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Abstract

In this study we investigate the stability of the weakly stratified Kolmogorov shear
flow. We derive the amplitude equations for this system and solve them numerically to
explore the effect of weak stabilizing stratification. We then explore the non-diffusive
limit of this system and derive amplitude equations in this limit.

1 Introduction

The Kolmogorov flow - a two-dimensional viscous sinusoidal flow induced by a unidirectional
external force field - has been studied in the context of generation of large scale turbulence in
two-dimension. Various aspects of the Kolmogorov flow, such as the generation of 2D turbu-
lence [1], vortex merging [2], and the negative viscosity in the role of large scale formation in
2D turbulence [3], have been widely applied to geophysical [4] and laboratory systems [5, 6].

In this study we impose a weak, stabilizing temperature gradient and investigate the tem-
perature evolution associated with the flow instability. We first adopt Sivashinsky’s approach
and derive the finite-amplitude equation for the case of infinite domain (periodic boundary
conditions) and finite Peclet numbers. We then solve the amplitude equations (both 1D and
2D) numerically and investigate the buoyancy effect on the structure formation of the flow.
We also investigate large Peclet number cases, where the critical layers in the scalar field
plays a key role for the flow instability and dynamics. We also make comparison between
fully numerical simulations and results from the weakly nonlinear analyses.

2 Formulation and linear analysis

2.1 Formulation

The Kolmogorov shear flow is more generally defined as a sinusoidal shear flow, whether the
fluid is viscous or inviscid. In our 2-D formulation of the problem, where the incompressible
flow can be written as a stream function, we couple this background shear flow to a stabilizing
temperature. Without loss of generality, we write the total background state as a sinusoidal
stream function and a linear temperature profile:

Ψ0 = U0l cos(z/l), T0 =
4T
l
z, (1)

where U0 is the amplitude of the background shear flow, l is the periodicity of the shear flow,
and 4T is the temperature difference across distance l. Denoting ψ as the stream function
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disturbance and θ as the temperature disturbance, we first write the momentum equation
and the advection diffusion equation as follows:

∂t∇2ψ + ∂x(∂zΨ0∇2ψ − ∂3
zΨ0ψ) − J(ψ,∇2ψ) = ν∇4ψ − gαθx, (2)

∂tθ + ∂zΨ0∂xθ − ∂xψ∂zT0 − J(ψ, θ) = κ∇2θ. (3)

We nondimensionalize the above equations such that the background shear flow u0 = − sin z
and the background stabilizing thermal gradient is equal to 1 (Re ≡ U0l/ν is the Reynolds
number, Pe ≡ U0l/κ is the Peclet number, and Ri ≡ gαδT l2/U2

0 is the Richardson number),
and equations 2 and 3 thus read:

∂t∇2ψ − sin z(∇2ψ + ψ)x − J(ψ,∇2ψ) =
1

Re
∇4ψ − Riθx, (4)

∂tθ − (sin zθ + ψ)x − J(ψ, θ) =
1

Pe
∇2θ. (5)

In the following subsections we first present results from the usual linear analysis on cases
where the periodicity of the shear flow is the same as the domain considered (integer pe-
riodicity). We then consider cases where the perturbations are products of periodic and
exponential functions (Floquet system) and may exhibit parametric resonance.

2.2 Linear analysis on the stratified Kolmogorov flow

In this section we present results of linear analysis on equations 4 and 5 for shear flow of
periodicity the same as the domain size. The linearized version of equations 4 and 5 read

∂t∇2ψ − sin z∂x(∇2ψ + ψ) =
1

Re
∇4ψ − Riθx, (6)

∂tθ − (sin zθ + ψ)x =
1

Pe
∇2θ. (7)

Without the stabilizing temperature, the non-stratified Kolmogorov shear flow is known to be
unstable to long wave length perturbation for Reynolds numbers Re >

√
2: the critical wave

number kc = 0 and the critical Reynolds number Rec =
√

2. Also for small horizontal wave
numbers (k � 1) the growth rate λ can be obtained via the following dispersion relation:

λ = (1 − Re2

2
)k2 + Re2(1 +

Re2

4
)k4 + O(k6). (8)

We numerically solve the above linearized equations with periodic boundary conditions
(in both the horizontal and the vertical directions). Figure 1 shows marginal curves for weak
stratification (see caption for the corresponding stratification strength for each curve) and
figure 2 shows the critical Reynolds numbers and wave numbers as functions of Richardson
numbers for Prandtl number Pr ≡ ν/κ = 10. As shown in the figures, the critical wave
number kc increases rapidly as we increase the Richardson number above. As the Richardson
number increases above 10−5, the critical wave number kc increases significantly from 0
towards some finite value (∼ 0.1). This also implies that the inverse cascade observed in the
nonstratified Kolmogorov shear flow is at risk, namely, the large scale perturbation now has
been stabilized by the existence of the stably stratified temperature. As will be shown in the
numerical results, the inverse cascade is indeed prevented by the stabilizing temperature and
we will discuss this in detail via the tool of Lyapunov functional.
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(a)

(b)

Figure 1: Marginal curves for the unbounded stratified Kolmogorov flow for weak stratifica-
tion and Prandtl number σ = 1. Curves are labeled by their Richardson numbers. In Panel
(a), from curve 1 to curve 6, the Richardson number is, respectively, 10−7, 10−6, 10−5, 10−4,
10−3, and 10−2. In Panel (b), the Richardson number is 0.01, 0.05, 0.1 and 0.15 for curve 1
to curve 4, respectively.
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(a) (b)

Figure 2: Critical Reynolds number (a) and critical wave number (b) as functions of Richard-
son number for Pr = 10 for the periodic case.

2.3 Linear analysis on the stratified Kolmogorov flow:

Floquet calculation

We now show results from the Floquet calculation for the stratified Kolmogorov shear flow.
We perturb the system with perturbation of the form: eiqz+ikxψ(z, t), where 0 ≤ q ≤ 0.5
is the Floquet multiplier (Bloch number) and k is the horizontal wave number. With the
definition of ∇′2 in equation 9,

∇′2ψ ≡ −(k2 + q2)ψ + 2iq∂zψ + ∂2
zψ, (9)

equations 6 and 7 then take the following form:

∂t∇′2ψ − sin z ik(∇′2ψ + ψ) =
1

Re
∇′4ψ − ikRiθ, (10)

∂tθ − ik(sin z θ + ψ) =
1

Pe
∇′2θ. (11)

Solving equations 10 and 11 numerically with periodic boundary conditions, we obtain the
parametric marginal curves for various values of q. Figure 3 shows the critical Reynolds
number as a function of q for the non-stratified (Ri = 0) case. We first note that Rec(q) ≥
Rec(q = 0), and at around q = 0.35 the minimum moves from one branch to the other, thus
a cuspy transition at q = 0.35. From figure 3 we also note that the most unstable mode has
the same periodicity as the background shear flow. Therefore, we do not need to perform
the same Floquet calculation for the stratified case. Having shown that perturbations of
the same periodicity are the most unstable, we then proceed to uncover the effect of weak
stratification on the nonlinear behavior of the flow. By this we in particular mean that we
are going to perform amplitude expansion around the k = 0 mode for small Ri. From the
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(a) (b)

Figure 3: Critical Reynolds number (a) and critical wave number (b) as functions of the
Floquet multiplier q for the non-stratified Kolmogorov shear flow.

linear analysis, we have observed that the critical wave number kc increase from zero (for no
stratification, Ri = 0) to finite value (for strong stratification). As kc transitions from 0 to
finite values, the amplitude equation changes from a Cahn-Hilliard like equation [4] for long
wavelength instability to a Ginzburg-Landau equation for finite wavelength instability. In
our weakly nonlinear analysis, we focus on the weak stratification limit where the system still
inherits the instability to long wavelength perturbation. To have buoyancy (θ) appear at the
desired order in the amplitude equation, we rescale θ and put Ri to small numbers such that
Ri ≡ ε6F6 and b ≡ Riθ/ε5 = εF6θ. Equations 4 and 5, in the new scaling, take the following
form:

ε4∂τ∇2ψ − εJξ(ψ,∇2ψ) − ε sin z(∇2ψ + ψ)ξ =
1

Re
(1 − ε2)∇4ψ − ε6bξ, (12)

ε4∂τ b− εJξ(ψ, b) − ε2F6ψξ − ε sin zbξ =
1

Pe
∇2b, (13)

where Jξ is the usual Jacobian with respect to ξ and z.

3 Weakly nonlinear analysis: Pe ∼ O(1)

In this section we first construct the amplitude equations for the stratified shear flow with
Pe ∼ O(1). We remark here that we are mostly interested in two ranges of Pe: Pe ∼ O(1)
and Pe � 1. The range Pe � 1 is where molecular diffusivity dominates the dynamics, and
to first few orders in the expansion, there appears to be no coupling between the temperature
and the flow, and thus is of no interests in our analysis. In real physical systems (salty water,
for example), the Pelect number for a small Reynold number of

√
2 is already on the order

of a thousand, and thus cases where Pe � 1 are of more physical relevance. In subsection
3.3 we present numerical solutions to the amplitude equations for the Pe ∼ O(1) case. In the
following section, we derive the amplitude equation for the nondiffusive case (Pe � 1).
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3.1 Construction of the amplitude equations:

Pe ∼ O(1)

Adopting the scaling discussed in section 2.2, and expanding ψ and θ as follows

ψ = ψ0 + εψ1 + ε2ψ2 + ε3ψ3 + · · · , (14)

θ = θ0 + εθ1 + ε2θ2 + ε3θ3 + · · · , (15)

we substitute the above expansions into equations 12 and 13. Collecting terms order by order,
(ψi, θi) that satisfy the periodic boundary conditions (for the “fast variable” z) are obtained,
and the solvability condition at each order gives rise to relationships between ψi and θi. At
the zeroth order O(ε0), the equations are:

ψ0zzzz = 0,
1

Pe
b0zz = 0, (16)

and the periodic solutions are

ψ0 = A(ξ, τ), b0 = B(ξ, τ). (17)

At the first order O(ε1), we obtain the following equations

1

Re
ψ1zzzz = −Aξ sin z, (18)

ψ0zBξ − ψ0ξBz =
1

Pe
b1zz, (19)

and the periodic solutions

ψ1 = −ReAξ sin z +A1(ξ, τ), b1 = PeBξ sin z +B1(ξ, τ). (20)

At the second order O(ε2), the equations are as follows:

1

Re
ψ2zzzz = −A1ξ sin z − ReA2

ξ cos z, (21)

1

Pe
b2zz = −B1ξ sin z − (Re + Pe)AξBξ cos z − (

Pe

2
+

1

Pe
)Bξξ − F6Aξ +

Pe

2
Bξξ cos 2z. (22)

At this order O(ε2), the solvability condition for ψ2 gives rise to the critical Reynolds number
Re = R0 ≡

√
2. The solvability condition for θ2 gives us the following relationship between

B(≡ θ0) and A(≡ ψ0):

(
Pe

2
+

1

Pe
)Bξξ + F6Aξ = 0. (23)

The solutions at this order are:

ψ2 = −R0A1ξ sin z − R0
2A2

ξ cos z +A2(ξ, τ), (24)

b2 = PeB1ξ sin z + Pe(R0 + Pe)AξBξ cos z − Pe2

8
cos 2zBξξ. (25)
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Going on to the 3rd order in ε, we have the following equations for ψ3:

1

R0
ψ3zzzz = [R0

2A3
ξ − 3Aξξξ −Aξ −A2

ξ ] sin z − 2R0
2A1ξAξ cos z, (26)

and the solution ψ3 is easily obtained as follows:

ψ3 = R0[R0
2A3

ξ − 3Aξξξ −Aξ −A2ξ] sin z − 2R0
3A1ξAξ cos z +A3(ξ, τ). (27)

The solvability condition at this order gives us the amplitude equation:

(Aξξ)τ +
3R0

2
Aξξξξξξ + {[R0 −

R0
3

3
A2

ξ ]Aξ}ξξξ −
F6

Pe/2 + 1/Pe
A = 0. (28)

Following Sivashinsky, if we write ∂z = ∂z + ε3∂η, we obtain identical solutions till the second
order and obtain the following amplitude equation at third order:

(Aξξ)τ = −3R0

2
Aξξξξξξ − {[R0 −

R0
3

3
A2

ξ ]Aξ}ξξξ

−AηAξξξ +AξAξξη +
R0

2

2
(Aξ)

2
ξη +

F6

Pe/2 + 1/Pe
A.

(29)

We note that the buoyancy amplitude B is completely slaved to the stream function amplitude
A as the effect of the stabilizing temperature gradient is put to higher order (ε6). Writing
ρ = ξ + cη, we can turn equation 29 into a uni-directional amplitude equation [1] in terms of
ρ and τ as follows:

(Aρρ)τ = −3R0

2
Aρρρρρρ − {[R0 −

R0
3

3
A2

ρ]Aρ}ρρρ +
cR0

2

2
(Aρ)

2
ρρ +

F6

Pe/2 + 1/Pe
A, (30)

where c is the aspect ratio of the characteristics of the uni-directional flow.

3.2 Lyapunov functional

In this subsection we derive a Lyapunov functional for the 1D amplitude equation (equation
28). Following [7], we try to find an energetic functional of amplitude A such that the
evolution of the amplitude can be described by the functional. To be more specific, we seek
a Lyapunov functional V [A] such that

∂τA = −δV [A]

δA
, ∂τV = −

∫
(A(ξ, τ)τ )

2dξ, (31)

which then implies that the system cannot sustain oscillatory motion and has to settle down
to a stationary equilibrium. For the 1D amplitude equation for the weakly stratified case,
it is straightforward to find a functional for the amplitude equation 28 if we rewrite it as
follows:

(Aξξ)τ = −∂2
ξ

δF

δA
+

F6

Pe/2 + 1/Pe
A, (32)
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where

F [A] ≡ −1

4

∫
4A2

ξ −A4
ξ − 2A2

ξξdξ. (33)

Putting Cξξ ≡ A, we write down the evolution equation for F as:

dF

dτ
= −

∫
A2

τdξ −
F6

Pe/2 + 1/Pe
∂τ

∫
C2

ξ

2
dξ. (34)

This indicates that the new functional G ≡ F +
F6PeC2

ξ

Pe2
+2

is decaying in time and there is a

stationary solution for arbitrary initial conditions. In the absence of the stabilizing stratifi-
cation, random perturbation of small scales will reach a stationary solution with minimum
number of nodes within the domain, i.e., the scale of the stationary solution is the size of the
domain. This is the essence of inverse cascade: the evolution of the amplitude is such that
the spatial scale increases until it reaches the scale comparable to the size of the computation
domain. In the nonstratified case, since the functional is expressed in the gradient of A, an
the fact that A is periodic in ξ, we conclude that the stationary solution A(ξ) should have
only one bump inside the domain. However, this inverse cascade is arrested by the presence
of stabilizing stratification, as the additional term Cξ included in the functional prevents the
inverse cascade process. This will be demonstrated in the following subsection.

3.3 Numerical solution

In this section we present numerical results from solving the amplitude equations using a
pseudo-spectral code. First we show results for the 1D version of the amplitude equation
(equation 28). Figure 4 demonstrates the stabilizing effect of the temperature: the ampli-
tude decreases and the structure tends to be of smaller scale as we increase the strength of
stratification. As shown in the previous subsection, we can find a Lyapunov functional for
this equation in terms of the gradient of the amplitude, therefore, we display the temporal
evolution of the amplitude gradient (figure 5). Figures 5 show the time-space plots for the
gradients of the amplitudes without any stratification in (a) and with an F6 = 0.1 in (b). We
note that the inverse cascade manifested in panel (a) is arrested by the presence of stabilizing
stratification in panel (b), in agreement with the conclusion we draw from the Lyapunov
functional. The numerical solutions to the uni-directional amplitude equation (equation 30)
are displayed in figures 6, where the time evolution is for the amplitudes, not the amplitude
gradients. In panel (a) of figures 6, where there is no stratification, we see the chaotic behav-
ior of the flow due to the extra nonlinear term. Yet in panel (b) where F6 = 0.1, we see the
stratification diminishes the chaotic behavior and reduces the flow to spatially periodic.
In figures 7 we show the solutions (Ψ0 +A(ξ, η, τ)) to the 2-D amplitude equation, where the
computation domain has been scaled by an aspect ratio c = 20 as suggested in [3]. The only
difference between these two snapshots of the stream functions is the stratification strength.
We note that the effect of stratification is manifested not only by the change in the amplitude
of the flow but also the flow patterns: the stronger the stratification, the smaller the scales
are for the flow patterns.
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Figure 4: Numerical solutions at t = 300 for various strengths of weak stratification.

(a) (b)

Figure 5: Time-space plots of the amplitude gradient with F6 = 0 (a) and F6 = 0.1 (b).
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(a) (b)

Figure 6: Time-space plots of the amplitude for the uni-directional flow with F6 = 0 (a) and
F6 = 0.1 (b).

(a) (b)

Figure 7: Stream function (zeroth order) from the 2D amplitude equation for (a) F6 = 0.01
at t = 15 and (b) F6 = 0.1.
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Figure 8: Snapshot of the horizontal average of the total temperature profile for F6 = 0.01.

In figures 8 and 9 we show the horizontal average of the temperature to demonstrate the
potential of layer formation in the temperature. Figure 8 is a snapshot of the horizontal
average temperature: T0(z) +B(ξ, η, t). We note that in Panel (a) of figure 9, layers disappear
and re-appear randomly, while in Panel (b) layer structures eventually disappear due to the
stabilizing stratification which diminishes the flow.

(a) (b)

Figure 9: Horizontal average of the total temperature profile at various times for (a) F6 = 0.01
and (b) F6 = 0.1.

4 Internal Boundary Layer for large Peclet numbers: Pe → ∞
In this section we focus on the instability of the stratified shear flow in the large Peclet
number limit. Figure 10 displays characteristics of the eigenfunctions of the stratified shear
flow: the stream function disturbance reaches local minima while the temperature peaks at
the inflection point of the background shear flow.

The above structure reminds one of the no-slip, no-flux boundary layer: velocities vanish
at the walls and so does the density flux. This is similar to what we observe from the eigen
function (for the unbounded case) except that there is a constant background vertical velocity
if the horizontal wave number k is not zero. Figures 11 show the internal boundary layer
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Figure 10: Eigenfunctions for stratified shear flow. The Prandtl number Pr = 104 and sin z
is the background shear flow. The solid line is for the stream function disturbance ψ and the
dashed line is the temperature disturbance θ.

(a) (b)

Figure 11: (a) Internal boundary layer structure as the Prandtl number Pr increases. The
Prandtl numbers for the solid, dashed, and dash-dotted lines are, respectively, 10, 103, and
105. (b) The boundary layer thickness as a function of Pr (note that since the Reynolds
number is fixed, the Peclet number is proportional to the Prandtl number). The solid line is
the best fit for the last five points, which indicate that the thickness scales to Pe−0.326. The
Richardson number Ri is fixed at 0.01 and the Reynolds number is Re = 1.92.
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structure as we vary the Prandtl number. We observe the decrease of the internal boundary
layer thickness as we decrease the molecular diffusivity. By balancing the advective term
(associated with the background shear flow) and the diffusive term, we obtain a naive scaling
of the boundary layer thickness (l) with the Peclet number Pe:

l ∼ Pe−1/3, (35)

which is in fair agreement with the empirical fit obtained from the numerical solutions to the
linearized equations. Also in this limit of large (or infinite) Peclet number, the scaling and
expansion used in previous section to derive the amplitude equations no longer work inside
the “internal boundary layer” as terms of different orders are mixed up. Thus we need to find
a new scaling inside the internal boundary layer and perform asymptotic matching across the
internal boundary layer. We first perform asymptotic matching for infinite Peclet number
cases, and then relax the infinite Peclet number limit to large Peclet number limit (ε10) and
derive the dispersion relations and general linear solutions in subsection 4.2.

4.1 Scaling and asymptotic matching for the internal boundary layer

We first focus on the linearized version of equation 13 and put right hand side to zero:

ε2∂τθ + sin zθξ − ψξ = 0. (36)

The zeroth order solution is (A is the amplitude for the stream function disturbance as defined
in 3.1)

θ0 =
ψ0

sin z
=

A

sin z
. (37)

The solutions for the first and the second order are:

θ1 =
ψ1

sin z
, θ2 =

ψ2

sin z
. (38)

The third order solution takes the following form:

θ3ξ =
ψ3ξ

sin z
− ψ0τ

sin2 z
. (39)

As the background shear flow goes to zero at z = 0, the “outer” solutions shown above are
no longer regular. We therefore need to find different scaling around z = 0 to avoid this
embarrassment by matching the above “outer” solution to the “inner” solution, to be derived
in the following with the new scaling. The new scaling we adopt is as follows: around z = 0
we scale z = ε3Z and θ = ε−3Θ. The rescaled, linearized equation takes the following form:

∂τΘ + ZΘξ − ψξ = 0, (40)

where we have replaced sin z with ε3Z. To perform the matching between inner and outer
solutions, we first write the inner solution Θ as

Θ =
A

Z
+
B

Z2
+ · · · (41)
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where A is the stream function amplitude and B is to be determined by matching the inner
solution to the outer solution. We then express the outer solution (full solution to the third
order) in terms of the rescaled coordinate Z inside the internal boundary layer:

θ =
A

sin z
+ ε

R0Aξ sin z

sin z
+ ε2

R0A1ξ sin z + R0
2A2

ξ cos z +A2

sin z
+ ε3(

ψ3

sin z
− C

sin2 z
), (42)

=
A

ε3Z
+ εR0Aξ + ε2[R0A1ξ +

R0
2A2

ξ(1 − ε6) +A2

ε3Z
] + ε3(

ψ3

ε3Z
− C

ε6Z2
), (43)

where Cξ = Aτ . The leading order term in equation 43 (order ε−3)

θ ∼ 1

ε3
(
A

Z
− C

Z2
) + O(ε−1) (44)

gives us the undetermined B as follows:

Bξ +Aτ = 0. (45)

Having shown how the asymptotic matching works in the internal boundary layer, we press
on to find the consistent scaling for the Peclet number. Adopting the same scaling for the
inner solution above, we have to put Pe to order ε−10 to have the diffusive term appeared at
the first order in the equation for Θ inside the internal boundary layer:

∂τΘ + (ZΘ − ψ)ξ =
1

P10
ΘZZ . (46)

We first note that the boundary conditions for the above linear equation have to be found
by matching the inner solution to the outer solution. Secondly, we note that the zeroth
order term Θ0 has non trivial Z and ξ dependence, in contrary to what we have found for
Pe ∼ O(1) cases.

4.2 Amplitude equation and the dispersion relation

The previous analysis shows that, in the limit of large Peclet number, Θ depends on Z as
well as ξ and τ . With this in mind, we proceed from equations 12 and 13 to write down
the amplitude equation for the internal boundary layer. First we note that as the strength
of stratification is put to ε6, the solutions for the stream function obtained in section 3.1
are still valid in the internal boundary layer. We then only need to concentrate on the heat
equation for θ:

∂tθ − J(ψ, θ) + sin z∂xθ − ∂xψ =
1

Pe
∇2θ (47)

Adopting the scaling ∂t = ε4∂τ , ∂x = ε∂ξ, ∂z = ε−3∂Z and θ = ε−3Θ the above equation takes
the following form:

ε∂τΘ − ε−5J(ψ,Θ) + ε(ZΘξ − ψξ) =
ε

P10
ΘZZ . (48)
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Rescaling Θ′ = ε6Θ, ψ′ = ε6ψ and dropping the primes, we arrive at the following equation
for the temperature disturbance inside the internal boundary layer:

∂τΘ − J(ψ,Θ) + ZΘξ − ψξ =
1

P10
ΘZZ . (49)

The stream function amplitude A satisfies the same equation 28 except that inside the internal
boundary layer, the average of Θx over Z is not simply Θx as Θ depends on Z as well. Also,
we have to rescale A accordingly inside the internal boundary layer, so all the nonlinear terms
in equation 28 drop out and we obtain the following equation:

∂τAξξ = −R0(
3

2
Aξξ +A)ξξξξ − F6

∫ “∞”

“−∞”
ΘξdZ, (50)

where the integral range (“−∞”, “∞”) is referred to the scaled internal boundary layer. To
zeroth order in ε, we obtain the following equation:

∂τΘ −AξΘZ + ZΘξ −Aξ =
1

P10
ΘZZ , (51)

where A = A(ξ, τ) is the amplitude for the stream function. Equations 50 and 51 are the
amplitude equations for the internal boundary layer. The linear equations for the internal
boundary layer are

∂τAξξ = −R0(
3

2
Aξξ +A)ξξξξ − F6

∫ ∞

−∞
ΘξdZ, (52)

∂τΘ = −ZΘξ +Aξ +
1

P10
ΘZZ . (53)

We first derive the dispersion relation for the infinite Peclet number case. Replacing ∂ξ with
ik and ∂τ with s, we obtain the following equations:

−k2[s+
3R0

2
k4 − R0k

2]A = −F6

∫ ∞

−∞
ikΘdZ, (54)

(s+ iZk)Θ = ikA. (55)

Substituting equation 55 into 54, we obtain the dispersion relation for the infinite Peclet
number case:

s = −F6

|k|sgn(s)π − 3R0

2
k4 + R0k

2. (56)

In the case of finite, large Peclet numbers, we expand Θ in both eikx and eiqz and obtain the
following equations

−(s+ kq2)Θ̃ + Θ̃q = −2πiÃδ(q), (57)

where Θ̃ and Ã are Fourier components in the k− q spectral space. The solution to equation
57 is

Θ̃ = e(sq+kq3/3)/k

∫ ∞

q
2πiÃδ(q′)e−(sq′+kq′3/3)/kdq′ (58)

= e(sq+kq3/3)/k2πiÃH(−q), (59)
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where H is the Heaviside function. Substituting the above normal mode solution for Θ̃ into
52, we get the dispersion relation for the large, finite Peclet number case:

s = −F6

|k|π − 3R0

2
k4 + R0k

2. (60)

We note the difference between equation 56 and 60 is the existence of sgn(s), and we display
the two dispersion relations in figure 12.

Figure 12: Dispersion relation for the internal boundary layer (R0 =
√

2). Curves are labeled
by the scaled Richardson number F6: From curve 1 to curve 4, F6 are, respectively, 0, 0.005,
0.02, 0.045. The solid lines are for the infinite Peclet number cases, and the dotted lines are
for large Peclet number cases.

We also note that for any given Reynolds number, the value of F6 such that the maximum
growth rate s is zero is proportional to the Reynolds number and the ratio is 0.0322. We
are now ready to find the general solution to Θ for large Peclet number cases. We rewrite
equation 53 as follows:

κΘZZ − (s+ ikZ)Θ = ikA, (61)

where κ = 1/P10. Dividing the above equation by ikA and denote f ≡ Θ/ikA, we obtain the
following equation which allows us to find a closed-form solution:

κfZZ − ik(Z − is/k)f = 1. (62)

The solution is the Yi function:

Θ =
iπA

kκ
Yi[k(Z − is/k)]. (63)

5 Inviscid limit of the stratified, Kolmogorov shear flow

In this section we conclude the report by presenting a brief study on the inviscid limit of the
stratified Kolmogorov shear flow. A general review on linear analysis of the inviscid shear flow
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Figure 13: Dispersion relation for the internal boundary layer (R0 =
√

2). Dashed lines are
for order O(1) Peclet numbers and solid lines are for large Peclet numers. Curve ‘1’ is for
F6 = 0, curves ‘2’ and ‘a’ are for F6 = 0.001, curves ‘3’ and ‘b’ are for F6 = 0.01, curves ‘4’
and ‘c’ are for F6 = 0.03, and curves ‘5’ and ‘d’ are for F6 = 0.045.

can be found in [8]. Here we provide a way to find neutral states for the unbounded, stratified
Kolmogorov shear flow. We have numerically verified the marginal boundary presented in
the following analyses, and it would be an interesting direction to provide analytic proofs
that this is indeed the case. We should also point out that there may be hope to couple the
critical layers (CL) associated with each inflection point in the background shear flow, and
hence the interaction between CLs can be investigated.

5.1 Linear analysis: analytical and numerical

The inviscid, nondiffusive system (1/Pe = 0) is described as follows (where the shear flow is
a sinusoidal sin z in a periodic domain):

∂t∇2ψ − J(ψ,∇2ψ) + sin z∂x(∇2ψ + ψ) = −F∂xθ, (64)

∂tθ − J(ψ, θ) + sin z∂xθ − ∂xψ = 0. (65)

The linearized equations can be put into the following equation with the diffusivity being
zero:

(sin z − c)(D2 − k2)ψ + sin zψ = − Fψ

sin z − c
, (66)

where D ≡ ∂z and c is growth rate divided by the wave number. In this notation, the
imaginary part of c indicates instability: positive imaginary part means growing mode and
negative imaginary part means decaying mode. We reorganize the above equation into a
more familiar form usually found in the past literature:

ψ′′ − k2ψ +
sin zψ

sin z − c
= − Fψ

(sin z − c)2
. (67)
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First we put c = 0, though in general only the imaginary part is required to be zero on the
neutral curve. Equation 67 now takes the following form:

D2ψ + (1 − k2 +
F

sin2 z
)ψ = 0. (68)

The above equation can be solved as follows: first we put the left hand side of equation 68
as the product of two differential operators as defined as follows:

(D2 + 1 − k2 +
F

sin2 z
)ψ = LL†ψ = 0, (69)

where L and L† are defined as

L ≡ D +
a

cot z
, L† ≡ D − a

cot z
, (70)

and a is to be determined (in terms of k and F ). We note that LL† = D2 − (f ′ + f) where
f = cot z, and relationships between a, k, and F are obtained as follows:

a = 1 − k2, F = a− a2 =
√

1 − k2 − (1 − k2). (71)

The first solution ψ1 is obtained by demanding Lψ1 = 0 and takes the following form:

ψ1 = (sin z)
√

1−k2

, z ≥ 0. (72)

The second solution ψ2 satisfies the following equation

L†ψ2 = (sin z)−
√

1−k2

, (73)

and is obtained as follows:

ψ2 = (sin z)
√

1−k2

∫ z

(sin z′)−2
√

1−k2

dz′. (74)

For some value of k, the second solution is not periodic in z and therefore is not of particular
interest. F , as a function of k, is shown in figure 14. First we note that the maximum value
of F is 1/4 when k =

√
3/4. We also note that k goes from 0 to 1 as we are only interested

in positive F .

6 Conclusion

We have investigated the effect of stabilizing stratification on the Kolmogorov shear flow in the
weak limit where the long wavelength instability inherits from the non-stratified shear flow.
Concentrating on cases where Pe ∼ O(1), we first derived amplitude equations for the weakly
stratified Kolmogorov shear flow and demonstrated the stabilizing effects by numerically
solving the amplitude equations. For the 1-D amplitude equation, the stabilizing gradient
arrests the inverse cascade and weaken the flow. For the uni-directional amplitude equation,
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Figure 14: Stability boundary for the inviscid, non-diffusive limit.

the gradient not only lessens the flow, but also diminishes the chaotic behavior of the uni-
directional solution. The same phenomena have been observed for the large aspect ratio 2-d
solutions to the full amplitude equation. For the nondiffusive limit (Pe ∼ ε−10), the dynamics
are dominated by the internal boundary layer. From the linear eigenfunctions, we are able
to estimate an empirical scaling of boundary layer thickness with the Peclet number. We
choose boundary layer scaling accordingly and derive amplitude equations for the internal
boundary layer. Dispersion relations are derived and utilized for some preliminary analysis.
The linear stability of the stratified, inviscid Kolmogorov shear flow has been investigated as
a preliminary step to the weakly nonlinear analysis which is now under investigation.
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