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Abstract

We explore the possibility of flow instability through an elastic channel to explain seismic
observations of tremors in such varied environments as volcanoes and icebergs. We consider
the flow to be constricted in a narrow conduit and subjected to perturbations due to the
propagation of compressional waves in the larger conduit. The pressure wave in the fluid
are generated at the outlet of the channel by the oscillation of the walls. The growth of
these self-excited perturbations may be a source of nonlinear oscillations of the wall in the
channel. We explore the linear stability of various models driven by pressure gradients in the
channel. We find that no linear instability persists without inertial effects in the channel.
For finite yet small Reynolds number, we find growing oscillatory modes corresponding
to pressure variations in the fluid flowing through the channel. Without inertial effects,
the decaying oscillations in the channel have frequencies close to the natural notes of the
conduit, corresponding to sound waves bouncing back and forth in the conduit. With inertial
effects, however, the apparent frequencies of growing oscillatory modes are smaller than the
corresponding harmonic frequencies of the conduit. The smaller apparent frequency of
growing modes compared to the normal modes of a magma chamber (or reservoir, for water
systems) relaxes the constraints on the linear dimension of the inferred finite bodies that host
the tremor source. The proposed self-excited model may be a relevant candidate to explain
observations of tremors in various geologic contexts, including at deep and shallow depths
in volcanic plumbing systems and in complex water circulation in icebergs. Inertial effects
in fluid flow may be responsible for the observed frequency drift which is a characteristic of
tremors.

1 Introduction

Volcanoes and, as recently observed icebergs [15], are generating long period seismic activity
that can persist for several minutes up to a few months. The so-called harmonic tremors are
characterized by their low frequency content with a peaked spectra between 0.15 and 10 Hz.
Within volcanoes, where they are generally observed, tremors often occur in connection
with eruptions [2, 3] and their source originates from the shallow depth to about 50 km.
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Volcanic tremors have attracted considerable attention because of their potential to con-
strain physical processes occurring inside volcanoes plumbing system. Tremors have been
observed in numerous volcanoes including Mount Kilauea in Hawaii [16, 2], Mt. Etna [9]
and Mt. St. Helens [10]. For a recent review of the observational evidence, we refer to [14].
The driving mechanism behind tremor activity is believed to involve a complex interaction
between magmatic flow and surrounding bedrock in the volcano pipe system [1, 11, 3] as op-
posed to the brittle failure of rock that characterizes tectonic earthquakes. Tremors appear
to be primarily composed of P waves [2].

Early theoretical models of tremors considered the vibration of compressible fluid-filled
cracks in a layered elastic crust [7]. Aki et al. [1, 2] modeled the source of tremors to be the
vibration of a crack filled with magma driven by the excess magmatic pressure. Such a jerky
extension of the crack sets up a vibration, with a predominant period proportional to the
linear dimension of the crack, and the amplitude proportional to the excess pressure and to
the area of extension. Chouet [8] explored this assumption further with a model consisting
of three elements, namely a triggering mechanism -an explosive point-source overpressure-,
a resonator, and a radiator. The low frequency of tremors can be explained by normal
mode oscillation in a volcanic magma chamber. For instance, the extremely long-period
volcanic tremor, with periods up to 7s, observed at Mount Aso may be generated by a
fluid-filled crack of modest size, a magma body 0.5 m thick and 0.5 km long [11]. The
large linear dimension of required magma body to explain low frequency signals might be
found in certain volcanic contexts, but may not be found systematically at shallow depths.
Julian [13] showed that certain aspects of volcanic tremors such as periodic and chaotic
oscillations, correlation between tremor activity and surface eruption, changes in amplitude,
or frequency drifting can be explained by the flow of an incompressible viscous fluid through
a channel with movable elastic walls, noting further that the obtained nonlinear process finds
analogies with the excitation mechanism of musical wind instruments [4, 5]. Balmforth et
al. [6] explored the stability of an incompressible flow through elastic conduits buried in
a Hookean solid. They found that a critical Reynolds number is required for growing
instability, and that Instabilities analogous to roll waves occur in this system.

In this study, we look for a mechanism for self-excitation of oscillations. We start with
the model of Balmforth et al. [6] consisting of fluid flow through an elastically deformable
channel but we couple the flow to sound waves in a larger conduit. The compressional waves
in the conduit modulate the pressure at the outlet of the channel. We explore the possibility
of such system to generate growing instabilities. The advantage of the proposed mechanism
compared to previous models is that no outside perturbation, such as jerky over-pressure,
a nearby earthquake or sudden crack opening is required to start the oscillations. In a first
section, we develop the equations relevant to incompressible fluid flow in a narrow conduit
with deformable walls. We obtain equations similar to lubrication theory but with inertia
terms conserved. We consider the linear stability of simple models when inertial effects are
ignored. In a next section, we consider the linear stability of dynamic model and look for a
critical Reynolds number for onset of growing oscillations. In order to simplify an analytic
treatment of the stability analysis, we consider the case of an open-funnel geometry. In an
appendix, we derive the governing equations for the case of a compressible fluid.
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2 Model and Governing Equations

We consider the two-dimensional flow of a Newtonian fluid in conduit of width W being
constricted into a channel of height H and length L (see Fig. 1) such as H � L and
H � W . In the channel, where 0 < x < 1, the fluid velocity v = (u êx + v êy) satisfies the
Navier-Strokes equation

vt + v · ∇v = −1

ρ
∇p + ν∇2v (1)

subjected to the equation of mass conservation for incompressible material

∇ · v = 0 (2)

and where p is the fluid pressure, ρ is the fluid density and ν is the kinematic viscosity. We
consider the boundary conditions

u(x, h, t) = 0

v(x, 0, t) = uy(x, 0, t) = 0

h(0, t) = H

(3)

where h(x, t) is the unknown height of the channel walls. The second condition in eq. (3)
is due to the symmetry about the x-axis. In the larger conduit, L < x < L + l, we assume
that the flow is steady and only perturbed by a pressure wave, satisfying

ptt − c2∇2p = 0 (4)

where c is the sound speed in the fluid. The higher fluid velocity in the channel generates
pressure fluctuations at the exit of the constricted conduit. The pressure variations are
then propagated as elastic waves in the larger conduit. The wave bounces back to the
channel and perturbs the mean flow, generating potential instabilities. Let us define the
dimensionless parameters

x̃ = Lx, ỹ = H y,

ũ = U u, ṽ =
U H

L
v,

p̃ = ρ ν
U L

H2
p, t̃ =

L

U
t

c̃ = C l̃ = L l

ρ̃ = ρ0 ρ W̃ = H W

(5)

where the (soon-abandoned) tilde-decorated variables have physical dimensions. Using the
Reynolds number

R =
H2U

Lν
(6)

and the dimensionless relative velocity (sound wave speed compared to flow speed) for the
conduit

α =
C

U
(7)
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Figure 1: Geometry of the constricted flow. Fast fluid in the constricted channel generates a
pressure wave in the conduit. The pressure wave bounces back to the channel and perturbs
the mean flow, generating potential instability.

The dimensionless governing equations in the conduit are the wave equation

ptt − α2pxx = 0 (8)

and the equation of mass conservation

R ut + px = 0 (9)

Assuming H/L � 1, the two-dimensional Navier-Stokes equation in the channel simplifies
to

R (ut + uux + v uy) = −px + uyy

py = 0
(10)

so one writes p = p(x, t). The boundary conditions are now

u(x, h, t) = v(x, 0, t) = uy(x, 0, t) = 0

h(0, t) = 1
(11)

For steady-state condition, one simply have uyy − px = 0. Integrating twice and using
boundary conditions of eq. (11), one obtains

u(x, t) =
1

2
px(y

2 − h2) (12)

The average across-slot velocity

ū(x, t) =
1

h

∫ h

0

u dy (13)
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is given by integration of eq. (12)

ū(x, t) =
px

2h

∫ h

0

(y2 − h2) dy

=
px

2h

[

1

3
y3 − h2y

]h

0

= −px

3
h2

(14)

The mean horizontal velocity is directly related to the pressure gradient and the wall height.
Integrating the divergence-free condition on the velocity field, one finds

∫ h

0

∇ · v =

∫ h

0

ux + vy dy =

∫ h

0

ux dy +

∫ h

0

vy dy

=

∫ h

0

ux dy + [v]h
0

(15)

Defining v(h) = ht, one gets

ht +

∫ h

0

ux dy =
∂

∂x

∫ h

0

u dy − u(h)hx + ht = 0 (16)

but the no-shear boundary condition u(h) = 0 (eq. 11) leads to

ht +
∂

∂x

∫ h

0

u dy = 0 (17)

or, using the mean velocity formulation of eq. (13), one gets the expression for the conser-
vation of mass in terms of mean horizontal flow ū and height h of the channel walls

ht + (hū)x = 0 (18)

or in terms of pressure using eq. (14)

ht =
1

3

(

h3px

)

x
(19)

Assuming that a linear relationship exists between pressure and the wall height in the
channel, eq. (19) corresponds to a nonlinear diffusion equation, which also appears in shallow
water approximations [12].

2.1 Simple Models

For the sake of simplicity, we assume that the elastic wall height is uniform at equilibrium (no
flow assumption). We consider that the elastic walls exert a force on the fluid proportional
to the change of height (i.e., a mattress of springs approximation)

p = Γ(h − 1) (20)

where h = 1 is considered the dimensionless height of the wall at equilibrium (uniform
height approximation). Variable Γ is dimensionless is the corresponding physical quantity
is

Γ̃ = ρ ν
U L

H3
Γ (21)
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Using eqs. (20), (14) and (18), one obtains a nonlinear diffusion equation for the wall height

ht =
Γ

3

(

h3hx

)

x
(22)

We consider now the perturbation of the system by a sound wave propagating in the
larger cavity from x = 1 to x = l. We adopt a one-dimensional approximation for the wave
propagation. Using the dimensionless equation of state

p = α2R ρ , (23)

the conservation of mass
ρt + ux = 0 (24)

and the conservation of momentum

R ut + px = 0 , (25)

one obtains the pressure wave equation

ptt − α2pxx = 0 (26)

subjected to the boundary condition u(x = l, t) = 0 or, equivalently, to px(x = l, t) = 0.

2.1.1 Dispersion Equation

We write the perturbation as

h = 1 + h′eλt+mx, 0 ≤ x ≤ 1

p = eλtP (x), 1 ≤ x ≤ l + 1
(27)

where m and λ are complex and h′ � 1. We further require that the pressure is continuous
at the exit of the channel. Plugging eq. (27) into the nonlinear diffusion equation of eq. (22),
and one obtains after linearization

λ =
1

3
Γm2 (28)

The wall height can be written

h = 1 + h′

1 e+x
√

3λ/Γ+λt + h′

2 e−x
√

3λ/Γ+λt (29)

but boundary condition at the origin x = 0 (see eq. (11)) gives h′

1 = −h′

2 so we write the
wall height perturbation as follows

h = 1 + 2h′ eλt sinh

√

3λ

Γ
x (30)

In the larger cavity, the pressure perturbation must satisfy the wave equation. Using
eqs. (26) and (27), and the separation of variables p = eλtP (x), one gets

λ2P = α2Pxx (31)
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solution for pressure perturbation is

p(x, t) = eλt

(

a cosh
λ

α
(l+1 − x) + b sinh

λ

α
(l+1 − x)

)

(32)

with a and b real coefficient. The boundary condition px(x = l, t) = 0 demands b = 0.
Writing the continuity of pressure at x = 1, one obtains

2Γh′ sinh

√

3λ

Γ
= a cosh

λl

α
(33)

Finally, we require the conservation of fluid flux F between the two domains. The flux in
the channel is given by

Ḟ− = (ū h)t = −
(px

3
h3

)

t
= −

(

Γ

3
h3hx

)

t

= −λ

√

λΓ

3
2h′ eλt cosh

√

3λ

Γ
x + O(h′2)

(34)

where the last step is obtained by linearization of walls height perturbation. In the conduit,
the rate of flux is

Ḟ+ = W ut = −W

R
px

=
λ

α

W

R
eλta sinh

λ

α
(l+1 − x)

(35)

Equating (34) and (35), one obtains the flux continuity condition
√

λΓ

3
2h′ cosh

√

3λ

Γ
+

W

αR
a sinh

λ l

α
= 0 (36)

Equation (36) together with eq. (33) leads to the dispersion equation
√

λ

3Γ
+

W

αR
tanh

λ l

α
tanh

√

3λ

Γ
= 0 (37)

We can see by simple inspection that no real positive part of λ can satisfy eq. (37). The
simple formulation of the problem leads to a stable solution.

2.1.2 A Stability Theorem

Considering the conservation of momentum and conservation of mass equations, one can
write











u(ut +
1

R
px) = 0

1

Rα2
p(pt + ux) = 0

(38)

After integrating eq. (38), one obtains

1

2

d

dt

∫ l+1

1

R u2 + ρ p dx = − [up]l+1

1

=
1

ρ1

(up)x=1

(39)
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Conservation of flux at x = 1 (F+ = Wu and F− = −h3px/3) and pressure eq. (20)
provides us with

u = − Γ

3W
h3hx (40)

or

up = − Γ2

3W
h3hx(h − 1) (41)

As conduit wall height obeys the nonlinear diffusion equation, one gets
∫

1

0

ht(h − 1) dx =
Γ

3

∫

1

0

(h3hx)x(h − 1) dx (42)

or
1

2

d

dt

∫ 1

0

(h − 1)2 dx =
Γ

3

[

h3hx(h − 1)
]1

0
− Γ

3

∫ 1

0

h2
xh3 dx (43)

Collecting terms, and using ρ1 = 1, one obtains

1

2

d

dt

{

Γ

W

∫ 1

0

(h − 1)2 dx+

∫ l+1

1

R u2 + ρ p dx

}

= − 2Γ2

15W

∫ 1

0

(h5/2)2x dx

(44)

As the right-hand-size term is negative definite, the rate of change of the total energy is
negative. There is only dissipation in the system and there are no growing terms possible
after perturbation.

2.2 Advection From a Pressure Gradient

We abandon the assumptions made in section 2.1 and consider in this section that fluid flow
is driven by a pressure gradient γ in the channel. (We note that this model corresponds
to the case of an open-funnel geometry, as developed in a later section, with the limit of
neglected inertia terms.) The pressure is therefore given by

p(x, t) = Γ(h − 1) + γ x (45)

where h = 1 is the wall height at equilibrium. The equation of continuity in the channel
now reads

ht =
Γ

3

(

h3
(

hx +
γ

Γ

))

x
(46)

the pressure gradient introducing an effective advection term. After linearization of the
perturbation solution, one obtains

λ =
Γ

3
m

(

m +
3γ

Γ

)

(47)

We write m1 and m2 the two solutions

m1 = −3γ −
√

9γ2 + 12λΓ

2Γ

m2 = −3γ +
√

9γ2 + 12λΓ

2Γ

(48)
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and the walls height in the channel can be written

h = 1 + 2h′ exp

(

−3γ

2Γ
x + λt

)

sinh

√

9γ2 + 12λΓ

2Γ
x (49)

In the conduit, we write the pressure perturbation such as

p(x, t) = γ + eλtP (x), 1 ≤ x ≤ l + 1 (50)

Solving the wave equation subjected to Neumann boundary condition at x = l leads to the
pressure field

p(x, t) = γ + eλta cosh
λ

α
(l+1 − x), 1 ≤ x ≤ l + 1 (51)

Writing the equation of continuity at x = 1, one gets

2 Γh′ e−3γ/2Γ sinh

√

9γ2 + 12λΓ

2Γ
= a cosh

λl

α
(52)

We require the conservation of fluid flux F between the two domains. The flux rate in
the channel is given by

Ḟ− = (ū h)t = −
(px

3
h3

)

t
= −Γ

3

(

h3
(

hx +
γ

Γ

))

t
(53)

To find the flux rate about x = 1, we note first that

px = Γhx + γ

hx = 2h′eλt−3γ/2Γ

(

√

9γ2 + 12λΓ

2Γ
cosh

√

9γ2 + 12λΓ

2Γ

− 3γ

2Γ
sinh

√

9γ2 + 12λΓ

2Γ

)

h3 = 1 + 6h′eλt−3γ/2Γ sinh

√

9γ2 + 12λΓ

2Γ
+ O(h′2)

(54)

after some algebra, one obtains

Ḟ− = −2Γ

3
λh′

[

√

9γ2 + 12λΓ

2Γ
cosh

√

9γ2 + 12λΓ

2Γ

+
3γ

2Γ
sinh

√

9γ2 + 12λΓ

2Γ

]

eλt−3γ/2Γ

(55)

The flux rate in the conduit does not differ from eq. (35). Equating (35) and (55), one
obtains the dispersion relation

(

W

αR
tanh

λl

α
+

γ

2Γ

)

tanh

√

9γ2 + 12λΓ

2Γ

+

√

9γ2 + 12λΓ

6Γ
= 0

(56)
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The leftmost quantity in parenthesis must be negative in order to a real positive solution
for λ to exist. Also notice that eq. (56) simplifies to eq. (37) in the case γ = 0. Fig. 2 shows
the norm of dispersion relation of eq. (56) on the complex plane with W/ρ1c = 1/2, Γ = 1
and γ = −2. The black circles in Fig. 2 correspond to the natural pulsation of the sound
waves in the conduit. The zeroes of the dispersion equation -corresponding to blue circles
in the contour plot- are close to the frequency corresponding to waves bouncing back and
forth in the conduit. The associated eigenvalues are located on the real negative axis and
correspond to decaying oscillation modes.

2.2.1 Stability Condition

Integrating the governing equations in the two domains and applying conservation of flux
at x = 1, one finds

d

dt

{

Γ

W

1

2

∫

1

0

(h − H +
γ

Γ
)2 dx +

1

2

∫ l+1

1

R u2 + ρ p dx

}

= − Γ

W

∫

1

0

h3hx(hx +
γ

Γ
) dx

= − Γ

W

(

2

5

∫ 1

0

(h5/2)2x dx +
γ

4Γ

[

h4
]1

0

)

(57)

For negative pressure gradient (γ < 0), any perturbation remains stable for h(1) < h(0).

3 Fluid Flow and Sound-Wave Resonator

We now adopt a more realistic formulation of the problem where the constrained pressure
gradient in the channel driving the fluid flow is compatible with the elastic deformation
of the channel walls. At static equilibrium, the channel closes itself to accommodate the
pressure difference between inlet and outlet. By writing the relation between pressure and
wall height in the channel as follows

p(x, t) = Γh (58)

and using eqs. (19) and (58), the wall height satisfies the nonlinear diffusion equation

ht =
Γ

3

(

h3hx

)

x
(59)

subjected to the boundary conditions p(0, t) = p0 and p(1, t) = p1 ≡ p0 + γ at equilibrium,
where γ is an effective pressure gradient. The walls height solving eqs. (19) and (58) at
equilibrium (ht = 0) with above-mentioned boundary conditions is

h(x) ≡ H(x) =
1

Γ

((

p4
1 − p4

0

)

x + p4
0

)1/4
(60)

where we defined H(x) to refer to the equilibrium, non-perturbed, solution. We now perform
linearization about equilibrium as follows

h(x, t) = H(x) + eλth′(x), 0 ≤ x ≤ 1

p(x, t) = p1 + eλtP (x), 1 ≤ x ≤ l + 1
(61)
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Figure 2: Contour plot on the complex plane of the dispersion relation of eq. (56) with
W/ρ1c = 1/2, Γ = 1 and γ = −2. Black circles correspond to the natural notes of the
conduit. There are no growing oscillatory modes.
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where h′(x) is small and unknown. We first note the few following results

h3 = H3 + 3H2eλth′ + O(h′2)

h3hx = H3Hx +
(

H3h′

x + 3HxH2h′
)

eλt + O(h′2)

(h3hx)x =
(

H3 h′

xx + 6HxH2 h′

x − 3H2
xH h′

)

eλth′ + O(h′2)

(62)

where we used the fact that H satisfies, by definition,

(H3Hx)x = 3H2
xH2 + H3Hxx = 0 (63)

Expanding the perturbed solution in the nonlinear diffusion equation one obtains an ordi-
nary differential for h′(x),

3

Γ
λh′ = H3 h′

xx + 6HxH
2 h′

x − 3H2
xH h′ (64)

or simply stated,
L[h′] = λh′ (65)

where the relevant boundary conditions for the eigenvalue problem are h′(0, t) = 0 and
continuity of pressure and mass flux at x = 1. The flux rate at x = 1+, in the larger cavity
is

Ḟ+ = utW = − 1

R
pxW = aλ

W

αR
eλt sinh

λl

c
(66)

In the constriction, at x = 1−, the flux rate is given by

Ḟ− = (ūh)t = −1

3

(

h3px

)

t
= −Γ

3

(

h3hx

)

t

= −Γ

3
λ eλt

[

H3h′

x + 3HxH2h′
]

+ O(h′2)

(67)

Continuity of flux at x = 1 gives at the first order

a
W

αR
sinh

λl

α
+

Γ

3

(

H3h′

x + 3HxH2h′
)

= 0 (68)

We insist on constraining continuity of pressure at x = 1. We have

p(1+, t) = p1 + a eλt cosh
λl

c
(69)

and
p(1−, t) = Γh = p1 + Γ eλth′ (70)

so continuity of pressure at x = 1 gives us

Γh′ = a cosh
λl

c
(71)

Combining the two constraints at x = 1, one obtains

h′
W

αR
tanh

λl

α
+

1

3

(

H3h′

x + 3HxH2h′
)

= 0 (72)

Numerical inspection of solutions of the dispersion equation of eq. (64) subjected to eq. (72)
at x = 1 reveals only solutions with negative real parts, such as the one shown in Fig. 3.
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Figure 3: An eigenfunction of the dispersion function of eq. (64). Solutions correspond to
decaying modes only, with negative real part eigenvalues.

3.1 Inertia Terms

We now consider the case where inertia terms in Navier-Stokes equation are small but not
negligible. The governing equations adequate for lubrication theory become

R (ut + uux + v uy) = −px + uyy

py = 0
(73)

subjected to the boundary conditions u(x, h, t) = uy(x, 0, t) = 0. At leading order, when
derivatives in the x-direction and acceleration can be neglected, the solution can be written

u(y, t) =
3

2
U

h2 − y2

h2
(74)

where h = h(x, t) and by definition,

U =
1

h

∫ h

0

u dy . (75)

We assume that small inertia terms only perturb the above steady solution so that solution
of eq. (73) can be of the form

u(x, y, t) =
3

2
U(x, t)

h2 − y2

h2
(76)

However, the eq. (76) does not provide an accurate way to evaluate uyy so, when integrating
eq. (73), we look for a certain projection f that allows us to avoid terms of the form uyy

∫ h

0

f(y)uyy dy = [f(y)uy]
h
0
−

∫ h

0

f ′(y)uy dy

= [f(y)uy]
h
0
−

[

f ′(y)u
]h

0
+

∫ h

0

f ′′(y)u dy

(77)
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Setting f ′′(y) = cste and f(h) = f ′(0) = 0, one gets

f(x, y, t) = 1 − y2/h2

∫ h

0

fuyy dy = − 2

h2

∫ h

0

u dy = −2U/h
(78)

Notice that the projection kernel f(y) is of the form of the steady solution of eq. (74).
Projecting the lubrication approximation of the Navier-Stokes equations on f(x, y, t), we
look for a solution for h(x, t) and U(x, t). We first notice, using ux + vy = 0 and v(0) = 0
that one can write

v(x, y, t) = −3

2
Uxy

(

1 − y2

3h2

)

− Uhx
y3

h3
(79)

The projected terms are
∫ h

0

fut dy =
4

5
Uth +

2

5
htU

∫ h

0

fuxx dy =
2

5

[

2Uxxh + 2Uxhx + U(hxx − 3h2
x/h)

]

∫ h

0

fuyy dy = −2U/h

∫ h

0

fuux dy =
36

35
UxUh +

12

35
U2hx

∫ h

0

fvuy dy =
6

35
U [3Uxh + Uhx]

∫ h

0

−f
px

ρ
dy = −2

3
h

px

ρ

(80)

Defining the flux,

q =

∫ h

0

u dy = hU (81)

the conservation of mass can be written

ht + qx = 0 (82)

and collecting terms, one gets the coupled equations










R

(

qt +
17

7

qxq

h
− 9

7

q2hx

h2

)

= −5

6
pxh − 5q

2h2

ht + qx = 0

(83)

Using the stress-strain relation
p(x, t) = Γh(x, t) (84)

one obtains the governing coupled equations










R

(

qth
2 − 17

7
htqh − 9

7
q2hx

)

= −5

6
Γhxh3 − 5q

2

ht + qx = 0

(85)
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3.1.1 Steady-State Solution

We look for a steady solution for the wall height H(x) and flux Q. Dropping time derivatives
in eq. (85) and using the fact that at steady state Ht = Qx = 0 and that Q is constant, one
has

Hx

(

5

6
ΓH3 − 9

7
R Q2

)

+
5

2
Q = 0 (86)

Integrating, we have

1

12
Γ(H4 − H4

0 ) − 18

35
R Q2(H − H0) + Qx = 0 (87)

If R � 1, and the flow is constrained by the pressure p0 at x = 0 and p1 at x = 1, one has

Q =
p4
0 − p4

1

12Γ3

H =
1

Γ

(

(p4
1 − p4

0)x + p4
0

)1/4

(88)

which correspond to solution of eq. (60), obtained for low Reynolds number. For finite
Reynolds number, the steady-state flux is

Q =
35 −

√

1225 + 210Γ(H4
1 − H4

0 )(H1 − H0)

36R (H1 − H0)
(89)

3.1.2 Linear Stability Analysis

We consider perturbations of the wall height, flux and pressure of the form

h(x, t) = H(x) + eλth′(x)

q = Q + eλtq′(x)

p = p1 + a eλt cosh
λ

c
(l + 1 − x)

(90)

where perturbations h′(x) and q′(x) are supposed small. Inserting eq. (90) into eq. (85) and
neglecting powers of h′ and q′, one obtains

R

(

λq′H2 − 17

7
λh′HQ − 9

7
(h′

xQ2 + 2q′Hx)

)

= −5

6
Γ

(

H3h′

x + 3H2Hxh′
)

− 5

2
q′

(91)

The relevant boundary conditions are h′(0, t) = q′(0, t) = 0, continuity of pressure and flux
at x = 1. The continuity of pressure gives

Γh′ = a cosh
λl

c
(92)

Flux perturbation on the 1+ side is

Ḟ+ = W ut = −W

ρ1

px

= aλ
W

ρ1c
eλt sinh

λl

c

(93)

177



On the other side, the flux perturbation is simply

Ḟ− = λ eλtq′ (94)

Equating the fluxes on both sides, we get the boundary condition

q′ − h′
ΓW

ρ1c
tanh

λl

c
= 0 (95)

We explore the solutions of the corresponding eigenvalue problem numerically. We find a set
a growing oscillatory modes associated with complex eigenvalues with positive real parts.
The corresponding eigenfunctions are shown in Fig. 4.

3.2 Open-Funnel Walls

We consider now the case where the wall in the channel opens in the absence of pressure.
Before fluids flow in the channel, the wall height has the equilibrium value H e(x) (see
Fig. 5). And the stress-strain relation becomes

p(x, t) = Γ (h(x, t) − He(x)) (96)

Using eq. (83) at equilibrium, where h = H(x) and q = Q, we have







R
9

7
Q2Hx =

5

6
Γ (Hx − He

x) H3 +
5

2
Q

Ht = Qx = 0
(97)

For a general form of He(x), the latter has no trivial solutions. We consider a special case
where He

x is such that Hx(x) = 0. Under this assumption, one has H = Q = 1 and

He
x =

3

Γ
(98)

Without inertia (R = 0), the governing equation (83) becomes

ht = −Γ

3

(

h3 (hx − He
x)

)

x
(99)

which is similar to the formulation of section 2.2 if we write

γ = −ΓHe
x (100)

The physical grounds of the somewhat artificial pressure γ introduced in section 2.2 are
the presence of opening walls in the conduit in the absence of pressure. Inspection of the
dispersion relation in this case did not reveal real-positive eigenvalues so we proceed with
inertia terms.
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Figure 4: The first three growing eigenmodes of the system with associated eigenvalues. Top
panel show the height eigenfunction h′(x;λ) and bottom panel shows the flux eigenfunctions
q′(x;λ) in the channel.
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x

y

0

He(x)

H(x)

Figure 5: In the absence of fluid flow, the walls have the height H e(x). The latter is chosen
such as the height of the walls is uniform when at equilibrium with steady fluid flow.

3.2.1 Stability Analysis

We write the perturbation as follows

h(x, t) = 1 + h′(x) eλt

q(x, t) = 1 + q′(x) eλt

p(x, t) = Γ (1 − He(1)) + p′ eλt

(101)

Introducing the latter decomposition into eq. (83), one finds the system of coupled equations











R

(

λq′ +
17

7
q′x − 9

7
h′

x

)

= −5

6
Γh′

x − 5

2
q′ +

15

2
h′

λh′ + q′x = 0

(102)

This result is similar to previous dispersion relations except for the newly appearing forcing
term in h′ on the right-hand side, so we expect to find emergent solutions, if any, for
high enough Reynolds number R. The pressure continuity condition provides us with the
condition

Γh′ = a cosh
λl

α
(103)

The continuity of flux at x = 1 leads to the second constraint

q′ = a
W

αR
sinh

λl

α
(104)

Combining the two, we obtain the boundary condition at x = 1

λq′ + Γ q′x
W

αR
tanh

λl

α
= 0 (105)
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other relevant conditions are simply h′(0) = q′x(0) = 0. The flux perturbation obeys the
second-order homogeneous ordinary differential equation

(

9

7
R − 5

6
Γ

)

q′xx +

(

17

7
λR +

15

2

)

q′x

+ λ

(

λR +
5

2

)

q′ = 0

(106)

The determinant of the characteristic polynomial is

∆ =

(

17

7
λR +

15

2

)2

− 4λ

(

9

7
R − 5

6
Γ

)(

λR +
5

2

)

(107)

Using the boundary condition q′x(0) = 0, the solution flux perturbation can be written

q′(x) = eA x (A sinh(B x) − B cosh(B x)) (108)

where A and B are

A = −1

2

(

17

7
λR +

15

2

)/(

9

7
R − 5

6
Γ

)

B =
√

∆

/(

18

7
R − 10

6
Γ

)

C =
(

A2 − B2
) /

λ =

(

λR +
5

2

)/(

9

7
R − 5

6
Γ

)

(109)

Using boundary condition of eq. (105) at x = 1, one obtains the dispersion relation

(

A +
ΓW

αR
C tanh

λl

α

)

tanhB − B = 0 (110)

Fig. 6 shows a view of the dispersion equation as a function of λ on the complex plane for
the parameters Γ = 1, R = 1, l/α = 1 and W/α = 2.

4 Conclusions

We investigated the potential of flow of an incompressible fluid in a channel with elastic
walls coupled to a sound wave resonator to generate self-generated growing instabilities. We
derived a simplified version of the Navier-Stokes equations valid for the small aspect ratio
of the thin channel. We obtain equations similar to the lubrication theory, but with the
inertia terms conserved. We found that simple models without flow (zero Reynolds number)
did not generate instabilities. The frequency of corresponding decaying oscillation modes
are close to the normal modes of sound waves in the conduit. We found linear instability
corresponding to growing oscillatory modes for finite yet small Reynolds number. The small
Reynolds number required for flow instability favors the occurrence of tremors in various
environments, as constraints on minimum flow speed or fluid viscosity (quantities linearly
related to the Reynolds number) are relaxed. The growing modes corresponding to low
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Figure 6: Map of the dispersion function as a function of eigenvalue λ on the complex plane.
The zeroes indicate the position of the eigenvalues. The arrow indicate the migration of
the zeroes from their position at zero Reynolds number, close to the natural notes of the
conduit.
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Reynolds number are associated to long time scales, giving possibly rise to long period
events. The frequency of growing oscillations are smaller than the normal modes of the
conduit. The smaller period of growing oscillations compare to the natural harmonics of
sound wave in the conduit relaxes constraints on the linear inferred dimension of the body
hosting the tremor source (water reservoir or magma chamber) and may explain the source
of frequency drift observed in tremors. The proposed mechanism consisting of pressure
perturbation of the fluid flow by pressure (sound) waves may be responsible for the sustained
activity of volcanic tremors. The role of compressibility might affect the apparent frequency
of growing modes in the channel. Implications of flow of a compressible fluid need to be
investigated further as the presence of compressible fluids are relevant to the occurrence of
tremors at shallow depth in volcanic plumbing systems. Our suggested mechanism may be
relevant to long-period or tremor events in both magmatic and aquifer environment.

Appendix - Compressible Fluid Flow

Governing Equations

Under the assumptions adequate for lubrication theory, the Navier-Stokes equation for
compressible flow reduces to

R(ρ ut + ρ uux + ρ vuy) = −px + η uyy

py = ρy = 0
(111)

where η is the kinematic viscosity and ρ is the fluid density. The momentum equation is
accompanied by the mass conservation equation

ρt + ∇ · (ρ v) = 0 (112)

where the density ρ is related to the pressure by the (non-dimensionalized) equation of state

p = ργ (113)

Approximations of the Navier-Stokes equations in section 2 are still valid for compressible
flow and we have py = ρy = 0. Defining the volume flux

q =

∫ h

0

u dy (114)

the conservation of mass can be written

(ρh)t + (ρq)x = 0 (115)

At small Reynolds number, one has

q = −1

3
px h3 (116)

and using the relationship between wall height and pressure p = Γh, one obtains the non-
linear diffusion equation

(

h
γ+1

γ

)

t
=

Γ

3

(

hxh
3γ+1

γ

)

x
(117)

183



At equilibrium, when ht = 0, one has

p =
[(

ρ1 p4
1 − ρ0 p4

0

)

x + ρ0 p4
0

]

γ

4γ+1 (118)

where H0, H1 and p0, p1 are the wall height and pressure respectively, at x = 0 and x = 1,
respectively.

Small Reynolds Number

We evaluate the linear stability of the problem sketched in Fig. 1, with compressible flow
and small Reynolds number. We write the perturbation as

h = H(x) + eλth′(x), 0 ≤ x ≤ 1

p = p1 + eλtp′(x), 1 ≤ x ≤ l + 1
(119)

subjected to the boundary conditions h′(0) = px(l + 1) = 0 and conservation of pressure
and flux at x = 1. The same fluid flow in the larger channel, and there the pressure p varies
about the level p1 at the exit of the contrition, so we have

p = p1 + c2ρ (120)

where

c2 ≡ γp
γ−1

γ

1 (121)

In the larger channel, the pressure obeys the wave equation subjected to px(l + 1) = 0 and
the solution is

p(x, t) = p1 + eλt a cosh
λ

c
(l+1 − x) (122)

Expanding the decomposition of eq. (119) into the nonlinear diffusion equation of eq. (117)
and keeping the linear terms in h′, one finds

3

Γ
λ

γ + 1

γ
h′ =

3γ + 1

γ

[

2HxH2h′

x − H2
xH h′

]

+ H3h′

xx (123)

Notice that the latter reduces to eq. (64) for the limiting case γ → ∞, i.e., incompressible

flow. The conservation of flux at x = 1 is [ρ q]1
+

1−
= 0. The mass flux rates are

Ḟ+ = (ρ1Wut) = aλ
W

c
eλt sinh

λl

c
(124)

and

Ḟ− = (ρ q)t = −1

3

[

ρpxh3
]

t
= −1

3
Γ

γ+1

γ

[

hxh
3γ+1

γ

]

t

= −λ
1

3
Γ

γ+1

γ

[

3γ + 1

γ
HxH

2γ+1

γ h′ + H
3γ+1

γ h′

x

]

eλt
(125)

The conservation of pressure at x = 1 gives

Γh′ = a cosh
λl

c
(126)
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Using ρ1 = Γ
1

γ H
1

γ at x = 1, we obtain the boundary condition

h′
W

ρ1c
tanh

λl

c
+

1

3

[

3γ + 1

γ
HxH

2h′ + H3h′

x

]

= 0 (127)

Examination of numerical solutions of the eigenvalue problem does not reveal any eigenvalue
with positive real parts.

Finite Inertial Terms

We consider the case where fluid acceleration is non-negligible. In the context of lubrication
theory, the governing equations are

R(ut + uux + vuy) = −px + uyy

py = ρy = −0

ρt + (ρu)x + (ρv)y = 0

(128)

We write the solution u as follows

u(x, y, t) =
3

2
U(x, t)

(

1 − y2

h2

)

(129)

Integration of the conservation-of-mass equation gives

ρ v = −ρty − 3

2
(ρU)x y

(

1 − y2

3h2

)

− ρUhx
y3

h3
(130)

We now project the governing equation on f = 1 − y2/h2, in particular
∫ h

0

fρ v uy dy =
6

35
U

[

3 ρUxh + ρUhx + 3ρxUh +
7

3
hρt

]

= − 6

35

q

h

[

3(ρh)t + 2ρq
hx

h
− 7

3
hρt

] (131)

where the last line was obtained using conservation of mass. Other terms of the governing
equation are otherwise identical to those in eq. (80). After some algebra, we obtain the
system of coupled equations











R

(

(ρ q)t +
17

7

q

h
(ρ q)x − 9

7

q2

h2
(ρ h)x

)

= −5

6
pxh − 5

2

q

h2

(ρ h)t + (ρ q)x = 0

(132)

Using the dimension-less equation of state p = ργ and the continuity condition p = Γh, we
obtain the set of coupled equations



























R

(

(

h
1

γ q
)

t
h2 +

17

7
qh

(

h
1

γ q
)

x
− 9

7
q2

(

h
γ+1

γ

)

x

)

= − 5

6
Γhxh3 − 5

2
q

(

h
γ+1

γ

)

t
+

(

h
1

γ q
)

x
= 0

(133)

The set of equations reduces to eq. (83) in the limit γ → ∞.
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Steady-State Solution

The expression for the wall height at steady state H(x) can be obtained by noticing that
(

H
1

γ q
)

x
= 0. We obtain the following

1

12
Γ

(

H4 − H4
0

)

− 18

35
Q2R

(

H
γ+1

γ − H
γ+1

γ

0

)

− Qx = 0 (134)

The flux Q compatible with boundary conditions on H at x = 0 and x = 1 is given by

Q =

−35 +

(

1225 + 210RΓ
(

H4
1 − H4

0

)

(

H
γ+1

γ

1 − H
γ+1

γ

0

))1/2

36R

(

H
γ+1

γ

1 − H
γ+1

γ

0

) (135)
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