive long Rossby waves of order n is dwarfed by the Kelvin group velocity
by a factor of 1/(2n + 1) for n > 0. As the forcing decays, we see the Kelvin response
propagating off to the east in a coherent packet.

The Rossby response focused south of the forcing is due to contribution from the n =
0, r = 0 mixed mode wave, and hence behaves in part like an inertial gravity wave. It dies
faster than the other Rossby waves in the end when the forcing decays. The two pronged
Rossby response west of the forcing, seen best in Figure 15, is due to the low frequency
Rossby waves of order n = 1 and above. It becomes the dominant feature at the end of
the simulations, explaining the enhanced stability of the western half of a black holes. The
northern half of the Rossby packet is the slowest to grow and decay. Higher order Rossby
waves, with their low group velocities, generate the response away from the equator.

The relative intensity at which the different wave types are excited is highly dependent
on the spatial extent and latitude of the forcing. For instance, Kelvin waves are excited
to a larger extent when the forcing is near the equator. Lower order waves are favored in
general when the response is broad and near the equator.

As the forcing is moved further poleward, the black hole associated with it will decline
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Figure 13: Components, Time = 2 days
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Figure 14: Components, Time = 3 day
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Figure 15: Components, Time = 4 days

in size, gain in local intensity, and move west of the forcing. The shift to the west comes
from the fact that Kelvin waves can only be excited near the equator. The decline in spatial
extent, which is coupled with an increase in intensity necessary to maintain continuity, can
be attributed to the shrinking Rossby radius of deformation. Away from the equator the
deformation radius is inversely proportional to the local Coriolis parameter, βy, on our
β-plane. At high latitudes the Rossby waves tend to dominate over inertial gravity waves,
too. The gravity wave response decreases with the Rossby number, which is also inversely
proportional to the Coriolis parameter. Once the forcing is 1 or 2 Rossby radii poleward of
the equator, the quasi-geostrophic equations become a good approximation to our system
provided that our forcing is broad, and we can neglect inertial gravity waves all together.

3.6 The Time Dependence of the Hadley and Walker Circulations

Flow in the first baroclinic mode takes place in two layers. Air is sucked in from all directions
toward the convection region in the lower half of the troposphere, and propelled upward by
the convection. It then flows back in the upper half of the atmosphere, subsiding gently into
the lower flow over broad regions to complete the cell. The Walker Circulation describes
the east-west part of this flow (or perhaps I should say, the east-west flow “is” the Walker
Circulation), and the Hadley Circulation is the north-south flow. We define the magnitude
of the Walker circulation to be the maximum zonal mass transport toward the convection
region in the lower layer, or equivalently, away from the convection in the upper layer.
Similarly, we measure the Hadley circulation by the maximum meridional transport.
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We can further divide the Walker circulation into western and eastern branches. The
western branch is the maximum zonal transport to the convection coming from the west,
and hence is due primarily to the Rossby response. The eastern branch tracks the flow
from the east, and is generated by the Kelvin response. The Hadley circulation divides into
northern (summer) and southern (winter) cells. These cells are established, to the most
part, by the interaction of inertial gravity waves and the the mixed Rossby-inertial gravity
modes.

As subsidence completes the Walker and Hadley circulations, the asymmetries of the
meridional and zonal flows are the same as those we see in the formation of black holes.
Calculating the flows thus gives a quantitative measure of the black hole asymmetries. For
each forcing function we plotted the intensity of the four cells as a function of time relative
to their steady state values. The total transports east-west and north-south at steady state
are roughly equivalent so that the units in both diagrams are effectively the same.

For example, in the plots of the northern and southern branches of the meridional
circulation, 1 unit on the y-axis corresponds to the total mass transport at steady state.
The total is the sum of the absolute values of both cells, and hence corresponds to the
total mass drawn into the convection region. The sign for transport in the northern cell is
negative because mass is moving southward toward the convection region in the lower layer.
The zonal mass transports are also plotted relative to the total steady state transport. The
eastern branch is negative, as mass is moving to the west.

Forcing function F1 presents the unrealistic adjustment problem. As shown in Figure
16, the meridional transport is initially quite unstable. The inertial gravity waves slosh
the circulation back and forth as they adjust to the sudden shock. While the meridional
circulation reaches values comparable to the steady solution almost instantaneously, the
zonal transport lags behind, and has not reached the steady state values after 2.5 days of
simulation.

In the lower half of Figure 16, we compare the dissipation limited growth to the growth
of the zonal mass transport. If the frequency ω is small relative to ε, our forcing function
reduces to

S̃(t) = S0
1 − e−(ε+iω)t

ε + iω
→

1 − e−εt

ε
, (88)

and growth is controlled by the friction. This will only hold for the full solution if it holds
for all modes. Clearly it is not the case, for the friction dominated curve should match that
of the total transport.

The response to forcing function F2, as pictured in Figure 17, is also quite unrealistic.
The meridional response is not quite as instantaneous, but still sloshes back and forth. We
compare both the meridional and zonal decay rates to the dissipation dominated spin down,

S̃(t) = S0e
−(ε+iω)t 1

ε + iω
→

e−εt

ε
. (89)

While the curve does not match for the Hadley circulations, it gives a pretty sound fit for
the decay of the Walker cells. This indicates that the the bulk of the Rossby and Kelvin
response at steady state is controlled by low frequency waves. As indicated by the poor fit
in Figure 16, higher frequency modes were important at the onset of forcing.
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Figure 16: Hadley and Walker Circulations, Forcing Function F1
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Figure 17: Hadley and Walker Circulations, Forcing Function F2
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Forcing function F3 presents a more realistic rise to steady state convection. In the
upper half of Figure 18 we find the meridional circulation nearly perfectly in step with the
forcing. There are still some oscillations due to the abrupt start. These oscillations are
absent with the smooth forcing F4, as shown in Figure 20. As shown in the bottom half of
18, the Walker circulation lags behind the forcing by 1-2 days.

A close look at Figure 19 reveals that northern and southern cells of the Hadley cir-
culation are nearly symmetric at the onset of convection. Figure 19 better illustrates this
phenomenon. We present the ratio between the two branches of the Hadley and Walker
circulations as a function of time. The horizontal lines indicate the steady state ratios.
For instance, at steady state, the southern branch of the Hadley circulation is nearly 3
times stronger than the northern half. In the beginning, however, the north and south cells
are nearly equal. The n = 0 mixed mode response accounts for much of the steady state
asymmetry, and takes longer to establish itself.

The west-east asymmetry also evolves with time. It begins close to its steady state
value, and then drops to a point where the eastern cell is five times larger than its western
counterpart. This can be attributed to the larger group velocity of Kelvin waves, which
gives the eastern branch a quicker start. The initial surge by the Rossby wave is due to the
mixed mode. It is slower than the other gravity waves, but faster than Rossby and Kelvin
waves!

Lastly we look at response to the smooth forcing F4, shown in Figures 20 and 21.
While the total meridional circulation is nearly in perfect step with the forcing, the zonal
circulations lag, the Eastern cell by 1/2 a day, the western cell by over a day. In this trial
in took 1.5 days to establish the north-south asymmetry - the acceleration of the forcing
function seems to promote a symmetric response. Note that the drop in the north-south
ratio at the left of Figure 21 is due to a problem in how we calculated the ratio, and is not
at all physical. The west-east ratio curve appears similar to that in Figure 19.

4 Limits of our Theory

4.1 The Nonlinear Terms

We have neglected the advective terms in the shallow water equations throughout our
analysis. We must ask what differences we should expect in a solution of the complete
equations,

∂u

∂t
− yv +

∂h

∂x
= −εu − (u

∂u

∂x
+ v

∂u

∂y
) (90)

∂v

∂t
+ yu +

∂h

∂y
= −εv − (u

∂v

∂x
+ v

∂v

∂y
) (91)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
= −εh − S − (u

∂h

∂x
+ v

∂h

∂y
). (92)

As a first line of inquiry, we calculate the magnitude of the nonlinear terms given our
final solution. They must be much relatively small for our solutions to be at least self-
consistent. Table 4.1 lists the worst case ratio of the magnitude of the nonlinear terms to
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Figure 18: Hadley and Walker Circulations, Forcing Function F3

Ratio nonlinear
linear

x-momentum 30%
y-momentum 7%

mass conservation 4%

Table 2: Relative Size of the Nonlinear Terms
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Figure 19: Asymmetries in the Circulation, Forcing Function F3

the combined magnitude of the linear terms for each of (90) - (92), as calculated by finite
differencing the linear, steady state solutions.

With the exception of (90), the nonlinear terms are small enough to justify neglecting
them. In (90), the nonlinear terms are the most problematic on the equator where subsi-
dence is strongest in the southern black hole, as illustrated in Figure 22. The loss of the
Coriolis force on the equator makes this region particularly susceptible to nonlinearities. In
addition, the upward velocity, given by (65), is large in regions where partial derivatives ux

and vy are strong. As such partials are present in the nonlinear terms, we should expect
them to be strong in regions of subsidence.

4.2 Susceptibility to Barotropic Instability

As friction plays a small role in our system of equations, we can anaylze them in the
inviscid limit. We then expect the flow to become susceptible to barotropic instability when
there exists a reversal in the potential vorticity gradient. The linear (nondimensional) PV
principle in our model was given in (9), with the PV anomaly q defined by (10). q can be
calculated in spectral space, as PV is conserved by each unforced mode. (It is important
the note that the forcing and dissipation terms serve only to tell us the magnitude of each
mode, and do not effect the velocity fields, or the PV!) First, we have that

dq

dt
+ v = 0 (93)
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Figure 20: Hadley and Walker Circulations, Forcing Function F4
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Figure 21: Asymmetries in the Circulation, Forcing Function F4

in the inviscid, unforced problem. Move to Fourier space and write q̂ as a sum of the
contributions from each normal mode,

q̂ =
∑

n,r

ŵn,r(k, t)Qn,r, (94)

to obtain the transform of (93),

−iωn,rQn,r + Vn,r = 0. (95)

Qn,r is the PV contained in the nth, rth normal mode. A quick rearrangement yields

Qn,r =
Vn,r

iωn,r
. (96)

Likewise,

dQn,r

dy
=

dVn,r

dy

iωn,r
. (97)

We can then calculate q and ∂q/∂y as u, v, h, and w before.

The nondimensional PV anomaly q has units c
L =

(

β
c

) 1

2

, while ∂q/∂y has units of β.

Hence, the criterion for a reversal of the total PV gradient in y is that nondimensional
∂q/∂y < −1.

The PV field and gradient in y are shown in Figure 23, which indicates that the first
baroclinic mode is linearly stable. The top half of the diagram illustrates the PV field. Note
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mode c (m/s) h̄ (m) Sd (m/day) Snd

1 77 610 57 0.026
2 47 220 55 0.086
3 31 98 5.6 0.025
4 23 56 3.2 0.053

Table 3: Marshall Island Data

that it is biased heavily to the west and, to a lesser extent, to the north. The east-west
asymmetry is more easily explained: Kelvin waves carry no PV, whereas Rossby waves do.
The north-south asymmetry can be explained in view of PV stretching. The yS term in our
PV principle, (9), corresponds to the stretching of the planetary potential vorticity. The
effect becomes more pronounced as the Coriolis force grows with latitude.

4.3 Higher Baroclinic Modes

A study of the atmosphere over the the Marshall Islands gives us a measure of the intensity
at which each baroclinic mode is excited by the release of latent heat [1]. The relevant data,
shown in Table 4.3, indicates that the bulk of the latent heat release excites the first two
baroclinic modes; Sd, the dimensional forcing, indicates the strength of the excitation for
each mode.

Recall that the physical scales of the system are determined by c. As c becomes smaller,
the length scales shrink and the time scales lengthen. The magnitude of the nonlinear
terms and intensity of the PV gradient involve spatial derivatives, and thus are enhanced
as the length scales shrink. They are proportional to the nondimensional forcing Snd =
Sd gβ− 1

2 c−
5

2 . Hence for the second baroclinic mode the relative intensity of the nonlinear
terms is 3.3 times larger than for the first mode, as is the PV gradient! We should then
expect the second baroclinic mode to be nonlinear and potentially unstable, were it to
exist by itself. Nonlinearities ruin our ability to paste modes atop each other, making it
difficult to say whether the full solution (taking into account the nonlinear terms and all
baroclinic modes) would be unstable. Note, however, that w is proportional to Sd, so that
the subsidence field is determined by just the first two baroclinic modes.

5 Conclusions

Linear theory has performed remarkably well in revealing the gross features of the time
evolution of water vapor black holes. The asymmetries in the growth and decay of the dry
regions are readily seen as a ballet of Kelvin, Rossby, and inertial gravity waves.

A better fit to observations could be made by including more baroclinic modes. I am
not sure, however, how much more such activity would teach us about the physics of the
system. It may, however, prove very instructive to follow further in the footsteps of Gill
and linearize about a mean zonal wind, as in [8]. It is difficult to tell if the movement of
the real black holes in Figures 1-3 was due to the propagation of wave packets or advection
by the easterly Trade Winds. Linearizing about a mean wind may help settle this question.
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The response of the Hadley circulation to forcing is much faster than that of the Walker
Circulation. In addition, the western branch of the Walker circulation responds slower to
forcing that the Eastern branch. While these properties were known before, it is fruitful to
extend these insights to the study of black hole formation. Black holes are often associated
with the formation and movement of tropical storms [10], which can be viewed as massive
centers of convection. The initial subsidence response is driven by inertial gravity waves,
and appears north and south of the system, especially in the winter hemisphere. As the
storm moves poleward, the effect of gravity waves and Kelvin waves decrease, and we see
primarily a Rossby response to the west of the storm.

As a first attempt to apply these insights to a real storm, we tracked the response
generated by Typhoon Pabuk over the west Pacific in August, 2001. When the storm
formed over the tropics we observe a massive Black hole extending down over northern
Australia. As the storm moved north, we then observed the formation of a intense black
hole west of the storm, which appeared to be advected around the storm by anticyclonic
winds in the upper troposphere. This interaction between tropical storms and black holes
presents an exciting area for future study.
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