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Céline Guervilly

advised by Pascale Garaud

January 12, 2009

1 Introduction

The Sun can be roughly divided into three different regions:

• The nuclear core, located in the inner part until 20% of the solar radius1 where heat
is produced by nuclear fusion of hydrogen.

• Between 0.2r� and 0.7r� the temperature is not high enough for nuclear reactions
to proceed. The energy produced in the core is transported through this region
by radiation which gives its name to this layer: the radiative zone. This layer is
characterised by strong thermal stratification.

• In the outer region heat is transported primarily by convective motions. This leads
to a well-mixed layer called the convective zone.

An important feature of the solar interior is its rotation profile. In this report, we describe
a toy model of the solar radiative zone that can be used to investigate the interior rotation
rate. During the last few decades, technological advances in helioseismology have provided
accurate observations of the solar interior. The axisymmetric angular velocity profile de-
duced from observations is shown in figure 1. Differential rotation is observed within the
convective zone: the equatorial region rotates about 30% faster than the polar regions.
There, the rotation profile at a fixed radius can be fairly accurately expressed as

Ωcz(θ) = Ωeq(1 − a cos2 θ − b cos4 θ), (1)

where Ωeq is the rotation rate at the equator and θ is the colatitude. The numbers a and b
are determined by the observations. Near the lower region of the convective zone a = 0.17
and b = 0.08 (Schou et al. [4]). Meanwhile the radiative zone is near-uniformly rotating
at a rate Ωrz ' 0.93Ωeq where Ωeq is the angular velocity at the equator at the bottom of
the convective zone. The transition between the convective zone and the radiative zone is
called the tachocline and has an important dynamical role.
An obvious question which comes to mind is why is the radiative zone rotating uniformly.

1
Hereafter the solar radius is denoted r�.
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Figure 1: Angular velocity profile from solar observations in a meridional plane zonally
and temporaly averaged. The outer layer is the convective zone and the inner layer is the
radiative zone. The dashed line represents the base of the convection zone. Observations
of the inner most regions are not available by helioseismology. Source: SOHO/MDI

A standard explanation for this feature assumes the presence of a primoridial magnetic field
B confined within the radiative zone. Ferraro’s isorotation law (1937), which is valid in the
limit of negligible magnetic dissipation, states that

B · ∇Ω = 0, (2)

for an axisymmetric rotating fluid in the steady state. Consequently the angular velocity
is constant along magnetic field lines. If the field within the radiative zone has an “open”
configuration, the magnetic field lines connected with the convective zone would transfer
the differential rotation into the radiative zone; we shall call this a differentially rotating
Ferraro state. On the otherhand, a close field configuration allows an uniformly rotating
radiative zone. Gough and McIntyre [2] proposed a theoretical model (figure 2) that insured
the uniform rotation of the radiative zone with:

• a differential rotation imposed by the convective zone,

• a primordial dipolar magnetic field in the radiative zone,

• down-welling meridional flows at the top of the radiative zone that confine the mag-
netic field, which itself prevents the flow from penetrating deeper into the radiative
zone.

Numerical simulations based on this model have been carried out by Garaud & Garaud [1].
Their code is steady-state, axisymmetric, fully non-linear and models the bulk of the ra-
diative zone as an anelastic conducting fluid. A radial velocity profile is imposed at the
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Figure 2: Picture of the model of Gough and McIntyre in a quadrant of the meridional
plane. The red lines in the radiative zone (blue layer) represent the confined magnetic field,
the black lines represent the meridional circulation which stays trapped in the top of the
radiative zone. The yellow top layer is the convective zone.

top of the radiative zone and a no-slip condition is taken at the interface with the nuclear
core. Both boundaries are assumed to be conducting with the same conductivity as the
fluid. For low enough diffusivities they find that the rotation rate of the uniformly rotating
region converges to about 86% of the imposed boundary rotation rate at the equator. The
meridional circulation remains confined near the top of the radiative zone and deforms the
poloidal magnetic field, which is almost confined within the radiative zone. When the inner
core is assumed to be an electric insulator the equatorial region of the radiative zone rotates
at 93% of the boundary rotation rate of the equator (figure 3, private communication).
Following the work of Garaud & Garaud we will investigate the following questions:

• What is the effect of the convective zone dynamics on the radiative zone? How does
the rotational shear propagate into the radiative zone?

• Can we build a simple analytical magnetohydrodynamic model of the radiative zone
to predict the rotation rate of the interior?

• How does the rotation rate vary when we impose different magnetic boundary condi-
tions?

2 Governing equations

A sketch of our toy model is presented in figure 4. The region we are interested in mimics
the solar radiative zone: a conducting fluid fills the shell between a uniformly rotating inner
sphere and a differentially rotating outer sphere. An axial dipolar magnetic field is imposed;
we present here the case of an open magnetic field. We make the following assumptions:

• The system has reached a steady state.

• The fluid is incompressible, and density is constant in the whole volume.
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Figure 3: Results of a numerical simulation carried out with the code of Garaud & Garaud
assuming an insulating inner core and a conducting outer boundary.

• In the solar radiative zone, the meridional circulation is slowed down by the strong
stratification profile. Consequently, the angular momentum transported by the merid-
ional flow is weak and will be neglected in this model. The non-linear terms are
neglected.

• The imposed poloidal magnetic field is Bp = ∇×
(

A
r sin θ êφ

)

with A the poloidal field

potential A(r, θ) = B0r
3
in

sin2 θ
r where B0 is the imposed radial field at the poles on the

inner sphere.

The magnetic field B and the velocity field u can therefore be decomposed in spherical
coordinates as

B =

(

1

r2 sin θ

∂A

∂θ
,−

1

r sin θ

∂A

∂r
,Bφ

)

, (3)

u = (0, 0, r sin θΩ) . (4)
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Figure 4: Diagram of our model.

The unknowns in our problem are the rotation rate Ω and the toroidal component of the
magnetic field Bφ. The forms of Ω and Bφ are given by solving the azimuthal component
of the Navier-Stokes equation and the magnetic induction equation respectively:

2ρΩc × u = −∇p +

(

1

µ0
∇× B

)

× B + ρν∇2
u, (5)

0 = ∇× (u × B) − η∇×∇× B, (6)

where ρ is the density, Ωc the (constant) global rotation of the system, µ0 the magnetic
permeability, ν and η the viscous and the magnetic diffusivities respectively.
Rigid rotation is assumed at the interface with the inner sphere. Therefore, the angular
velocity at the inner boundary is

Ω(rin, θ) = Ωin. (7)

At the outer boundary we use the angular velocity profile of the solar convective zone

Ω(rout, θ) = Ωout(θ) = Ωeq(1 − a cos2 θ − b cos4 θ). (8)

For the toroidal magnetic field we will test different boundary conditions in order to evaluate
their influence on the rotation profile. If we assume that the region exterior to the fluid is
an electric insulator then the toroidal magnetic field has to be zero at the boundaries:

Bφ(rin, θ) = 0, (9)

Bφ(rout, θ) = 0. (10)
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If we assume that the fluid is surrounded by a conductor with the same permeability and
conductivity as the fluid in the shell, then the radial and tangential components of the
magnetic field and its derivatives must be continuous, and the induction equation in a
steady state provides us the following boundary condition:

[∇2
B]φ = 0 for r < rin and r > rout. (11)

A difficult question is to decide which boundary condition is more relevant for the solar
interior. This work will shed some light on the problem.
Finally the angular momentum must be conserved since the system is in a steady-state.
Therefore the total torque applied in a spherical shell in the fluid is equal to zero:

∫ π/2

0

(

ρνr2 sin2 θ
∂Ω

∂r
+ r sin θ

BrBφ

µ0

)

sin θdθ = 0. (12)

The first term is the viscous torque whereas the second term is the magnetic torque. This
equation determines uniquely Ωin.

3 Insulating boundary conditions

We consider first the magnetic boundary conditions (9) and (10).

3.1 Solution in the bulk

In the bulk of the fluid, we will assume that we are in the limit of small magnetic and viscous
diffusivities. This assumption is roughly valid in the Sun since the magnetic and viscous
Ekman numbers E�

η and E�
ν which measure the ratio of magnetic and viscous diffusivities

(resp.) over the Coriolis force are assumed to be about 3× 10−14 and 2× 10−15 (resp.). We
will therefore neglect both the viscous and magnetic diffusivities. Given our assumptions,
the equilibria that govern the system are

2ρΩc × u = −∇p +

(

1

µ0
∇× B

)

× B, (13)

0 = ∇× (u × B) . (14)

Combining the φ-component of equation (14) and equation (4) and the fact that u and B

are divergence-free, we obtain

[∇× (u × B)]φ = r sin θBp · ∇Ω = 0. (15)

Therefore in the bulk, the fluid is in a Ferraro iso-rotation state:

Bp · ∇Ω = 0, (16)

or in other words Ω is constant along the poloidal magnetic field lines in a meridional plane.
Using the φ-component of equation (13), we find

[(

1

µ0
∇× B

)

× B

]

φ

=
1

r sin θ
Bp · ∇(r sin θBφ) = 0, (17)
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so the quantity S ≡ r sin θBφ is also constant along poloidal magnetic field lines.

Moreover, we can show that Bp ·∇A = 0. Since A(r, θ) ∝ sin2 θ
r then sin2 θ

r remains constant
along a magnetic field line. This determines the relationship between θin (the colatitude of
emergence of a field line out of the core) and θout the colatitude where the same field line
connects with the convection zone (figure 5):

sin2 θin

rin
=

sin2 θout

rout
. (18)

The relationship between θout and θin can be written as θout = Θ(θin) where

θin

θout

θmax

C

Figure 5: Picture of the dipolar magnetic field lines in the bulk of the fluid. The blue layers
represent the boundary layers.

Θ(θ) = sin−1
(

(rout/rin)1/2 sin θ
)

. (19)

The magnetic field line which connects to the equatorial plane at rout, which we call C,
crosses the inner sphere at the colatitude

θmax = sin−1

(

rin

rout

)1/2

= Θ
(π

2

)

. (20)

The poloidal magnetic field lines which have a colatitude at the inner sphere between θmax

and π/2 connect to the inner sphere in the southern hemisphere without crossing the outer
sphere. Because of isorotation we will assume that the equatorial region included between
the equatorial plane and the line C is rotating uniformly. Consequently the integration of
the total torque in rin can be reduced to the region above the magnetic field line C:

∫ π/2

0
−→

∫ θmax

0
. (21)

This approximation allows us to avoid the equatorial region where the boundary layer
approach presented in the next section is not valid.
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3.2 Solution in the boundary layers

Equations (5) and (6) in the azimuthal direction can be written in spherical coordinates as
(Rüdiger & Kitchatinov, [3])

η

[

∂

∂θ

(

1

sin θ

∂(Bφ sin θ)

∂θ

)

+ r
∂2(Bφr)

∂r2

]

= r

(

∂Ω

∂θ

∂A

∂r
−

∂Ω

∂r

∂A

∂θ

)

, (22)

ρν

[

1

sin3 θ

∂

∂θ

(

sin3 θ
∂Ω

∂θ

)

+
1

r2

∂

∂r

(

r4 ∂Ω

∂r

)]

=

1

µ0r2 sin3 θ

(

r
∂A

∂r

∂(Bφ sin θ)

∂θ
− sin θ

∂A

∂θ

∂(Bφr)

∂r

)

. (23)

First we will consider the inner boundary layer. In order to simplify these equations we
will use a stretched variable in the boundary layer:

ζ =
r − rin

δin
. (24)

We assume that variations with θ are very small compared to those in the ζ-direction. We
will therefore neglect the θ-derivative in the equations. Note that this hypothesis happens
to fail near the equator where the boundary layer thickness diverges (see below). Equa-
tions (22) and (23) become

η
rin

δin

∂2Bφ

∂ζ2
= −

∂Ω

∂ζ

∂A

∂θ
, (25)

ρνµ0
r3
in sin2 θ

δin

∂2Ω

∂2ζ
= −

∂A

∂θ

∂Bφ

∂ζ
. (26)

Combining these equations, we find

∂3Bφ

∂ζ3
=

∂Bφ

∂ζ
, (27)

∂3Ω

∂ζ3
=

∂Ω

∂ζ
, (28)

provided

δin =
(µ0ρνη)1/2

2 cos θB0
. (29)

This boundary layer is an Hartmann layer. Its thickness is proportional to the geometric
mean of the magnetic and viscous diffusivities. Moreover the layer becomes thinner if we
increase the strength of the imposed magnetic field. The layer is singular near the equator
where cos θ → 0.
The solutions of (27) and (28) are

Bφ(ζ, θ) = bin
0 (θ) + bin

1 (θ)eζ + bin
2 (θ)e−ζ , (30)

Ω(ζ, θ) = Ωin
0 (θ) + Ωin

1 (θ)eζ + Ωin
2 (θ)e−ζ . (31)
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When ζ → ∞, Ω and Bφ have to remain bounded, and so Ωin
1 = bin

1 = 0. Applying the
boundary conditions and the matching conditions, we find

Ω(ζ → 0, θ) = Ωin = Ωin
0 (θ) + Ωin

2 (θ) , (32)

Ω(ζ → ∞, θ) = Ωin
0 (θ) , (33)

Bφ(ζ → 0, θ) = 0 = bin
0 (θ) + bin

2 (θ) , (34)

Bφ(ζ → ∞, θ) = bin
0 (θ) . (35)

Ωin
0 (θ) and bin

0 (θ) are the solutions in the bulk of the fluid where we neglect viscous and
magnetic diffusivities. We will then call them Ω0(r, θ) and b0(r, θ). Finally the solutions are

Bφ(ζ, θ) = b0(rin, θ)(1 − e−ζ), (36)

Ω(ζ, θ) = Ω0(rin, θ)(1 − e−ζ) + Ωine−ζ . (37)

Using either (25) or (26), we find the relation between b0 and Ω0:

b0(θ, rin) =
δin

ηrin

∂A

∂θ
(Ω0(rin, θ) − Ωin) =

(

µ0ρν

η

)1/2

rin sin θ (Ω0(rin, θ) − Ωin) . (38)

Since the boundary condition on the inner core imposed that Bφ(rin, θ) = 0, and ρν is
assumed to be constant in the boundary layer, (12) becomes

∫ θmax

0
sin3 θ

∂Ω

∂r
dθ = 0, (39)

which can be written as
∫ θmax

0

sin3 θ

δin

∂Ω

∂ζ
dθ = 0. (40)

Using (37), we have

∂Ω

∂ζ
= (Ω0(rin, θ) − Ωin) e−ζ =⇒

∂Ω

∂ζ

∣

∣

∣

∣

ζ=0

= Ω0(rin, θ) − Ωin. (41)

Moreover

δin ∝
1

cos θ
. (42)

Therefore (40) becomes

∫ θmax

0
sin3 θ cos θ (Ω0(rin, θ) − Ωin) dθ = 0. (43)

Condition (12) should be valid everywhere in the fluid. In the bulk of the fluid, the kinematic
viscosity is neglected, so the torque applied to a spherical shell at radius rin + ε, where
ε > δin, is only the magnetic torque and (12) becomes

∫ π/2

0
(rin + ε) sin2 θ

BrBφ(rin + ε, θ)

µ0
dθ = 0. (44)
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Using the value of Bφ in the bulk given by (38) and since Br ∝ cos θ we find the condition

∫ π/2

0
sin3 θ cos θ (Ω0(rin + ε, θ) − Ωin) dθ = 0, (45)

which is the same condition as previously. The viscous torque acts only on the boundary
layer whereas the magnetic torque acts in the bulk, but together they maintain the previous
condition everywhere in the fluid.
We have to determine the value of Ω0(rin, θ) in order to calculate a value for Ωin. To
match Ω0(rin, θ) to its value at the outer boundary we have to find the solution in the outer
boundary.
We use the stretched variable in the outer boundary layer:

ξ =
rout − r

δout
. (46)

Proceeding as for the inner boundary layer, we find

Bφ(ξ, θ) = b0(rout, θ)(1 − e−ξ), (47)

Ω(ξ, θ) = Ω0(rout, θ)(1 − e−ξ) + Ωout(θ)e−ξ, (48)

with

b0(rout, θ) =

(

ρνµ0

η

)1/2

rout sin θ (Ωout(θ) − Ω0(rout, θ)) , (49)

and

δout =
(µ0ρνη)1/2

2 cos θB0

(

rout

rin

)3

= δin

(

rout

rin

)3

. (50)

The thickness of the outer boundary layer δout is larger than that of the inner boundary
because the imposed magnetic field is proportional to 1/r3, and therefore weaker at the
outer boundary.

Since S = Bφr sin θ is constant along a poloidal magnetic field line, we have

b0(rin, θin)rin sin θin = b0(rout, θout)rout sin θout. (51)

Using (38) and (49), we find

(rin sin θ)2 (Ω0(rin, θ) − Ωin) = (rout sinΘ(θ))2 (Ωout(Θ(θ)) − Ω0(rout,Θ(θ))) . (52)

Since the bulk of the fluid is in a state of iso-rotation, we expect that Ω0(rin, θ) =
Ω0(rout,Θ(θ)). Consequently,

Ω0(rin, θ) =
1

1 + (rin sin θ)2

(rout sinΘ(θ))2

Ωout(Θ(θ)) +
1

1 + (rout sin Θ(θ))2

(rin sin θ)2

Ωin, (53)

Ω0(rin, θ) =
1

1 +
r3

in

r3

out

Ωout(Θ(θ)) +
1

1 +
r3

out

r3

in

Ωin. (54)
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The condition (43) becomes

∫ θmax

0
sin3 θ cos θ





1

1 +
r3

in

r3
out

Ωout(θout) + Ωin



−1 +
1

1 +
r3
out

r3

in







 dθ = 0, (55)

with

Ωout(Θ(θ)) = Ωeq

[

1 − a

(

1 −
rin

rout
sin2 θ

)

− b

(

1 −
rin

rout
sin2 θ

)2
]

. (56)

We find

Ωin

Ωeq
=

∫ θmax

0

(

1 − a(1 − rin

rout
sin2 θ) − b(1 − rin

rout
sin2 θ)2

)

sin3 θ cos θdθ
∫ θmax

0 sin3 θ cos θdθ
, (57)

Ωin

Ωeq
= 1 −

a

3
−

b

6
. (58)

Using the values provided by the observations of the Sun, a = 0.17 and b = 0.08, we find
Ωin/Ωeq = 0.93. The remarks that we can draw from this result are:

• The result does not depend on the gap between the two spheres.

• It is the same value as that observed in the Sun. Therefore we can wonder if this value
has a physical explanation. It is hard to answer this question but it is possible that
our simple model catches an essential feature of the dynamics of the solar radiative
zone.

3.3 No inner boundary

We wonder what happens if there is no inner boundary layer. Indeed the interface between
the nuclear core and the radiative zone is not a physical barrier submitted to no-slip con-
ditions. The nuclear core is defined simply as the place where the temperature is large
enough to trigger nuclear reactions. Therefore the interface between the inner core and the
radiative zone is merely an isotherm, and not a physical boundary.

The total torque applied on the outer sphere is

∫ π/2

0
ρνr2

out sin3 θ
∂Ω

∂r

∣

∣

∣

∣

rout

dθ = 0, (59)

∂Ω

∂r

∣

∣

∣

∣

rout

= −
1

δout

∂Ω

∂ξ

∣

∣

∣

∣

ξ→0

= −
1

δout
(Ω0(rout, θ) − Ωout(θ)). (60)

We will match the solution in the bulk at rout with Ωin the angular velocity at rin. Under
these assumption the whole radiative zone is rotating uniformly at the angular velocity Ωin

(see figure 6). Consequently we have

∫ π/2

0
sin3 θ cos θ(Ωout(θ) − Ωin)dθ = 0, (61)
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Ωin

Ω0(rout,θ)

Figure 6: Diagram of the model when considering no inner boundary. The radiative zone
is uniformly rotating and the outer boudary layer undergoes a strong shear.

where
Ωout(θ) = Ωeq

(

1 − a cos2 θ − b cos4 θ
)

. (62)

The whole interior is rotating at the angular velocity

Ωin

Ωeq
=

∫ π/2
0 sin3 θ cos θ(1 − a cos2 θ − b cos4 θ)dθ

∫ π/2
0 sin3 θ cos θdθ

, (63)

Ωin

Ωeq
= 1 −

a

3
−

b

6
. (64)

We find the same expression as previously. If a mechanism is able to impose an uniform
rotation to the radiative zone interior, then the presence of the outer boundary alone pre-
vents the transfer of the angular velocity from the convective zone to the deep radiative
zone along open magnetic field lines. In the outer boundary layer the zonal shear is very
strong, as in the solar tachocline.

3.4 Characteristic features of this toy model of the solar radiative zone

Our boundary layer analysis provided a solution valid from the poles to the magnetic field
line C. The solution in the equatorial zone can be deduced from geometrical considerations:

• The solutions are either symmetric or antisymmetric with respect to the equatorial
plane due to the symmetry of the imposed poloidal magnetic field. The angular
velocity, for example, is symmetric.

• The toroidal field on the other hand is antisymmetric with respect to the equatorial
plane; therefore S is also antisymmetric. An important consequence of this fact is that
since S has to be constant along the magnetic field lines, S and so the toroidal field
must be equal to zero in the equatorial region where field lines connect the northern
and southern hemispheres.
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• Another consequence is that the equatorial region, defined as the region between the
equatorial plane and the magnetic field line C, rotates at the constant angular velocity
Ωin = 0.93Ωeq.

• The presence of a rapidly rotating layer around the equatorial region is due to the
fact that a magnetic field line that connects just above the equator in the outer sphere
transfers the fast angular velocity of the convective zone at the equator until the inner
sphere.

• This rapidly rotating layer shears the poloidal magnetic field lines and creates a strong
toroidal magnetic field (the Ω-effect).

• Towards the poles the angular velocity transfered from the convective zone is lower.
Therefore the angular velocity in the bulk decreases at high latitudes.

An outline of the geometry of our asymptotic model of the solar radiative zone is presented
figure 7.

Ωin Ωeq
Βφ=0

Figure 7: Asymptotic model of the conducting fluid flow between two rotating spheres (no
viscosity, no magnetic diffusivity)

3.5 Comparison with numerical results

The code used to compare the analytical results with numerical simulations is a stripped
version of the code of Garaud & Garaud [1] modified to solve equations (22) and (23) only.
The same assumptions as in our analytical model are made except that the kinematic and
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magnetic diffusivities are not neglected in the main body of the fluid. The same boundary
conditions are adopted. Numerical simulations are limited by the fact that assuming very
low diffusivities means that the boundary layers are very thin and can not be resolved
numerically. To overcome this problem, diffusivities are enhanced by multiplying them by
a factor f . f = 1 means that the values adopted in the simulations are the solar values.
Figure 8 show the convergence of the numerical value of the ratio Ωin/Ωeq towards the
analytical value of 0.93 when decreasing the factor f . The results of a numerical simulation
are presented in figure 9. The structure of the angular velocity and the toroidal magnetic
field are similar to the ones predicted by our model in section 3.4. The rapidly rotating
layer is visible.

1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

f

0.92

0.93

0.94

0.95

Ωin/Ωeq

Figure 8: Ratio of the angular velocity at the inner sphere and at the equator of the
convective zone in function of the factor f . The dots represent the results of the numerical
simulations and the dashed line the analytical value. Note theat f = 1010 corresponds to
Eν = 2 · 10−5 and Eη = 3 · 10−4.

The total torque (12) computed numerically as a function of the colatitude (figure 10)
is equal to zero if θ > θmax. This remark validates our assumption of neglecting the
contribution of the equatorial region (section 3.1).

4 Conducting boundary conditions

We now consider applying boundary condition (11) to the toroidal magnetic field. In the
convective zone and inner core the media are assumed to have the same electic conductivity
and permeability as the fluid in the shell. Therefore the tangential components of the
magnetic field are continuous. Outside the fluid domain Bφ satisfies the induction equation
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Figure 9: Results of the numerical simulations computed at f = 108. Left: angular velocity
in a quadrant of the meridional plane (top) and at a fixed radius just above the inner
boundary layer (bottom). Right: function S = r sin θBφ similarly plotted.
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Figure 10: Total torque at rin in function of the colatitude.
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in the steady-state:
[

∇2
B

]

φ
= 0 (65)

⇒ ∇2Bφ −
Bφ

r2 sin2 θ
= 0. (66)

The solution of this equation on both sides of the cavity are

Bφ(r ≤ rin, θ) =
∞
∑

n=0

ain
n rn d

dθ
[Pn(cos θ)] , (67)

Bφ(r ≥ rout, θ) =

∞
∑

n=0

aout
n r−(n+1) d

dθ
[Pn(cos θ)] , (68)

where Pn is the n-th Legendre polynomial. The continuity of Bφ and its r-derivative has to
be verified across the interface. Applying these conditions to the solutions in the boundary
layers (30), we find

∞
∑

n=0

ain
n rn

in

d

dθ
[Pn(cos θ)] = b0(rin, θ) + bin

2 (θ), (69)

∞
∑

n=0

ain
n nrn−1

in

d

dθ
[Pn(cos θ)] = −

1

δin
bin
2 (θ), (70)

∞
∑

n=0

aout
n r

−(n+1)
out

d

dθ
[Pn(cos θ)] = b0(rout, θ) + bout

2 (θ), (71)

∞
∑

n=0

−aout
n (n + 1)r

−(n+2)
out

d

dθ
[Pn(cos θ)] =

1

δout
bout
2 (θ). (72)

The system of equations arising from this choice of boundary conditions is too complex to
solve in spherical coordinates. For simplicity, we adopt a local cartesian box model for the
boundary layers.

4.1 The Cartesian box

The model is illustrated in figure 11. We make the same assumptions as previously and in-
troduce periodicity in the y-direction (equivalent to the θ-direction in spherical coordinates).
The system is invariant in the x-direction, which corresponds to the φ-direction in the orig-
inal spherical coordinates. A magnetic field is imposed in the z-direction, and depends only
on y. The magnetic field and the velocity are decomposed in cartesian coordinates as

B = (b, 0, B0), (73)

u = (u, 0, 0). (74)

We solve the system for the unknown b and u. The Navier-Stokes and the induction equa-
tions in the x-direction become under our assumptions

B0(y)
∂b

∂z
= −ρνµ0∇

2u, (75)

B0(y)
∂u

∂z
= −η∇2b. (76)
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Figure 11: Diagram of the cartesian box.

4.2 Boundary layers

As in the spherical case, we use a stretched variable in the boundary layers. For the inner
boundary, we use

ζ =
z

δin
, (77)

and for the outer boundary

ξ =
1 − z

δout
. (78)

In our boundary layer approximation, the y-derivative will be neglected. The previous
equations become in the inner boundary

B0(y)
∂b

∂ζ
= −

ρνµ0

δin

∂2u

∂ζ2
, (79)

B0(y)
∂u

∂ζ
= −

η

δin

∂2u

∂ζ2
. (80)

In the outer boundary layer the equations are similar apart from the sign. Combining the
above equations in each boundary layer, we find

∂3b

∂ζ3
=

∂b

∂ζ
, (81)

∂3u

∂ζ3
=

∂u

∂ζ
, (82)

with

δin = δout =
(ρνηµ0)

1/2

B0(y)
= δ. (83)
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As previously, these boundary layers are Hartmann layers. The solutions of these equations
are, in the inner boundary,

u(ζ, y) = u0(z = 0, y) + uin
2 (y)e−ζ , (84)

b(ζ, y) = b0(z = 0, y) + bin
2 (y)e−ζ , (85)

bin
2 (y) =

ρνη

δB0(y)
uin

2 (y). (86)

The solutions in the outer boundary are analogous, apart from sign changes. Angular
momentum conservation gives us the condition

∫ 2π

0

[

ρν
∂u

∂z
+

1

µ0
B0b

]

dy = 0. (87)

Moreover, continuity of the velocity in the bulk along the magnetic field lines2 of B0 provides
another condition

u0(z = 1, y) = u0(z = 0, y), (88)

b0(z = 1, y) = b0(z = 0, y). (89)

The boundary conditions on the velocity are

u(z = 0, y) = uin, (90)

u(z = 1, y) = uout(y). (91)

In order to find an analogy with the previous case, we will first study the case where b = 0
outside on both sides.

4.3 Insulating boundaries

In this case, the boundary conditions for the tangential magnetic field are

b(z = 0, y) = b0(z = 0, y) + bin
2 (y) = 0, (92)

b(z = 1, y) = b0(z = 1, y) + bout
2 (y) = 0. (93)

Using (86), we find

2b0(z, y) = −bin
2 − bout

2 =
ρνη

δB0(y)

(

uout
2 (y) − uin

2 (y)
)

. (94)

When ζ → 0 and ξ → 0,

u0(z = 0, y) + uin
2 (y) = uin, (95)

u0(z = 0, y) + uout
2 (y) = uout(y), (96)

and using the continuity of u0 in the bulk along the y-lines

uin
2 (y) − uout

2 (y) = uin − uout(y). (97)

Plugging this equation into (87) we find
∫ 2π

0
B0(y)(uout(y) − uin)dy = 0. (98)

This equation is analogous to (43) by geometrical transformation.

2
lines of constant y.
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4.4 Conducting boudaries

When conducting boundaries are applied, the tangential component of the field is continuous
across the interface. Outside of the fluid, the tangential magnetic field satisfies

∂2b

∂y2
+

∂2b

∂z2
= 0. (99)

For z /∈ [0, 1] the field can be written as

b(z ≤ 0, y) = βin
0 +

∞
∑

n=1

βin
n (z)einy, (100)

b(z ≥ 1, y) = βout
0 +

∞
∑

n=1

βout
n (z)einy , (101)

where the functions βn satisfies

−n2βn +
∂2βn

∂z2
= 0. (102)

The solution of this equation is
βn(z) = αne±nz, (103)

which has to remain bounded

if z > 1 : βout
n (z) = αout

n e−nz, (104)

if z < 0 : βin
n (z) = αin

n enz. (105)

The field is continuous at the interface so

bin
0 (y) + bin

2 (y) = βin
0 +

∑

βin
n (z = 0)einy, (106)

bout
0 (y) + bout

2 (y) = βout
0 +

∑

βout
n (z = 1)einy. (107)

The z-derivative of b also has to be continous across the interface which yields the two
additional equations

−
1

δ
bin
2 (y) =

∞
∑

n=1

nβin
n (z = 0)einy , (108)

1

δ
bout
2 (y) =

∞
∑

n=1

−nβout
n (z = 1)einy. (109)

Adding the previous equations yields

1

δ

(

bin
2 (y) + bout

2 (y)
)

= −

∞
∑

n=1

n
(

βin
n (z = 0) + βout

n (z = 1)
)

einy. (110)
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Combining the relation between b2 and u2 in both boundary layers (86), we find

bin
2 (y) + bout

2 (y) =
ρην

B0(y)

1

δ
(uin

2 − uout
2 ), (111)

bin
2 (y) + bout

2 (y) =
ρην

B0(y)

1

δ
(uin − uout(y)). (112)

The results of the previous equations gives us

ρην

B0(y)

1

δ2
(uin − uout(y)) = −

∞
∑

n=1

n
(

βin
n (z = 0) + βout

n (z = 1)
)

einy (113)

⇒

∫ 2π

0

ρην

B0(y)

1

δ2
(uin − uout(y))dy =

−

∫ 2π

0

∞
∑

n=1

n
(

βin
n (z = 0) + βout

n (z = 1)
)

einydy. (114)

Since the box is 2π periodic in the y-direction and β in
n (z = 0) and βout

n (z = 1) are constant,
the right-hand side is equal to zero. Since δ ∝ 1/B0 we have

∫ 2π

0
B0(y)(uout(y) − uin)dy = 0. (115)

This condition is similar to the case where b = 0 outside. Therefore we expect to find the
same rotation rate in the radiative zone with this kind of boundary condition. This means
that the boundary conditions imposed on the tangential field should a priori not influence
the rotation rate of the fluid.

4.5 Numerical results

Figure 12: Numerical results with conducting boundary conditions.

The results of a simulation where
[

∇2B
]

φ
= 0 is imposed on both sides is presented

in figure 12. We find that the inner core rotates with angular velocity Ωin = 0.86Ωeq,
contradicting the results of our analytic model of section 4.4. This value is lower than
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the case with insulating boundaries because we notice that the fast angular velocity of the
bottom of the equatorial convective zone is not propagated until the inner region of the
radiative zone. We observe that the toroidal field Bφ is about ten times stronger than in
the case where Bφ = 0 was imposed on both boundaries. We also observe, in figure 12, that
the Ferraro state is broken in the bulk of the fluid:

Bp · ∇Ω = η∇2Bφ 6= 0. (116)

It therefore appears that magnetic diffusivity plays a role in the bulk of the fluid which
explains why our analytical model fails to reproduce the numerical results.

5 Conclusions

This work allows us to draw several conclusions and perspectives:

• Our toy model with an open magnetic field and vaccum magnetic boundary conditions
provides a prediction of the interior rotation rate of the radiative zone in good agree-
ment with both solar observations and full numerical simulations (including meridional
circulations and all the non-linear terms (figure 3)). We find the solar value whereas
the structure is not uniformly rotating. Moreover it allows us to understand the force
balance of the system. The interior rotation rate of our simple model can provide
insight into the physical processes that occur in the solar radiative zone.

• The boundary conditions chosen for the toroidal field have important consequences
for the rotation of the fluid. However, the more relevant conditions for the Sun are
difficult to determine.

• The confined field case needs to be investigated because of its believed relevance to
the Sun.
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