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1 Introduction

In the past fifteen years the background method of Constantin, Doering, and Hopf has
been used to derive rigorous bounds on transport in fluid mechanics equations. The back-
ground method is based on the decomposition of the velocity or temperature field into a
background field and a fluctuation field. The background field is specified so that the fluc-
tuation field satisfies a partial differential equation with homogeneous boundary conditions.
Many bounding problems have a variational formulation under the background method.
The background method has been used to prove bounds on the mechanical dissipation rate
in various driven turbulent flows. This work was started by Constantin and Doering [4].
They studied the mechanical dissipation in shear flows at high Reynolds number. Since
then there has been a large number of papers about dissipation in turbulent shear flow with
different boundary conditions and geometries.

We extend this technique to flows driven by stress at the boundary, namely Marangoni
convection and surface shear stress driven flow. In the case of surface shear stress driven
flow we study the energy stability of the laminar flow solution as a function of the Grashoff
number and prove an upper bound on the friction coefficient for high Reynolds number.
Tang, Caulfield, and Young [6] first used the background method to prove bounds for this
type of problem and we compare our results to theirs.

The problem of Marangoni convection is related to that of stress driven shear flow. In the
Marangoni case the surface stress is due to surface tension gradients. Pearson [5] developed
the linear theory for Marangoni convection in 1958, and Davis [3] used variational methods
to study the nonlinear stability problem in 1969. In the case of infinite Prandtl number we
use nonvariational methods to improve the estimate of the critical Marangoni number for
nonlinear stability of the conduction solution. We also use the background method to prove
an upper bound on the Nusselt number in Marangoni convection.

2 Surface Stress Driven Flow

We consider the problem of flow in the two dimensional domain in Figure 2 subject to
periodic boundary conditions in the horizontal x direction, no slip conditions at z = 0, and
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Figure 1: Domain for the surface stress driven flow.

a fixed shear stress at z = h. The full system of equations is:

∂u

∂t
+ u · ∇u + ∇p = ν∆u (1)

∇ · u = 0 (2)

u|z=0 = 0 (3)

uz|z=h = 0 (4)

ν
∂ux

∂z
= τ (5)

We take periodic boundary conditions in x, with a domain length L.

2.1 Energy Stability Analysis in Two Dimensions

The laminar flow solution of these equations is ux = τz
ν . We perform the energy stability

analysis of this solution by making the substitution u = U + τz
ν x̂. The resulting system of

equations is:

∂U

∂t
+ U · ∇U +

τz

ν

∂U

∂x
+ Uz

τ

ν
x̂ + ∇p = ν∆U (6)

∇ · U = 0 (7)

Ux|z=0 = 0 (8)

∂Ux

∂z
|z=h = 0 (9)

Uz|z=0,1 = 0 (10)
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Take the dot product of the momentum equation with U and integrate over the domain to
derive the energy expression:

1

2

d‖U‖2

dt
+

∫

τ

ν
UxUzdxdz = −ν‖∇U‖2 (11)

If d‖U‖2

dt < 0 for all U satisfying the perturbation’s boundary conditions then the base
solution is stable. This derivative is given by a quadratic form −Q in U :

Q = ν‖∇U‖2 +

∫

τ

ν
UxUzdxdz (12)

We use variational methods to minimize Q, subject to the constraints ∇ · U = 0 and
‖U‖2 = 1. The resulting Euler-Lagrange equations are:

λUx = −ν∆Ux +
∂q

∂x
+

τ

2ν
Uz (13)

λUz = −ν∆Uz +
∂q

∂z
+

τ

2ν
Ux (14)

∇ · U = 0 (15)

‖U‖2 = 1 (16)

Here q is the Lagrange multiplier associated with incompressibility and λ is the Lagrange
multiplier associated with the normalization condition. We non-dimensionalize the equa-
tions by making the substitutions x′ = x

h and z′ = z
h . Define the Grashoff number Gr = τh2

ν2 .
Then if U ′(x′, z′) = U(x, z) we have the following equations:

λUx = −∆Ux +
Gr

2
Uz +

∂q

∂x
(17)

λUz = −∆Uz +
Gr

2
Ux +

∂q

∂z
(18)

(19)

If the smallest eigenvalue λmin > 0 then Q is positive definite and the base solution
is stable. Since the system is two dimensional we introduce the stream function Ψ, which
satisfies ∂Ψ

∂x = Uz and ∂Ψ
∂z = −Ux. Take linear combinations of the x and z derivatives of

the resulting equations to eliminate the pressure. The Euler Lagrange equations become a
fourth order equation:

λ∆Ψ = −∆2Ψ − Gr
∂2Ψ

∂x∂z
(20)

∂Ψ

∂x
|z=0,1 = 0 (21)

∂Ψ

∂z
|z=0 = 0 (22)

∂2Ψ

∂z2
|z=1 = 0 (23)

(24)
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The system is periodic in x so we write Ψ in terms of its Fourier series. Let k = πj/L
be the wavenumber. We write Ψ =

∑

k Ψ̂ke
ıkx. Then the equations become:

λ

(

∂2Ψ̂

∂z2
− k2Ψ̂

)

= −
(

∂4Ψ̂

∂z4
− 2k2 ∂2Ψ̂

∂z2
+ k4Ψ̂

)

− ıGrk
∂Ψ̂

∂z
(25)

Ψ̂|z=0,1 = 0 (26)

∂Ψ̂

∂z
|z=0 = 0 (27)

∂2Ψ̂

∂z2
|z=1 = 0 (28)

We have supressed the k dependence of Ψ̂k. We search for the critical Grashoff number below
which all of the eigenvalues λ are positive. This can be done with numerical methods. Each
Fourier mode Ψ̂ satisfies a fourth order ODE in z. We used finite differences to calculate the
smallest eigenvalue corresponding to each k and determined the critical Grashoff number
from this. After discretizing in z the differential equation becomes a generalized eigenvalue
problem. We find that the critical Grashoff number is Gr = 140, at a value of k = 3.1.

2.2 Energy Stability for a Three Dimensional Stress Driven Flow

Consider the following non-dimensionalized equations for a three dimensional stress driven
flow:

∂u

∂t
+ u · ∇u + ∇p = ∆u (29)

∇ · u = 0 (30)

uz|z=0,1 = 0 (31)

ux|z=0 = 0 (32)

uy|z=0 = 0 (33)

∂ux

∂z
|z=1 = Gr (34)

∂uy

∂z
|z=1 = 0 (35)

The domain is periodic in x and y. A steady solution to this equation is ux = Grz. If
we make the substitution U = u + îGrz we can perform the same analysis as in the two
dimensional case. The variational formulation is different and so is the set of Euler-Lagrange
equations:

λUx = −∆Ux +
Gr

2
Uz +

∂q

∂x
(36)

λUy = −∆Uy +
∂q

∂y
(37)

λUz = −∆Uz +
Gr

2
Ux +

∂q

∂z
(38)
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If we assume that the eigenfuction for the lowest eigenvalue is not a function of x, we
can introduce the stream function Ψ defined by ∂Ψ

∂y = Uz and ∂Ψ
∂z = −Uy. The lowest

frequency eigenmodes of shear driven flows tend to be Langmuir circulation flows that are
independent of the streamwise direction. Our use of this assumption is justified by empirical
observations within this field [6]. The Euler Lagrange equations become:

λUx =
Gr

2

∂Ψ

∂y
− ∆Ux (39)

−λ
∂Ψ

∂z
=

∂q

∂y
+ ∆

∂Ψ

∂z
(40)

λ
∂Ψ

∂y
=

∂q

∂z
− ∆

∂Ψ

∂y
+

Gr

2
Ux (41)

Taking the z derivative with respect to the second expression and the y derivative with
respect to the first and third we can subtract the last two to eliminate the pressure:

λ
∂Ux

∂y
=

Gr

2

∂2Ψ

∂y2
− ∆

∂Ux

∂y
(42)

λ∆Ψ = −∆2Ψ +
Gr

2

∂Ux

∂y
(43)

We can write an ODE for the fourier modes of Ψ:

λıkUx = −Gr

2
k2Ψ̂ − ık

(

∂2Ux

∂z2
− k2Ux

)

(44)

λ

(

∂2Ψ̂

∂z2
− k2Ψ̂

)

= −
(

∂4Ψ̂

∂z4
− 2k2 ∂2Ψ̂

∂z2
+ k4Ψ̂

)

+
Gr

2
ıkUx (45)

Ψ̂|z=0,1 = 0 (46)

∂Ψ̂

∂z
|z=0 = 0 (47)

∂2Ψ̂

∂z2
|z=1 = 0 (48)

Ux|z=0 = 0 (49)

∂Ux

∂z
|z=1 = 0 (50)

This is an ODE and we can discretize it and convert it into a generalized eigenproblem.
We look for the critical Grashoff number Gr where the system first has a negative eigenvalue
for some k. We find that Grc = 51.7 at k = 2.1. This is in agreement with work done by
Tang, Caulfield, and Young [6].

2.3 Bounds on the Energy Dissipation in Two Dimensions

Define 〈·〉 to be the space time average and ·̄ to be the horizontal and time average. Begin
by taking the dot product of the momentum equation with u. After averaging we find that:

ν
〈

|∇u|2
〉

=
τ

h
ūx(h) (51)
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Define the dissipation ε = 〈ν|∇u|2〉, Reynolds number of the flow to be Re = ūx(h)h
ν , and the

friction coefficient to be Cf = εh
ūx(h)3

. For the steady state solution Cf (Re) = 1
Re . We want

to determine a limit on how Cf might scale with the Reynolds number by proving bounds on
the mean horizontal velocity at the z = h. Introduce a background field horizontal velocity
U(z) such that U satisfies the same boundary conditions as u. Consider the decomposition
u = îU + ũ. The following are the dimensionless equations for ũ:

∂ũ

∂t
+ ũ · ∇ũ + ∇p + U

∂ũ

∂x
+ îũz

dU

dz
= ∆ũ + î

d2U

dz2
(52)

ũ|z=0 = 0 (53)

ũz|z=h = 0 (54)

∂ũx

∂z
|z=h = 0 (55)

Take the dot product with ũ and compute the space time average:

0 = −
〈

|∇ũ|2
〉

−
〈

dU

dz
ũxũz

〉

+

〈

ũx
d2U

dz2

〉

(56)

The time derivative term vanishes because ‖ũ‖2 is bounded. If we integrate the last term
by parts in the z direction the previous expression becomes:

0 = −
〈

|∇ũ|2
〉

−
〈

dU

dz
ũxũz

〉

+ Gr ¯̃ux(1) −
〈

∂ũx

∂z

dU

dz

〉

(57)

= −
〈

|∇ũ|2
〉

−
〈

dU

dz
ũxũz

〉

+ Gr(ūx(1) − U(1)) −
〈

∂ũx

∂z

dU

dz

〉

(58)

Substitute îU(z) + ¯̃u(z) = ū(z) into
〈

|∇u|2
〉

:

1

2

〈

|∇u|2
〉

=
1

2

〈

|∇ũ|2
〉

+
1

2

〈

dU

dz

2〉

+

〈

∂ũx

∂z

dU

dz

〉

(59)

We take a linear combination of these expressions so as to eliminate the
〈

∂ũx
∂z

dU
dz

〉

term:

1

2

〈

|∇u|2
〉

= −
〈

1

2
|∇ũ|2 +

dU

dz
ũxũz

〉

+ Gr(ūx(1) − U(1)) +
1

2

〈

dU

dz

2〉

(60)

Now we define the quadratic form QU (ũ):

QU (Ũ) =

〈

1

2
|∇ũ|2 +

dU

dz
ũxũz

〉

(61)

Finally we combine this definition with the identity
〈

|∇u|2
〉

= Grūx(1) to produce:

ūx(1) = 2U(1) − 1

Gr

〈

dU

dz

2〉

+
2

Gr
Q (62)

If we choose U so that Q is positive definite we arrive at the following bound for ūx(1):

ūx(1) ≥ 2U(1) − 1

Gr

〈

dU

dz

2〉

(63)
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Define the background horizontal velocity profile to be linear in z in horizontal boundary
layers near the top and bottom boundary and constant elsewhere:

U(z) = Grz 0 < z < δ1 (64)

= Grδ1 δ1 < z < 1 − δ2 (65)

= Gr(δ1 + δ2 + z − 1) 1 − δ2 < z < 1 (66)

Then U(1) = Gr(δ1+δ2) and ūx(1) ≥ Gr(δ1+δ2). We need to choose δ1 and δ2 to maximize
the sum while keeping Q positive definite. We drop the accents and refer to the fluctuations
away from the background as u.

Q =
1

2
‖∇u‖2 + Gr

∫ δ1

0
uxuzdzdx + Gr

∫ 1

1−δ2

uxuzdxdz (67)

We start with the second term on the right hand side:

∫ ∫ δ1

0
uxuzdzdx =

∫ ∫ δ1

0

∫ z

0

(

∂ux

∂z′
uz + ux

∂u′
z

∂z′

)

dz′dxdz (68)

Now we use incompressibility to eliminate the ux
∂u′

z
∂z′ = −ux

∂ux
∂x = −∂‖ux‖2

∂x term. Then we
find:

∣

∣

∣

∣

∫ ∫ δ1

0
uxuzdzdx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ δ1

0

∫ z

0

(

∂ux

∂z′

∫ z′

0

∂u′′
z

∂z′′
dz′′
)

dz′dxdz

∣

∣

∣

∣

∣

(69)

≤
∫ ∫ δ1

0

∫ z

0

∣

∣

∣

∣

∂ux

∂z′

∣

∣

∣

∣

√
z′‖∂uz

∂z
‖δ1,zdz′dxdz (70)

≤
∫ ∫ δ1

0

z√
2
‖∂ux

∂z
‖δ1,z‖

∂uz

∂z
‖δ1 ,zdxdz (71)

≤ δ2
1

4
√

2

(

1

C
‖∂ux

∂z
‖2

δ1 +
C

2
‖∂ux

∂x
‖2

δ1 +
C

2
‖∂uz

∂z
‖2

δ1

)

(72)
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Here ‖ · ‖δ1 =
(

∫ ∫ δ1
0 ·2dxdz

)1/2
and ‖ · ‖1−δ2 =

(

∫ ∫ 1
1−δ2

·2dxdz
)1/2

. Similarly define

‖ · ‖δ1,z =
(

∫ δ1
0 (·)2dz

)1/2
. If we choose C = 1√

2
we find

∣

∣

∣

∫ ∫ δ1
0 uxuzdzdx

∣

∣

∣
≤ δ2

1
16‖∇u‖2. We

can perform an identical analysis at the top boundary layer, and set δ1 = δ2 to prove that

Q ≥ 1

2
‖∇u‖2 − Gr

δ2
1

8
‖∇u‖2

δ1 − Gr
δ2
1

8
‖∇u‖2

1−δ2 (73)

≥
(

1

2
− Gr

δ2
1

8

)

‖∇u‖2 (74)

This is positive if δ1 ≤ 2Gr−1/2. This means that ūx(1) ≥ 4Gr1/2. In terms of units
ūx(h) = ūx(1) ν

h ≥ 4τ1/2. The friction coefficient Cf = τ
ū(h)2 ≤ 1

16 .

2.4 Bounds in Three Dimensions

We can use much of the same algebra to derive bounds for the three dimensional case.
The equations are the same except that there is a y component in the velocity field. As a

result we have the same ū(h) ≥ 2U(1) − 1
Gr

〈

(

dU
dz

)2
〉

as long as Q ≥ 0. We pick the same

background profile as in the two dimensional case, linear near each boundary and constant
in the bulk.

We begin with the second term in Q and find that:

˛

˛

˛

˛

Z Z Z δ1

0
uxuzdxdydz

˛

˛

˛

˛

≤
Z Z Z δ1

0
z‖∂ux

∂z
‖δ1,z‖

∂uz

∂z
‖δ1,zdxdydz (75)

≤ δ2
1

2

„

1

2C

Z

dx

Z

dy‖∂ux

∂z
‖2

δ1,z +
C

2
(1 − a)

Z

dx

Z

dy‖∂uz

∂z
‖2

δ1,z +
C

2
a

Z

dx

Z

dy‖∂ux

∂x
+

∂uy

∂y
‖2

δ1,y

«

(76)

=
δ2
1

4

„

1

C
‖∂ux

∂z
‖2

δ1
+ C(1 − a)‖∂uz

∂z
‖2

δ1
+ Ca‖∂ux

∂x
‖2

δ1
+ Ca‖∂uy

∂y
‖2

δ1
+ Ca‖∂ux

∂y
‖2

δ1
+ Ca‖∂uy

∂x
‖2

δ1

«

(77)

Choose a = 1
2 and C =

√
2 to find that

∣

∣

∣
Gr
∫ ∫ ∫ δ1

0 uxuzdxdydz
∣

∣

∣
≤ δ2

1

4
√

2
‖∇u‖2

δ1
. We make

the transformation z 7→ 1 − z to study the upper boundary layer:

∣

∣

∣

∣

∫

dx

∫

dy

∫ δ2

0
uxuzdz

∣

∣

∣

∣

≤
∫

dx

∫

dy

∫ δ2

0
dz

2

π

(
∫ 1

δ2

(
∂ux

∂z
)2dz′

)1/2 √
z‖∂uz

∂z
‖1−δ2,z (78)

≤ 3δ
3/2
2

2π

(

1

C
‖∂ux

∂z
‖2 +

C

2
‖∂uz

∂z
‖2

δ2 +
C

2
‖∂ux

∂x
‖2

δ2 +
C

2
‖∂uy

∂y
‖2

δ2

)

(79)

Combining these two terms we find that:

|Q − 1

2
‖∇u‖2| ≤ Gr

δ2
1

4
√

2
‖∇u‖2

δ1 + Gr
3δ

3/2
2

2π

(

1

C
‖∂ux

∂z
‖2 +

C

2
‖∇u‖2

δ2

)

(80)

≤ Gr

([

δ2
1

4
√

2
+

3δ
3/2
2

2π

1

C

]

‖∂ux

∂z
‖2 +

δ2
1

4
√

2
‖∇u‖2

)

(81)

= Gr

([

δ2
1

4
√

2
+

3
√

2δ3
2

2π2δ1

]

‖∂ux

∂z
‖2 +

δ2
1

4
√

2
‖∇u‖2

)

(82)
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Figure 2: Stanton Diagram of the TCY bounds and the bounds proven here on Cf

In the last line we made the choice C =
πδ2

1

3
√

2δ
3/2
2

. This shows that the ratio of the

boundary layers δ2
δ1

. Gr−1/6. In order to produce a prefactor for the scaling of ū(1) we

take δ2 = 0. Then δ1 =
√

2
√

2Gr−1/2 and ū(h) ≥
√

2
√

2τ1/2. The corresponding friction
coefficient is Cf ≤ 1

2
√

2
= .354. The bound proved by Tang, Caulfield, and Young[6] is

Cf < .0237, which is stronger than this bound.

3 Infinite Prandtl Number Marangoni Convection

Consider the equations describing infinite prandtl number Marangoni convection:

∇p = ∆u (83)

∂T

∂t
+ u · ∇T = ∆T (84)

u|z=0 = 0 (85)

T |z=0 = 0 (86)

uz|z=1 = 0 (87)

∂T

∂z
|z=1 = −1 (88)

∂ux

∂z
|z=1 = −Ma

∂T

∂x
|z=1 (89)
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Take the divergence of the momentum equation:

∆p = ∇ · ∆u (90)

= ∆∇ · u (91)

= 0 (92)

If we take the Laplacian of the momentum equation we will find that u solves the biharmonic
equation:

∆2u = ∆∇p (93)

= ∇∆p (94)

= 0 (95)

We will be interested in the z component of the velocity for the background method. If we
take the Fourier transform in the z direction it satisfies an ordinary differential equation:

d4uz

dz4
− 2k2 d2ux

dz2
+ k4ux = 0 (96)

uz|z=0 = 0 (97)

duz

dz
|z=0 = 0 (98)

uz|z=1 = 0 (99)

d2uz

dz2
|z=1 = k2Maθ(1) (100)

This has an exact solution:

uk = −Maθk(1)
2 sinh(k)

2 sinh(k) cosh(k)
k

− 2
(sinh(kz) − kz cosh(kz) + (k coth(k) − 1) z sinh(kz)) (101)

Define fk(z) = uk
Maθk(1) .

We have plotted the modes in Figure 3. For large value of k the functions are concen-
trated near z = 1. For very large values of k the maximum value of fk goes to zero. For
small values of k the maximum of fk is extremely small and the function is concentrated
over the entire unit interval. For values of k near 3 and 4 the maximum is large and the
concentration is also over a significant portion of the unit interval.

Set up the background method by making the substitution T = τ(z)+θ, where τ(0) = 0
and dτ

dz (1) = −1. Then the field θ satisfies the equation:

∂θ

∂t
+ uz

dτ

dz
+ u · ∇θ = ∆θ +

d2τ

dz2
(102)

θ(z = 0) = 0 (103)

∂θ

∂z
(1) = 0 (104)

If we multiply the θ evolution equation by θ and integrate over space we get the expres-
sion:

1

2

∂‖θ‖2

∂t
= −

∫

dx

∫

dz
(

θuzτ
′ − θτ ′′)− ‖∇θ‖2 (105)
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Figure 3: Plots of the functions fk.

3.1 Energy Stability

Make the substitution τ = −z in the previous equation. The solution τ = −z will be stable
when the quadratic form Q = ‖∇θ‖2 −

∫

uzθdA is positive definite. Allow uk to stand for
the kth Fourier coefficient of uz. Substitute the expression for the Fourier series of θ and
uz into Q:

Q =
∑

k

∫ 1

0
dz

(

−2<(θkuk) + (
dθk

dz
)2 + k2θ2

k

)

dz (106)

Then use the Cauchy-Schwarz inequality:

|
∫ 1

0
dz2<(θkuk)| ≤ Maθk(1)‖fk‖‖θk‖ (107)

≤ Ma‖dθk

dz
‖‖θk‖‖fk‖ (108)

≤ Ma

2
‖fk‖

(

k‖dθk

dz
‖2 +

1

k
‖θk‖2

)

(109)

If for each k the quantity Ma
2k ‖fk‖ is less than 1 the form Q will be positive definite. Since

we know the fk we can write this condition explicitly:

0

@

Z 1

0
dz

"

2 sinh(k)
2 sinh(k) cosh(k)

k
− 2

(sinh(kz) − kz cosh(kz) + (k coth(k) − 1) z sinh(kz))

#2
1

A

1/2

≤ 2k

Ma
(110)

This allows us to calculate the critical Marangoni number to be Mac > 58.3. The maxi-
mum occurs at k = 2.4. This estimate is slightly better than the estimate published Davis in
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1969. Davis used variational methods and his bound is valid for all Prandtl numbers. The
variational problem that he set up used natural boundary conditions to eliminate the terms
that come from integrating by parts along the boundary. This weakening of the boundary
condition is what makes it possible to improve the scaling using nonvariational methods.

3.2 Upper Bounds on the Nusselt Number

We define the Nusselt number to be the ratio of heat transport to heat transport due to
conduction, so that it measures the strength of convection. Conduction requires a temper-
ature gradient, so one would expect that when convection is strong the fixed heat flux is
maintained with a minimal temperature gradient. The result is that the temperature at the
top becomes low. Therefore we define the Nusselt number as − 1

T (z=1) . If we multiply the
time evolution equation for T by T and average we find that:

1

Nu
= ‖∇T‖2 (111)

Take the energy evolution equation for ‖θ‖2 and time average it:

0 = −
∫

dx

∫

dz(θuzτ
′ − θτ ′′) − ‖∇θ‖2 (112)

Now use the expression ‖∇θ‖2 = ‖∇T‖2 − ‖τ ′‖2 − 2
∫

dxdzτ ′ ∂θ
∂z to write:

0 = −2

∫

dx

∫

dz(θuzτ
′ − θτ ′′) − ‖∇θ‖2 − ‖∇T‖2 + 2

∫

dxdzτ ′ ∂θ

∂z
+ ‖τ ′‖2 (113)

0 = −2

∫

dx

∫

dz(θuzτ
′) − ‖∇T‖2 − 2θ̄(1) − ‖∇θ‖2 + ‖τ ′‖2 (114)

0 = −2

∫

dx

∫

dz(θuz) − 2T̄ (1) + 2τ̄ (1) − ‖∇θ‖2 + ‖τ ′‖2 + ‖∇T‖2 (115)

− 1

Nu
= −2

∫

dx

∫

dz(θuzτ
′) − ‖∇θ‖2 + 2τ̄ (1) + ‖τ ′‖2 (116)

If the functional Q = 2
∫

dx
∫

dz(θuzτ
′) + ‖∇θ‖2 is always positive we can prove an upper

bound on the Nusselt number:

1

Nu
≥ −2τ̄(1) −

∫

dzτ ′2 (117)

We choose the derivative of the background profile τ to be equal to −1 in a layer of
width δ1 near the bottom and δ2 near the top. We choose τ ′ to be constant in the bulk:

τ(z) = −z 0 < z < δ1 (118)

= −δ1 δ1 < z < 1 − δ2 (119)

= −δ1 − z + 1 − δ2 1 − δ2 < z < 1 (120)

Then 1
Nu ≥ δ1 + δ2 as long as

∫

dx
∫

dz(2θuz) + ‖∇θ‖2 is positive. Write this in terms
of the Fourier decomposition of θ and uz:

0 ≤
∑

k

[

2

∫ δ1

0
dz<(θkuk) + 2

∫ 1

1−δ2

dz<(θkuk) + ‖dθk

dz
‖2 + k2‖θk‖2

]

(121)
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Figure 4: Background profile for Marangoni convection.

If for all k the quantity 2
∫ δ1
0 dz<(θkuk) + 2

∫ 1
1−δ2

dz<(θkuk) + ‖dθk
dz ‖2 + k2‖θk‖2 > 0 the

form Q will be positive definite.
We begin the analysis with the lower boundary layer. We start by replacing uk with

Maθk(1)fk. Then we use the fundamental theorem of calculus:

|
∫ δ1

0
fkθk(1)θkdz| ≤

∫ δ1

0
|fkθk|dz‖dθk

dz
‖ (122)

≤
∫ δ1

0

√
z|fk|‖

dθk

dz
‖2 (123)

Let F (z) = supkf(z). Then we need to evaluate
∫ δ1
0

√
zF (z)dz to determine the scaling.

As z goes to zero each fk scales as ckz
2 so there is reason to believe that F might have the

same behavoir. We verified numerically that for extremely small z the value of k at which
the maximum over fk is realized has a lower bound, implying that there is some c such that

F (z) < cz2. We show this in Figure 3.2. This means we can choose δ
7/2
1 = O(Ma−1), or

that Nu < O(Ma2/7). We can calculate the prefactor numerically. We set δ2 = 0. We find
that Nu < .84Ma2/7.

Boeck and Thess have used numerical methods to find solutions of the infinite Prandtl
number Marangoni problem. They analyzed the scaling of the Nusselt number of their nu-
merical solutions with respect to the Marangoni number and found that Nu = .446Ma .238.
They also theorized that Nu ∼ Ma2/9 [1]. We compare their data to our bound in Figure
3.2.

3.3 Heat Transport with finite Prandtl Number

We consider the problem of Marangoni Convection in a system with finite Prandt number.
The system is described by the equations:
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Figure 5: Scaling of the functions fk for different values of k near z = 0.

Figure 6: Plot of Nusselt and Marangoni number of numerical data compared to the rigorous
upper bound and the critical Marangoni number

269



P−1(
∂u

∂t
+ u · ∇u) = −∇p + ∆u (124)

∇ · u = 0 (125)

∂T

∂t
+ u · ∇T = ∆T (126)

u(z = 0) = ~0 (127)

T (z = 0) = 1 (128)

u3(z = 1) = 0 (129)

∂T

∂z
(z = 1) = −1 (130)

∂u1

∂z
= −Ma

∂T

∂x
(z = 1) (131)

∂θ

∂z
(z = 1) = 0 (132)

The Nusselt number of this flow is defined as Nu = − 1
T̄ (1)

. Multiply the equation for

the temperature by T and average it over the volume. All the terms on the left hand side
vanish, the first term because the norm of temperature is bounded and the advection term
because there is no flux across the upper and lower boundaries. Therefore we find that:

0 =

∫

V
T∆TdV (133)

= −‖∇T‖2 +

∫

ΓV
T

∂T

∂z
dA (134)

= −
∫

z=1
TdA − ‖∇T‖2 (135)

This means that Nu = 1
‖∇T‖2 . Introduce a background profile τ(z). We choose τ to satisfy

a homogeneous Dirichlet condition at z = 0 and the Neumann condition ∂τ
∂z = −1 at z = 1.

Then we can decompose the temperature T = τ(z) + θ(x, z, t) where θ = 0 at z = 0 and
∂θ
∂z = 0 at z = 1. For each τ there is an equation for θ:

∂θ

∂t
+ u · ∇θ + uz

∂τ

∂z
= ∆θ +

∂2τ

∂z2
(136)

Multiply this equation by θ and take the average over space and time. Again the first two
terms on the left hand side vanish:

0 = −‖∇θ‖2 − θ̄(1) − 〈θuzτ
′〉 − 〈∂θ

∂z
〉 (137)

Now substitute τ and θ for T into ‖∇T‖2 = 1
Nu :

1

Nu
= ‖∇θ‖2 + ‖∇τ‖2 + 2

∫

∇θ · ∇τdV (138)

= −‖∇θ‖2 − 2θ̄(1) − 2〈θuzτ
′〉 +

∫

τ ′2dv (139)
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In the last line we added two times the identity in the previous equation. In order to
incorporate the Marangoni condition we need the momentum equation. We take the dot
product of the momentum equation with u and calculate the space time average:

0 = −‖∇u‖2 +

∫

z=1
ux

∂ux

∂z
dA (140)

= −‖∇u‖2 − Ma

∫

z=1
ux

∂θ

∂x
dA (141)

= −‖∇u‖2 − Ma

∫

V

∂

∂z
(ux

∂θ

∂x
)dV (142)

Consider linear combinations of this expression and the equation for the Nusselt number:

1

Nu
= −‖∇θ‖2 − 2θ̄(1) − 2〈θuzτ ′〉 +

Z

V
τ ′2dv + C(‖∇u‖2 + Ma

Z

V

∂

∂z
(ux

∂θ

∂x
)dV ) (143)

= −‖∇θ‖2 − 2(T̄ (1) − τ̄(1)) − 2〈θuzτ ′〉 +

Z

V
τ ′2dv + C(‖∇u‖2 + Ma

Z

V

∂

∂z
(ux

∂θ

∂x
)dV ) (144)

= −2τ̄(1) − 〈τ ′2〉 + Q(θ, τ, u) (145)

In the second to last line we used the fact that θ = T − τ . In the last line we used the fact
that Nu = − 1

T̄ (1)
and defined the quadratic form Q:

Q(θ, τ, u) = ‖∇θ‖2 + 2〈θuzτ
′〉 + C(‖∇u‖2 + Ma

∫

∂

∂z
(ux

∂θ

∂x
)) (146)

Suppose that Q > 0 for all u, θ, for some given choice of τ . Then 1
Nu < −2τ̄(1) − 〈τ ′2〉.

The bound on the Nusselt number will only depend on the choice of τ . Therefore the task
will be to choose a τ that maximizes the bound on 1

Nu subject to the constraint that Q is
positive. The background τ only affects Q through the term 〈θuzτ〉, which can be negative.
Therefore it would make sense to make this term as small as possible. Define τ such that
τ ′ is zero everywhere except near the upper and lower boundaries.

τ = −z z < δ1 (147)

τ = −δ1 δ1 < z < 1 − δ2 (148)

τ = −δ1 − δ2 + 1 − z 1 − δ2 < z < 1 (149)

With this choice of τ the expression 〈θuzτ
′〉 reduces to the inner product of uz and θ

over regions of width δ1 and δ2 near the boundaries. The τ also satisfies the boundary
conditions. We treat the top and bottom layer separately, starting with the bottom layer:

∫ δ1

0
θuzdV ≤

∫ δ1

0

(
∫ z

0
| ∂

∂z′
θdz′|

)(
∫ z

0
| ∂

∂z′′
uzdz′′|

)

dxdz (150)

≤
∫ δ1

0
z‖∂θ

∂z
‖‖∂uz

∂z
‖dxdz (151)

=
δ2
1

2
‖∂θ

∂z
‖‖∂uz

∂z
‖ (152)
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It is more difficult to deal with the upper layer because θ is not zero on the upper boundary.
As a result we have to use the Poincare inequality instead of the method we just used on
the lower layer. We can choose δ2 = 0 and not effect the scaling.

The term involving the Marangoni number must also be controlled by the norms of the
derivatives of u and θ.

Ma

∫

∂

∂z

(

ux
∂θ

∂x

)

= Ma

∫
(

∂ux

∂z

∂θ

∂x
− ∂ux

∂x

∂θ

∂z

)

(153)

≤ ‖∂ux

∂z
‖‖∂θ

∂x
‖ + ‖∂uz

∂z
‖‖∂θ

∂z
‖ (154)

Here we have used the fact that u is incompressible. Now we have bound on Q in terms
of first derivatives of u and θ. We are only interested in the scaling and do not make an
effort here to derive an optimal bound. If we take C = 1 we find that Q is positive when
the following equation for λ has no negative solutions:

(1 − λ)4 − (
δ4

4
+

Maδ2

2
)(1 − λ)2 = 0 (155)

This is satisfied as long as δ4

4 + Maδ2

2 < 1. This suggests that for large Ma δ . Ma−1/2.

This suggests that Nu . Ma1/2.
The scaling Nu . Ma1/2 is considerably weaker than the infinite Prandtl number case.

On the other hand, simulations by Boeck and Thess do not indicate that the actual scaling
is weaker for the finite Prandtl number case. The reason that this scaling is so much worse is
because we were unable to take advantage of the relationship between the temperature and
velocity fields. It was possible to achieve the 2/7th bound because we knew what the Fourier
modes of the velocity field were. However the relationship is much more complicated in the
finite Prandtl number case and we were unable to use it. In general, improvements of the
bounds produced by the background method in Raleigh-Benard convection were achieved
by using the relationship [2], so it seems reasonable to expect that this bound could be
improved by such considerations.

4 Conclusion

We presented rigorous upper bounds for the friction coefficient in stress driven shear flow
and also derived the critical Grashoff number for the stability of the laminar flow solution.
Tang, Caulfield, and Young first used the background method to analyze this problem.
We were able to prove an analytic bound on the friction coefficient using the full stress
boundary condition. We improved the lower bound on the critical Marangoni number for
nonlinear stability in infinite dimensional Prandtl number Marangoni convection. We also
proved that Nu < .84Ma2/7 for the same problem. In finite Prandtl number Marangoni
convection we were unable to do any better than Nu ∼ Ma1/2.
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