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1 Introduction

The water vapor (hereafter, WV) satellite images comes from the long wave channel of
wavelength 5.7–7.1 [µm]. Images of the earth at these wavelengths do not show any surface
features of the earth, since the radiation emitted by the earth’s surface at that wave length
is entirely absorbed by low-level atmospheric WV. The features that these images reveal
are related to planetary scale and synoptic scale variations of WV in the middle and upper
troposphere.

Figure 1 is an upper tropospheric WV image taken during the northern hemisphere sum-
mer (obtained from http://kauai.nrlmry.navy.mil/sat-bin/global.cgi). Intertropical Conver-
gence Zone (ITCZ) is rich in moisture and is located at approximately 8 degrees latitude.
Outside of the narrow band of ITCZ, the air is relatively dry, especially in the winter hemi-
sphere. In Figure 1, there is a region of very low humidity in the tropical Eastern Pacific.
It is the “Black Hole” of water vapor in the south of the equator about the same latitude
as ITCZ.

Observational studies [Picon and Desbios [7]; Schmez et al. [9]] have shown the sta-
tistical correlation between the divergence of the large scale circulation and the satellite
WV observations. In subsidence conditions, the upper troposphere become dry and the
5.7–7.1 [µm] radiation received by the satellite comes primarily from the relatively warm
mid-troposphere. When the large-scale vertical motion is upward, the upper troposphere
could become nearly saturated, and the 5.7–7.1 [µm] radiation comes from the relatively
cold upper troposphere. In this way the “equivalent blackbody temperature” of the 5.7–7.1
[µm] radiation is a proxy for the vertical motion field. Since the vertical motion field is not
directly measurable by any meteorological instrument, WV images can be an useful tool to
diagnose the vertical velocity.

The size and the location of the Black Hole is not homogeneous in time and space. The
extent and the intensity of the dry region is much greater in the winter hemisphere. The
Black Hole tends to appear in the winter hemisphere of approximately the same latitude
as the location of the deep convection in ITCZ. These features appears and disappears on
the time scale of a few days to a few weeks. Figure 1 is the WV image over the Eastern
Pacific from GOES-10. The Black Hole is formed over the Tropical Pacific in the late July,
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Figure 1 : The satellite image of upper
tropospheric water vapor over the Eastern
Pacific ocean in the late July 2001. The three
images are taken by GOES-10 geostation-
ary satellite, and the data is processed by
Naval Research Laboratory and downloaded
from (http://kauai.nrlmry.navy.mil/sat-
bin/global.cgi.)a

aNaval Research Laboratory, Marine Meteorology

Division, 7 Grace Hopper Ave., Monterey CA 93943
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2001. What controls the spatial structure and intensity of the Black Hole ? Could we use
a simple theory to explain these phenomena ?

This study is an attempt to understand the mechanisms which determines the structure
of the Black Hole in the tropical atmosphere. We are particularly interested in the asym-
metric structure of the vertical velocity field, assuming that the vertical velocity mainly
determines the upper tropospheric WV in tropics. We use the linear shallow water equa-
tion on the equatorial β−plane as a conceptual tool to elucidate the dynamics which give
rise to the Black Holes of upper tropospheric WV. We describe the asymmetries in the
Hadley circulation and the Walker circulation. Then, we apply the linear theory with some-
what realistic heating and dissipation rates to the tropical circulation forced by ITCZ-type
heating.

2 Method

2.1 The Linearized Equatorial β-Plane

Eigenvalue problem of the equatorial β-plane is first formulated and solved by Matsuno [5].
Heat-induced, frictionally controlled tropical circulation is studied by Gill [4] and others.
Similar problem is solved by Dias et al [1] in the framework of stratified linear equatorial
β-plane.

In this study, we use the equatorial β-plane, linear shallow water model similar to the
model of Gill [4] as a conceptual tool to understand the governing dynamics. We calculate
steady state solutions for the linear primitive equations forced by localized convection and
dissipated by linear friction and radiative cooling.

The shallow water system can be considered as the representation of a vertical normal-
mode in the stratified primitive equation [Fulton [2]]. For simplicity, we assume that the
convective heating projects onto the first baroclinic mode only. Furthermore, we linearize
the governing equation around the resting basic state. The model is now a single set of
linear shallow water equations on the equatorial β-plane.

∂u

∂t
− βyv + g

∂h

∂x
= −εuu (1)

∂v

∂t
+ βyu + g

∂h

∂y
= −εvv (2)

∂h

∂t
+ h̄

(

∂u

∂x
+

∂v

∂y

)

= −εhh − S, (3)

where u and v are velocity components in the x- and y-directions, respectively, h is
the deviation of the fluid depth from the constant mean depth h̄. Considering the vertical
transform [Fulton [2]], the mean depth is given as the equivalent depth for the first baroclinic
mode which is 570[m]. βy is the Coriolis parameter, εu is the constant for Rayleigh friction,
and εh is the coefficient for Newtonian cooling. We parameterize the deep convection as a
mass sink, S(x, y, t).

Before solving (1)–(3) it is convenient to put the problem in nondimensional form. We

define c = (gh̄)
1

2 as the constant gravity wave speed based on the mean depth h̄. As
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a horizontal length scale, let us choose the equatorial deformation radius, L = (c/β)
1

2 .
Similarly, a unit of time is determined as the time it takes for surface gravity wave to
travel a unit of deformation radius, T = (βc)−

1

2 . Data from the ITCZ in the Pacific
(over the Marshall Islands) and in the Atlantic suggest that, for the first baroclinic mode,
c ≈ 7.5 × 101 m/s and h̄ ≈ 5.7 × 102 m, so that L ≈ 1.8 × 103km and T ≈ 0.28 day [2]. We
choose h̄ as the unit of depth, so that (1)–(3) reduce to the nondimensional form

∂u

∂t
− yv +

∂h

∂x
= −εuu (4)

∂v

∂t
+ yu +

∂h

∂y
= −εvv (5)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
= −εhh − S (6)

where all the independent variables x, y, t, all the dependent variables u, v, h, the
parameter ε and the function S(x, y, t) are now nondimensional. In the simple case where
εu = εh = ε, the system (4)–(6) can also be written in the more compact form

∂w

∂t
+ Lw = −εw − S, (7)

where

w(x, y, t) =





u(x, y, t)
v(x, y, t)
h(x, y, t)



 , S(x, y, t) =





0
0

S(x, y, t)



 , L =





0 −y ∂/∂x
y 0 ∂/∂y

∂/∂x ∂/∂y 0



 . (8)

2.2 Normal Mode Transformation

We solve the model equation (7) using the method of normal mode decomposition. We
transform the model in spectral space in x. Defining ŵ(k, y, t) as the Fourier Transform of
w(x, y, t), we can write the Fourier transform pair as

ŵ(k, y, t) =
1√
2π

∞
∫

−∞

w(x, y, t)e−ikx dx (9)

w(x, y, t) =
1√
2π

∞
∫

−∞

ŵ(k, y, t)eikx dk (10)

We define the linear operator L̂ identical to L but with ∂
∂x replaced by ik.

L̂ =





0 −y ik
y 0 d/dy
ik d/dy 0



 . (11)

We also define the inner product,
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(f ,g) =

∞
∫

−∞

(f1g
∗
1 + f2g

∗
2 + f3g

∗
3)dy, (12)

given

f =





f1

f2

f3



 , g =





g1

g2

g3



 , (13)

where we use the ∗ symbol to denote the complex conjugate.
The adjoint of L̂ with respect to the inner product (12) is an operator L̂† which satisfies

(L̂f ,g) = (f , L̂†g) (14)

for all f(y) and g(y) satisfying the boundary conditions. Dias et al. [1] shows that the
operator L̂ is skew-Hermitian (i.e., L̂† = −L̂) so that (14) becomes

(L̂f ,g) = −(f , L̂g). (15)

The eigenvalues of L̂ are purely imaginary, and the eigenfunction form an orthogonal
set. Let us define the eigenvalue iω and the eigenfunction K. They satisfies following
relationship.

L̂K̂ = iωK̂, (16)

The solutions to (16) are discussed in detail by Matsuno [5]. We summarize the relevant
results here.

Equation (16) has bounded solutions, as y → ±∞, only if ω2 − k2 − k/ω is an odd
integer. It results in the cubic dispersion relationship.

ω2 − k2 − k

ω
= 2n + 1 (17)

with n = 0, 1, 2, . . . for ω has three roots for given k and n. We denote the solutions
of this cubic equation by ωn,r(k) to indicate which of the three roots of the frequency
equation we are discussing. The subscript r (r = 0, 1, 2) is related to Rossby modes (r = 0),
Westward-propagating Inertial Gravity modes (r = 1), and Eastward-propagating Inertial
Gravity modes (r = 2). Let Kn,r denote the eigenfunction corresponding to rth root of (17)
given n.

K(k, y) =





U(k, y)
V(k, y)
H(k, y)



 (18)

= An,re
− 1

2
y2





−1
2(ωn,r + k)Hn+1(y) − n(ωn,r − k)Hn−1(y)

i(ω2
n,r − k2)Hn(y)

−1
2(ωn,r + k)Hn+1(y) + n(ωn,r − k)Hn−1(y)



 (19)
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where

An,r = π− 1

4 {2nn![(n + 1)(ωn,r + k)2 + n(ωn,r − k)2 + (ω2
n,r − k2)2]}− 1

2 (20)

is a normalization constant which assures that

(Kn,r,Kn,r) = 1 (21)

The Hermite polynomials Hn(y) are given by H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2,
H3(y) = 8y3 − 12y, · · · , with recurrence relation Hn+1(y) = 2yHn(y) − 2nHn−1(y).

Special care must be taken when n = 0, in which case the dispersion relation factors
to (ω0,r + k)(ω2

0,r − kω0,r − 1) = 0. The root ω0,r = −k must be discarded because the
corresponding eigenfunction cannot be determined. Thus, for n = 0, only the two roots of
ω2

0,r − kω0,r − 1 = 0 are allowed.
In addition, we obtain Kelvin mode by setting v̂ = 0. The eigenvalue for Kelvin mode is

ω−1 = ±k. The subscript −1 is chosen because the dispersion relation ω = k is a solution
of ω2 − k2 − k/ω = 2n + 1 when n = −1. The eigenfunction is

K−1 = A−1e
− 1

2
y2





1
0
1



 , (22)

with corresponding eigenvalue ω−1 = k.
Since K̂n,r is orthogonal and complete, and we can introduce the meridional transform

pair using the normal modes.

ŵn,r(k, t) = (ŵ(k, y, t),Kn,r(k, y)) (23)

ŵ(k, y, t) =

2
∑

r=0

∞
∑

n

ŵn,r(k, t)Kn,r(k, y) (24)

We may now use our eigenfunction to decompose the time dependent problem into
normal modes.

Taking the inner product of the Fourier transform of (7) with Kn,r(k, y), we obtain

(

∂ŵ(k, y, t)

∂t
,Kn,r(k, y)

)

+
(

L̂ŵ(k, y, t),Kn,r(k, y)
)

=

−ε (ŵ(k, y, t),Kn,r(k, y)) −
(

Ŝ(k, y, t),Kn,r(k, y)
)

dŵn,r(k, t)

dt
+ (ε + iωn,r)ŵn,r(k, t) = −Ŝn,r(k, t)

Equation (25) is the transformation to spectral space of the original system (7) and has
steady solution

ŵn,r(k, t) = − Ŝn,r(k)

ε + iωn,r
. (25)
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When this is inserted into (24), we obtain the steady solution in spectral space

ŵ(k, y, t) =
∑

n,r

ŵn,r(k)Kn,r(k, y) (26)

Taking the inverse Fourier transform of (26) and breaking back into component form,
we obtain our final physical space solution.

w(x, y, t) = (2π)−
1

2

∞
∫

−∞

ŵ(k, y, t)eikx dk (27)

The solution of our initial value problem consists of a superposition of normal modes.
The superposition involves all zonal wavenumbers (integral over k), all meridional normal
modes (sum over n and r). It should be noted that typical superpositions of many normal
modes result in spatial patterns which differ greatly from individual normal modes.

2.3 Forcing

The dynamical role of the deep convection, in general, can be described as a mass sink in
the lower atmosphere and as a source in the upper atmosphere. We parameterize the deep
convection (ITCZ) as a mass sink whose shape is gaussian in x and y, assuming that our
model represents the lower troposphere.

S(x, y) = Soe
−x2/a2

e−(y−y0)2/b2 (28)

where y0 is the center of the Gaussian shaped mass sink, a is its e-folding width in x, and
b its e-folding width in y. The factor, So[m/s], is the maximum rate of the mass removal
and represents the intensity of the deep convection. Realistic measure of So[m/s] could be
obtained as the projection of the diabatic heating onto the first baroclinic mode.

The Fourier transform of this forcing is

Ŝ(k, y) = 2−
1

2 Soae−(y−y0)2/b2e−
1

4
k2a2

(29)

Then, using (23), we obtain

Ŝn,r(k, t) =
(

Ŝ(k, y),Kn,r(k, y)
)

=

∞
∫

−∞

Ŝ(k, y, t)Hn,r(k, y)dy

= So

√
πabAn,r(2 + b2)−

1

2 e−
1

4
k2a2

e−y2
0
/(2+b2)·

{

−1
2(ωn,r + k)

(

2 − b2

2 + b2

)
n+1

2

Hn+1

(

2y0

(4 − b4)
1

2

)

+ n(ωn,r − k)

(

2 − b2

2 + b2

)
n−1

2

Hn−1

(

2y0

(4 − b4)
1

2

)}

for 0 < b < 2
1

2 and n ≥ 0. For the Kelvin mode, Ŝ−1,2(k, t) can be written as

Ŝ−1,2(k, t) =
A−1,2

√

π(b2 + 2)
exp{−(

k2a2

4
+

y2
o

b2 + 2
)} (30)
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2.4 Dissipation

The time scales for the kinetic energy dissipation and the radiative cooling are different.
We expand the theory such that the dissipation rate can be different between u, v, and h.
The time dependent equation becomes

∂ŵ

∂t
+ L̂ŵ = −εu(I − F)ŵ − Ŝ (31)

where I is the identity matrix and

F ≡





0 0 0
0 0 0
0 0 1 − εh

εu



 (32)

We substitute ŵ with
∑

n′,r′ ŵn′,r′(k)Kn′,r′(k, y) and take the inner product with Kn,r(k, y).
We obtain

dŵn,r(k, t)

dt
+ (ε + iωn,r)ŵn,r(k, t) = −Ŝn,r(k, t) + εu

∑

n′,r′

ŵn′,r′
(

FKn′,r′ ,Kn,r

)

(33)

Applying the relationship (32),

dŵn,r(k, t)

dt
+ (ε + iωn,r)ŵn,r(k, t) =

−Ŝn,r(k, t) + (εu − εh)

∞
∫

−∞

∑

n′,r′

ŵn′,r′Hn′,r′H∗
n,r dy (34)

when (εu − εh) � 1, the steady state solution is to a good approximation

ŵn,r = ŵ(0)
n,r + ŵ(1)

n,r(εu − εh) + ŵ(2)
n,r(εu − εh)2 + . . . (35)

where

ŵ(0)
n,r = − Ŝn,r(k)

εu + iωn,r
(36)

ŵ(m+1)
n,r =

1

εu + iωn,r

∞
∫

−∞

∑

n′,r′

ŵ
(m)
n′,r′Hn′,r′H∗

n,r dy (37)

for m = 0, 1, 2, . . .. Thus, the normal modes are coupled in the time dependent equation
when the time scale for kinetic energy dissipation and radiative cooling are different. For
the special case, (εu = εh), it is identical to (25).
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3 Simple Cases

3.1 Steady Solution to an Idealized Forcing

Equation (26) shows that the model solution is expressed as the infinite sum of the normal
modes to represent the full solution. We turncate the solution at n = 200 including the first
200 normal modes for the Rossby, Kelvin, and inertial gravity modes. This introduces an
error in the final solution. The power spectrum of Ŝn,r suggests that including 200 normal
modes with reduce the error less than 0.01 %.

We first describe the steady state solution for u, v, h, and w to illustrate the response
to the forcing. As a simple representation of ITCZ, we use non-dimensional length scales
a = 1.5, b = 0.25, and yo = 0.7 which are equivalent of a = 2700[km], b = 450[km], and
yo = 1260[km]. For dissipation rates, we chose nondimensional parameter εu = 0.1 and
εh = 0.03 which are equivalent of εu = 0.36[day−1] and εh = 0.11[day−1]. So is taken to be
57[m · day−1] using the Marshall Island data [2].

Figure 2 shows the steady state solution for u, v, h, and w for this forcing. The
geopotential height perturbation has its minimum near the location of the deep convection
associated with the cycloninc circulation. The circulation tends to converge near the forcing,
and produces intensified upward motion on the order of 50[m/day]. Outside of the rising
region, we have a region of the mild sinking which has two peaks in the north-west of the
forcing and the directly south of the forcing. Spatial structure of the sinking motion can be
understood as the superposition of the responses from different normal modes.

3.2 Decomposition into Normal Modes

Since the full solution is the sum of all the normal modes, one can take a partial sum to
find contributions from individual mode. Throughout this study, the eigenfunctions of the
inviscid, free solution are used as the orthonormal basis for the normal mode transformation.
These basis are not the eigenfunction of the frictionally-controlled, heat-induced problem.
However, the decomposition of the full solution into the “inviscid modes” gives insights into
the spatial structure of the solution.

Figure 3 shows the decomposition of the sinking motion into four normal modes; Rossby
modes, westward-propagating inertial gravity modes, eastward-propagating inertial gravity
modes, and the Kelvin mode. The Rossby modes, the inertial gravity modes, and the Kelvin
mode have distinct spatial structure in the vertical motion.

In general, sinking motions associated with the Rossby modes are located at the west of
the forcing because Rossby waves propagates to the west. The response of the mixed mode
is responsible for the strong sinking motion asymmetric across the equator. The mixed
mode is excited when the forcing is asymmetric about the equator.

The sinking motion associated with the inertial gravity modes have two peaks; one to the
north, and another to the south of the forcing. The eastward-propagating inertial gravity
modes have stronger sinking motion to the south of the forcing. This strong sinking at the
south of the forcing is associated with the mixed mode.

The Kelvin mode is always symmetric about the equator and its sinking motion is always
located to the east of the forcing because the Kelvin waves propagates to the east.

304



−10 −5 0 5 10
−3

−2

−1

0

1

2

3

X [ND]

Y
 [

N
D

]
(a)

−8−7−6−5
−4
−3

−3

−2−2

−2

−1

−1

−1

−10 −5 0 5 10
−3

−2

−1

0

1

2

3

X [ND]

Y
 [

N
D

]

(b)

−1.6−1.4

−1.4

−1.2

−1.2

−1

−1

−0.8

−0.8

−0.8

−0.6

−0.6
−0.6

−0.6

−0.4

−0.4

−0.4

−0.4

−0.2

−0.2

−0.2
−0.2

−0.2

0

0

0 20
40

Figure 2: Steady state solution for u, v, h, and w. (a): The height perturbation and
the wind field. The contour interval is 1[m] for height. For the wind field, the reference
vector (1[m/s]) is drawn at the upper left corner of the domain. (b): Vertical motion. The
solid contour is sinking motion with the contour interval of 0.2[m/day]. The dash-dotted
lines are rising motion with the contour interval of 20[m/day]
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Figure 3: Decomposition of w into normal modes. The vertical motion, w, is
decomposed into normal modes of four categories. Solid line represents the contour of
the sinking motion, and the dash-dotted line represents the contour of the rising motion.
(a): Rossby modes (r = 0, n = 0, 1, 2, . . .), (b): Westward-propagating inertial gravity
modes (r = 1, n = 1, 2, . . .), (c): Eastward-propagating inertial gravity modes (r = 2, n =
0, 1, 2, . . .), (d): Kelvin mode (r = 2, n = −1). For the Rossby modes and the Kelvin mode,
contour interval for sinking motion is 0.4[m/day], and the contour interval for the rising
motion is 1 [m/day]. For the inertial gravity modes, contour interval for sinking motion is
1[m/day], and the contour interval for the rising motion is 10 [m/day].
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The maximum amplitude of the vertical motion of the inertial gravity modes is much
stronger and more localized than that of the Rossby modes and the Kelvin mode. Although
the Rossby modes and the Kelvin mode are less intense, they have much greater spatial
extent. When these four vertical motions are added together, it becomes identical to the
total solution shown in Figure 2.

The asymmetric structure of the sinking motion can be understood as following. The
east-west asymmetry of the vertical motion is greatly affected by the competition between
the Rossby modes and the Kelvin mode. This corresponds to what we call “the Walker Cir-
culation”. On the other hand, the north-south asymmetry of the vertical motion is related to
the inertial gravity modes. This corresponds to what we call “the Hadley Circulation”. To
illustrate these idea, we examine the zonally averaged circulation and meridionally averaged
circulation.

3.3 Hadley Circulation

Spatially averaged circulation can be s simple indicator for the asymmetric structure of
the vertical motion. Figure 4 is the zonally averaged stream function (a) and meridional
velocity in the lower troposphere (b). There is a rising motion at the location of the deep
convection. The winter branch of the Hadley circulation is much stronger than the summer
branch. The sinking motion is wide and intense in the winter hemisphere. This asymmetry
in the Hadley circulation can be explained in several ways.

First, Coriolis parameter (equivalent of the inertial stability in the equatorial β-plane)
is very small in the vicinity of the equator. The small Coriolis parameter suggests that the
deformation radius,

√

gh̄/f , is greater near the equator. Therefore, the spatial scale of the
circulation must be greater in the winter hemisphere.

Secondly, the zonally averaged velocities on the equator at steady state is given by

ux = 0 (38)

vx = − g

εv

∂h
x

∂y
(39)

It suggests no zonal flow nearby the equator. Since the convective forcing produces strong
meridional gradient of h

x
, the winter branch of the Hadley circulation is enhanced.

Finally, the zonally-averaged meridional velocity, vx, is decomposed into normal modes
in Figure 4 (b). There is no contribution from Kelvin mode since v = 0 always in Kelvin
mode. The spatial structure of vx is governed by inertial gravity modes. The contribution
from Rossby modes are dominated by the mixed Rossby-gravity mode. The eastward-
propagating inertial gravity modes has the strongest intensity in the winter hemisphere
because it has contribution from the mixed Rossby-gravity mode as well. The convective
forcing which is asymmetric about the equator excites the mixed Rossby-gravity mode and it
produces large fraction of the cross-equatorial transport in the zonally averaged circulation.

The north-south asymmetry of the vertical motion is associated with the mixed Rossby-
gravity mode, and it has intensified sinking in the winter hemisphere. This is consistent
with the satellite image in Figure 1.
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Figure 4: Hadley Circulation (a) The meridional stream function. (b) The zonally
averaged meridional velocity in the lower layer. The zonal average is first calculated using
spectral method. The vertical structure is assumed to be the first baroclinic mode.
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Figure 5: Walker Circulation (a) Zonal stream function. (b) Meridionally averaged zonal
velocity in the lower layer. The vertical structure for the stream function is given by the
first baroclinic mode.
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3.4 Walker Circulation

Figure 5 is the meridionally averaged stream function (a) and zonal velocity in the lower
troposphere (b). It shows the east-west asymmetry of the Walker circulation. There is a
rising motion near the location of the deep convection. The eastern branch of the Walker
circulation is stronger than the western branch in this particular example. This asymmetry
in the Walker circulation can be explained as the competition between Kelvin mode and
Rossby modes.

Figure 5 (b) suggests that the eastern branch is dominated by the Kelvin mode and the
western branch is dominated by the Rossby modes. This result is robust with wide range of
parameters. It implies that the east-west asymmetry of the Walker circulation reflects the
relative intensity of the Rossby modes and the Kelvin mode and its dependence on model
parameters.

First, let us consider the Kelvin mode. The projection of the Gaussian-type heating onto
the Kelvin mode is shown in Equation (30). It suggests that the forcing has structure such
that the intensity of the Kelvin mode decays with yo. Physically, it means that the forcing
projects less onto the Kelvin mode when there is a greater distance between the center of
the forcing and the equator because the Kelvin mode is trapped nearby the equator. The
eastern branch of the Walker circulation weakens with increasing yo while a and b are fixed.

Secondly, let us consider the Rossby modes. The response of the Rossby modes to
varying yo is illustrated by considering the potential vorticity equation of the system. The
potential vorticity equation can be constructed from Equation (4), (5) and (6).

∂q

∂t
+ v = −εq + yS (40)

where q ≡ ∂v
∂x − ∂u

∂y − yh is the perturbation potential vorticity in the shallow water system.
This PV perturbation is mostly associated with the Rossby modes. It is remarkable that
the forcing term in the PV equation (40) is proportional to y. This is due to the increase in
the Coriolis term with y. Therefore, the Rossby modes intensifies with increasing yo. Here,
the sensitivity of the Rossby modes has opposite sign from that of the Kelvin mode.

Figure 6 shows the sensitivity of the stream functions to the center of the heating,
yo. Figure 6 (a) clearly shows that the eastern branch weakens and the western branch
intensifies as yo increases. The western branch becomes stronger than the eastern branch
when yo ∼ 1.1 or greater. Figure 6 (b) confirms the view that the winter hemisphere has
stronger sinking motion, and the north-south asymmetry grows with increasing yo.

4 Somewhat Realistic Solution

The satellite image (e.g. Figure 1) shows quite complicated WV distribution and the time
series of the satellite image suggests that it is quite variable. Here, we try to reproduce the
large-scale pattern of the dry region in the upper troposphere using the simple model we
derived and studied in the previous section. As a first attempt, we study the steady state
response of the shallow water system to the multiple convective region. Since the model is
linear, the circulation due to the multiple heating can be obtained as the superposition of
the circulations due to individual forcing.
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Figure 6: The sensitivity of the maximum mass transport to the location of
the forcing, yo. (a) The intensity of the Walker circulation and contributions from its
eastern branch and the western branch. (b) The intensity of the Hadley circulation and
contributions from its northern branch and the southern branch. The intensity is measured
as the maximum value of the stream function.
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Table 1: The size and the location of the deep convection In the case of the Eastern
Pacific in the late July, 2001.

Deep Convection Site Location (xo, yo) Size (a, b)

A : ITCZ (0, 0.7) (1.5, 0.25)
B : PNG (−5, 0) (0.5, 0.5)
C : SPCZ (−1,−1.5) (0.5, 0.5)
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Figure 7: Steady Solution for the sinking motion due to ITCZ over Eastern
Pacific

Considering the case in the Eastern Pacific in the late July in 2001, (shown in Figure
1), we seem to have two or three sites of convection and they are listed in the Table 4. (A):
ITCZ over tropical Pacific is the narrow band of the moist region in the satellite image.
This feature is tied to the warm SST over the ocean and often appears around 10N over
the Pacific ocean. (B): The deep convection over Papua New Guinea (PNG) is located in
the tropical Western Pacific. In the La Nina condition, there is a warm pool in the Western
Pacific, and the deep convection is tied to the warm SST. (C): The satellite image suggests
that the moist region in the South Pacific which is often called “South Pacific Convergence
Zone” (Hereafter, SPCZ). The WV image is more stable in time and space at the deep
convection site over Eastern Pacific ITCZ or over PNG. SPCZ is highly variable due to the
weather-type baroclinic waves.
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Figure 8: Steady Solution for the sinking motion due to the deep convection over
PNG

4.1 (A) ITCZ over Eastern Pacific

Figure 7 shows the distribution of the sinking motion at steady state induced by the deep
convection over the Eastern Pacific. The pattern suggests that there are two sinking motion
maximum. An intense sinking region is located in the southern hemisphere approximately
at the same latitude as the forcing (120◦W, 8◦S). This sinking motion is due to the inertial-
gravity modes and the mixed mode. Another intense sinking region is located in the sub-
tropical Eastern pacific around (145◦W, 18◦N). The spectral decomposition suggests that
this is caused by the Rossby mode. The intensity of the latter one is weaker.

4.2 (B) The deep convection over PNG

Figure 8 shows the distribution of the sinking motion at steady state induced by the deep
convection over PNG. The pattern suggests that there is a strong response to the east of
the convective forcing caused by the Kelvin mode. The sinking motion is symmetric about
the equator. There are secondary maximum directly north and south of the forcing induced
by the inertial-gravity modes.

4.3 (C) The SPCZ forcing

Figure 9 shows the distribution of the sinking motion at steady state induced by SPCZ.
The pattern suggests that there is almost no sinking motion to the east of the forcing. The
response of the Kelvin mode is very weak because the forcing is located at greater distance
from the equator. The response of the Rossby mode is very strong, creating an intense
sinking motion to the west of the forcing. There is an intense response in the mixed mode,
which causes the sinking motion in the northern hemisphere. The intensity of the sinking
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Figure 9: Steady Solution for the sinking motion due to SPCZ

motion is much stronger than (A) or (B) partly because of the magnitude of the forcing, S,
is prescribed at the same value as (A) and (B). In reality, the magnitude of the convective
forcing is much weaker in SPCZ than in ITCZ. Thus, we do not expect to observe this
strong sinking motion in the satellite image.

4.4 Response to the multiple heating region

Here, we show the steady state response to the multiple convective region in Figure 10.
Since the model is linear, the circulation due to the multiple heating can be obtained as
the superposition of the responses to the individual forcing. The intensity of the convective
forcing could be different between the forcing (A), (B), and (C). The resulting solution,
however, has a robust spatial structure which does not depend of the choice of the rela-
tive importance of individual forcing. In Figure 10, the relative intensity of the forcing is
prescribed to A:B:C=3:6:1.

The solution for the multiple convective region resembles the satellite image of the black
hole of WV remarkably well. The simple model reproduces the intense sinking motion
around (120◦W, 8◦S) which is a combination of the responses to the forcing (A) and (B).
This intense sinking motion could explain the formation of the black hole in the winter
hemisphere. SPCZ does not contribute to the sinking motion near the black hole.

The solution also agrees with the satellite observation that the relatively dry region in
the subtropical Eastern Pacific around (150◦W, 20◦N).

5 Discussion

Let us summarize the main results.
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Figure 10: Steady Solution for the multiple convective region

• (1) The spectral decomposition into “inviscid normal modes” suggests that the Hadley
circulation is mainly sustained by the inertial-gravity modes.

• (2) The asymmetry in the Walker circulation is driven by the competition between
the Kelvin mode and the Rossby modes.

• (3) The solutions to the simple, linear shallow water model agrees with the the spatial
structure of the upper tropospheric WV satellite images remarkably well.

• (4) The Black Hole of the WV in the tropical Pacific can be understood as the circu-
lation induced by the deep convection over the central Pacific and over Papua New
Guinea.

The result (3) and (4) are further tested against several variants of similar experiments with
different relative intensity of the convective forcing. Those experiments confirmed that the
spatial structure predicted by this simple model is a robust one. It is of interest to examine
the sinking motion over the Atlantic ocean and the Indian ocean, which can test the validity
of the simple linear theory.

This simple model seems to behave particularly well near the equator where the back-
ground flow is relatively weak. The linear assumption breaks down when there is a signifi-
cant background flow because the model is linearized around the state of rest, which is not
applicable in the middle latitudes. Near the location of the convective heating, the flow
velocity is also large which causes the linearity to break down.

It can be shown that, in some parameter regime, the potential velocity distribution
associated with the steady state solution is unstable to barotropic instability or baroclinic
instability [Gerber et al [3]]. The dynamical instabilities causes the formation of eddies and
the break up of ITCZ. This is also the limitation of the theory based upon the steady state.
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Despite the simplicity of the model, this study shows that the linear shallow water model
can be used as a conceptual tool for understanding and explaining the upper tropospheric
water vapor. It motivates the further investigation of the simple model with emergent
questions on the upper tropospheric water vapor. Rosendal [8] pointed out the statistical
relationship between black holes of water vapor appearing in the winter hemisphere and the
development of tropical cyclones in the summer hemisphere.
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