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1 Introduction

Background turbulence frequently causes mixing across gravitationally stable density in-
terfaces in atmosphere and ocean. Some common examples include turbulence by surface
winds or the cooling causing the deepening of the upper ocean mixed layer into stably strat-
ified pycnocline and turbulent mixing at the tropopause causing the growth of a planetary
boundary layer. There can be some mixing at the thermocline due to discharge of the buoy-
ant jets from power plants. These mixing processes are important in order to understand
and control the biological activities and dispersion of pollutants in the environment ([3]).
For example, the diffusion of methane gas in mine shafts.

Many laboratory and associated theoretical studies have considered the response of a
stratified fluid to impulsive surface forcing. [3] provides an excellent review on studies with
turbulence and vertical shear, investigating the growth of mixed layer in a stratified fluid.
The nature of mixing at sheared and shear free density interfaces is very different. For
example, the mixing in shear-driven stratified flows, where a well mixed turbulent layer
entrains an adjacent non-turbulent layer, is believed to depend upon the external forcing,
the depth of the mixed layer and the buoyancy jump across the layer. All these parameters
are investigated in the present study of 2-layer fluid system.

The first set of experiments undertaken to explore the growth of the mixed layer as
a function of these factors were that of [4]. They found that the entrainment rate was
proportional to the friction velocity u∗ ((= |τ |/ρ0)

1/2, where τ is the surface shear stress and
ρ0 is the reference density) and Ri−1

τ , where Riτ is the overall Richardson number, defined
as g′h/u2

∗
. The current investigation has been motivated by the stratified flow experiments

of [2] and [1] in cylindrical geometries. The present work is based on the earlier two-layer
model of [1], where a horizontal disk at the base of the tank drives the flow. Their analysis
showed that for Richardson Number, RiB(= g′h/Ω2R2) < 1.5, the growth of the elevation
of the interface separating the upper (almost quiescent) layer of constant density from the
lower mixed region is proportional to Ri−1

B . Note that h is the depth of the mixed layer, Ω
is the rotation rate of the disk and R is the radius of the disk. The buoyancy is defined as
g′ = g(ρL − ρu)/ρ̄L, where g is the gravitational acceleration, ρL is the density of the lower
layer fluid, ρu is the density of the fluid in the upper layer and ρ̄L is the average density of
the fluid in the lower layer, relevant if the fluid in the lower layer is linearly stratified.
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Figure 1: Experimental set-up showing a tank with a horizontal disk spinning the fluid in
the upper layer.

The experiments in the current work are characterised by the growth of a mixed layer,
separated by the undisturbed stratified lower fluid by a curved surface. In this report,
the experimental set-up is discussed, along with the dimensionless parameters that come
into play. The experimental results are presented and an attempt to offer a theoretical
explanation of these results is made.

2 Experimental set-up and parameters

The experiment comprises of a cylindrical tank of diameter 30cm, with a horizontal disk at
the top attached to a motor. Figure (1) and figure (2) show a square tank used initially.
The disk is just below the free surface of the top layer, fully immersed in the upper layer
fluid. The radius of the disk is 12 cm. The rate of rotation of the disk is controlled by a
motor. The rotation rate ranges from 1s−1 ≤ 2πΩ ≤ 12s−1, where Ω is the angular rotation
rate, which remains constant during an experiment. As the disk spins, it provides energy
for mixing the two layers. A conductivity probe is used to obtain vertical density profiles
in the fluid. The total depth of the fluid, H = 27cm is fixed and is the same for every
experiment. The depth of the upper layer, h, varies during the experiments. The initial
depth of the upper layer is indicated as h0 = h(t = 0), and the depth during an experiment
is h = h(t). For most experiments, h0 is varied between 6cm and 20.6cm. The consequences
of changing the Richardson number by varying R, the radius of the disk, are not explored
in the present experiments.

The most important dimensionless parameter for the flow is the Richardson number ([1]).
The following are the definitions of the Richardson number that will be used throughout
this report.

RiB(t) =
g′h

Ω2R2
,
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where R is the radius of the disk, g′ = g(ρL − ρu)/ρ̄L (ρL, ρu and ρ̄L as defined in the
previous section), and Ω is the rate of rotation of the disk. RiB is constant for most part
of the experiment as can be seen from Figure 6. For almost all the experiments, after an
initial spin-up (when the fluid in the top layer is set into motion), RiB reaches a constant
value and maintains that value until the very end of the experiment, where the cylinder
bottom affects the experiment. Near the bottom, the boundary layer effects cannot be
neglected. Consequently, the value of RiB used is this work is R̄iB , i.e the average value of
RiB calculated ignoring the beginning and the end of an experiment. It should be noted
that in this definition, the velocity is assumed to be the“solid body rotation” velocity, i.e.
uu (see below) is given by ΩR. Hence, RiB is the same as Riτ , discussed in previous section,
if the velocity is ΩR.

Ri0 =
g′0h0

Ω2R2
,

where g′0 is the initial buoyancy jump across the interface between the upper and lower
layer, measured before starting the experiment and h0 is the initial depth of the upper
layer.

Riu =
g′h

u2
u

= RiB

(

Ω2R2

u2
u

)

, where uu is the characteristic velocity in the upper layer.

Rim =
g′Lm

u2
u

,

where , Lm is the interfacial length scale (i.e. radius of an eddy at the interface). Lm is
proportional to the Ozmidov scale, L0. The Reynolds number in the present experiments is
sufficiently high for the flow to be regarded as turbulent. Hence, allowing for the assumption
that the flow is independent of Reynolds number. The Schmidt number, Sc (ratio of
kinematic viscosity to mass transfer diffusion coefficient), is not an important parameter
for the flow as Sc � 1 for a salt stratified water solution and it is constant for all the
experiments. Thus, the overall fluid motion and mixing process is assumed to depend on a
single parameter, the Richardson number.

2.1 A Typical Experiment

Figure 2 shows a two-layer experiment, with R̄iB = 0.56. The upper layer is well mixed
with fluid being pulled up by the spinning disk, resulting in a dome-shaped interface. The
Ekman layer, below the disk, causes the fluid below to rise up. This results in a circulation,
where the fluid ascends from the middle and comes down from the side of the tank. As the
mixing at the interface occurs, the upper layer deepens until all the fluid in the lower layer
is mixed. It is worth noting that the lower layer is very quiescent. It is motionless and
retains this property until it is completely mixed. A schematic of the fluid circulation in
the upper and lower layer is shown in figure 3. The overturning billows seen at the interface
(for the case where Ri0 ≤ 1), entrain the lower layer fluid. This mechanism converts the
kinetic energy (provided by the disk) of the fluid in the upper layer, into potential energy
by lifting up the denser fluid particles from the lower layer and mixing them with the rest of
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(a) t̂ = 8 (b) t̂ = 17

(c) t̂ = 18 (d) t̂ = 28

Figure 2: A two-layer experiment with Ω = 1s−1, t̂ = Ωt, R̄iB = 0.56. In figure 2(c), the
fluid in the upper layer is pulled by the disk, spinning at the rate Ω at the top. The fluid in
the lower layer is motionless. The dye is rising in 2(d) because it is lighter than the lower
layer fluid.
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the fluid in the upper layer. It is the size of these overturning billows (in terms of Lm) that
determines the rate at which the fluid is mixed. However, once the size exceeds a certain
critical value, these billows can no longer develop and the fluid is not mixed efficiently. For
Ri0 > 1, a completely different regime is observed. The flow is no longer turbulent and the
overturning billows are replaced by waves at the interface.

Disk

Overturning billows

Interface

Free Surface
Ω

Lm

Figure 3: A schematic of the flow in the cylindrical tank, with the disk spinning at the top.
There is no circulation in the lower layer fluid.

As mentioned earlier, a conductivity probe is used to obtain vertical profiles of the fluid’s
density. Figure 4, shows one such profile with R̄iB = 0.19. The height of the interface (in
mm) is plotted against the density of the fluid (in g/cm3). The evolution in time of the
profiles is from left to right. The profile on the extreme left represents the initial density
of the two layers. After the disk starts spinning, the first density profile obtained is the
second profile from the left (blue line). It is clear, from looking at the profiles from left to
right, that the upper layer is deepening as the level of the interface is going down in each
subsequent profile. As expected, the lower layer maintains its density until it is completely
mixed with the upper layer fluid.

3 Experiments

The following table shows the various experiments conducted to observe the mixing in a
two-layer stratified fluid.
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Figure 4: A typical vertical profile of the density during an experiment with R̄iB = 0.19.
The evolution of the profiles in time is from left to right.

Experiment Ri0 h0 (cm) Ω(s−1) g′0(cms−2) R̄iB
080713lo40 0.1527 8.7 3 22.7407 0.19
080714lo40 0.3109 17.8 3 22.6470 0.32
080715lo40 0.2367 13.5 3 22.7215 0.255
080716lo40 0.2554 18.5 3 17.8929 0.275
080718lo30 0.2406 6.1 2 22.7218 0.265
080720lo64 0.2336 13.5 5.4 73.1874 0.258
080721lo60 0.0851 13.5 5 22.7028 0.096
080727lo20 2.1293 13.5 1 22.7124 2.1
080731lo30 0.5317 13.5 2 22.6842 0.56
080809lo50 0.1328 13.5 4 22.6561 0.154
080810lo28 1.0016 20.6 1.8 22.6842 0.935
080812lo40 0.2124 13.5 3 20.3892 0.24

The last experiment, ‘080812lo40’, has a buoyant upper layer and a linearly stratified
lower layer with density profile evolving in time as shown in figure 5. The range of Richard-
son numbers explored in the experiments is shown in figure 6.

As expected, mass is conserved in all the experiments. This is clear from figure 7. The
value of RiB/Ri0 = g′h/g′0h0 is approximately 1 for the experiments, implying that g ′h is a
constant. The fluctuations seen in figure 7 are due to the fact that the flow is turbulent. It
is for this reason that the value of RiB/Ri0 is not exactly 1. Another observation that can
be made from this figure is that the value of RiB/Ri0 decreases dramatically for some cases
but not for the others. This can be attributed to the fact that all the profiles are included
in these experiments as there were relatively few of them. Since Ri0 for these experiments
is small, the mixing takes place very quickly as there is a small density difference between
the two layers. As mentioned earlier, the value of RiB/Ri0 at the bottom cannot be trusted
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Figure 5: Density Profiles from experiment ’080812lo40’: Plot of density (non-dimensional)
against depth that has been profiled (non-dimensional). Note the profiling depth is not the
same as the total depth, H = 27cm, instead the profiling depth is 24cm. Profiles evolve in
time from left to right. R̄iB = 0.24.
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Figure 6: Range of RiB(t) explored in the experiments.
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Figure 7: The value of RiB(t)/Ri0 = g′h/g′0h0 ∼ 1. This suggests that g′h is a constant.

because of the effect of bottom boundary layer. Hence, the last few profiles show such
a dramatic change in the value of RiB(t). Moreover, the initial value for almost all the
experiments is 1. It changes after the initial spin-up of the fluid, again reinforcing that
after the initial spin-up period, the value of RiB is almost a constant. From now onwards,
it is this value, found by averaging the value of RiB(t) (excluding the beginning and the
end profiles) that will be used for RiB .

It can be established from the following theoretical consideration that g ′h is a constant.
If A is the cross-sectional area of the cylinder, H is the total height, h is the height of the
upper layer, which evolves in time h = h(t), and Q = entrainment flux, then

d

dt
(Ah) = Q. (1)

The amount of fluid entrained is

d

dt

(

A

∫ h

0
ρu dz

)

= QρL, (2)

where ρL is the density in the lower layer. The average density in the upper layer is

ρ̄u =
1

h

∫ h

0
ρu dz, (3)

Hence, on substituting (3) into (2),

d

dt
(Ahρ̄u) = QρL. (4)
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Figure 8: Plot of dh/dt/ΩR against 1/RiB . The growth of the interface is not perfectly
proportional to 1/RiB .

which gives

d

dt
[A(ρ̄u − ρL)h] + ρL

d

dt
[Ah] = QρL, (5)

d

dt
[A(ρ̄u − ρL)h] = 0, (6)

d

dt
[Ag

(ρ̄u − ρL)

ρL
h] = 0, (7)

This shows that d
dt(g

′h) = 0 and thus g′h is a constant and mass is conserved.
In figure 8, the growth of the interface (scaled by ΩR) is plotted against 1/RiB . This

figure suggests that the mixing, or the growth of the interface, does not scale perfectly with
Ri−1

B . From the experimental results presented here, it is clear that the outcome of this work
does not support the conclusion of [1], where they found that the growth of the interface
is proportional to Ri−1

B , where the velocity (= ΩR) of the upper layer fluid is constant in
each experiment. Thus the simple mixing law, inferred by [1] needs a modification. This
indicates that the results do not support the assumption that the fluid is in solid body
rotation, i.e. the velocity does not scale as ΩR as assumed in the definition of RiB . Hence,
it is not completely accurate to assume that the velocity in the upper layer is the same as
ΩR and that it does not change during the experiment. An immediate consequence of this
result will be to re-examine the velocity of the upper layer fluid.
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4 Theory

The driving disk sets up a characteristic velocity uu in the upper layer. Assuming that
the bottom layer is stationary, the interfacial stress, τ can be described by the following
expression,

τ = cDρLu2
u,

where cD is the drag coefficient. Hence, the work done, W , can be expressed as

dW

dt
= πR2uuτ = πR2cDρLu3

u, (8)

The potential energy, PE is

PE = πR2

[

−g

∫ h

0
ρuz dz − g

∫ H

h
ρLz dz

]

= (πR2ρL)
g′h2

2
+ k, (9)

It should be noted here that k is a constant. However, the reference level for potential
energy can always be chosen such that this constant k is zero. The potential energy is
negative because z = 0 is defined at the top of the tank. The rate of change of potential
energy of the fluid parcels is proportional to the amount of power provided by the disk, i.e.

d

dt
PE = Γ

dW

dt
, (10)

where Γ is the flux coefficient ([5]). Assuming that g ′h is a constant (see previous section),
this leads to

d

dt

[

(g′h)(πR2ρL)
h

2

]

= ΓπR2cDρLu3
u. (11)

Hence, the interface grows as

dh

dt
= 2Γ

cDu3
u

g′h
., (12)

Let

ĥ =
h

h0
, t̂ = Ωt,

dĥ

dt̂
=

2cDΓu3
u

Ωh0g′h
. (13)

It is quite intuitive to expect that the growth of the interface depends on the amount
of energy that is spent on mixing the two layers together. The following 3 sub-sections
quantify this statement based on the amount of energy (provided by the disk) that is spent
on entrainment.
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4.1 Case 1

Solid Body Rotation:

If none of the energy is spent on entrainment, then all of the energy provided by the
disk is exhausted in moving the fluid in the upper layer. The upper layer in this case moves
with a constant speed, ΩR, provided by the disk. In this case, the upper layer fluid is in
solid body rotation, i.e.

uu = ΩR,

where uu is the speed of the upper layer fluid.

dĥ

dt̂
=

R

h0

c1

RiB
= constant, (14)

c1 = 2cDΓ, (15)

ĥ − 1 =
R

h0

c1

RiB
t̂. (16)

This case is similar to the outcome of [1], with dĥ
dt̂

a constant.

4.2 Case 2

ALL Energy spent on entrainment:

Assume uu can be expressed as

uu = ΩR

(

h0

h

)α

,

where h0 is the initial depth of the upper layer measured before starting the experiment.
This expression means that the velocity of the upper layer fluid decreases with time. It is
no longer a constant, which is the case if some energy is spent on mixing the two layers.
The total kinetic energy, KEu in the upper layer is

KEu =
πR2

2
ρrefu2

uh, (17)

where ρref is the density taken at some reference level. This reference density can, for
example, be the average upper layer density. It is assumed that in this case all the energy
is spent on mixing. This signifies that the kinetic energy of the upper layer does not change
as all the energy that the disk provides is lost in mixing the two layers. Hence,

d

dt
KEu = 0,

Thus,
πR2

2
ρrefu2

uh = constant, (18)
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By appealing to the Boussinesq approximation, changes in ρref can be ignored. Thus,
u2

uh is constant if α = 0.5 i.e

uu = ΩR

(

h0

h

)1/2

.

Hence, for the above expression to hold true, the fluid must spend all the kinetic energy on
mixing.

4.3 Case 3

Intermediate Case:

The two cases mentioned above are the extreme cases when either all the energy from
the disk is spent on mixing or all of it is expended on spinning the fluid in the upper layer.
A more sensible scenario is if part of the energy from the disk is consumed by the mixing
process and part of it is spent on mobilising the fluid. Suppose, as before,

uu = ΩR

(

h0

h

)α

.

Substituting this expression into equation (13) and integrating yields the following expres-
sion for ĥ:

ĥ − 1 =

[

R

h0

(1 + 3α)c1

RiB
t̂ + 1

]1/(1+3α)

− 1. (19)

Thus we can summarise the above results as follows:

• If α = 0: Entrainment has no effect on energy - this is the case when stratification is
weak.

• If α = 0.5: All the kinetic energy from the disk is spent on entraining the lower layer
fluid. Hence, there can be three dynamical regimes based on the value of RiB . When
RiB is small, it can be expected that the fluid is more or less in solid body rotation.
When the Richardson number is small, it is relatively easy for the upper fluid parcels
to lift the lower fluid and mix. This means that more energy is left for mobilising the
upper layer fluid. When RiB is large, it is presumed that most of the energy would
be spent on lifting up the lower layer fluid. For moderate values of RiB , some of the
energy is spent on the potential energy of the lower layer fluid parcels and a part is
spent on mobilising fluid in the upper layer. This is easier to visualise from figure 9.
In the three regimes shown, the velocity at the beginning is ΩR. RiB increases from
left to right in the figure, where (a) shows that the velocity of the fluid in the upper
layer is a constant as for small RiB most of the energy is spent on mobilising the
upper layer fluid. The middle picture, (b) represents the intermediate case where the
velocity is not a constant and the third case, (c) represents the large RiB regime. The
flow in this regime is not as turbulent as the other cases. There are no overturning
billows at the interface, instead it has waves. In this case, almost all the energy is
exhausted in mixing the fluid layers rather than providing kinetic energy to the upper
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layer fluid. The rate of change of interface drops from left to right. As expected, when
stratification is weak, it is relatively easy to mix the two fluids together. However,
as the stratification increases, it becomes increasingly expensive to mix the fluid. In
the high Richardson number case, the mixing is very inefficient, because of the lack
of overturning billows. Hence, it takes a significantly long time for the two layers to
mix.

b ca

Low Ri High Ri

U
u

U

U

U

Ω ΩR ΩRR
Evolution
in time

Figure 9: A sketch of the three dynamical regimes based on the Richardson number (see
text). The Richardson number increases from left to right in the figure. In b, u < U < ΩR
as part of the energy is spent on mixing the fluid and only part of it is used to mobilise the
upper layer fluid.

5 Discussion

In order to analyse the data to test the three regimes scenario that have been discussed
qualitatively, equation (19) is plotted for various values of α, with ĥ − 1 against t̂. The
constant c1 is calculated from the initial data gathered just after the spin-up stage. It is
assumed that just after the spin-up, the upper layer fluid is in solid body rotation. This is
a reasonable assumption because at the beginning the work is done mainly on mobilising
the upper layer fluid. The initial data (excluding the spin-up stage) is used to plot equation
(16). A value of c1 can be found from the slope of this curve. This constant c1 is assumed
constant throughout the experiment. The value of c1 is employed to plot α = 0.2, 0.4 and
0.5 curves. The data in figure 10 is very close to the line α = 0, as expected from the energy
arguments. The stratification in these experiments is quite weak, which suggests that the
mixing requires very little energy and most of the kinetic energy from the disk is consumed
by the fluid in the upper layer.

Similarly, for the curves in figure 11, the data lies above the line α = 0.5, indicative of an
intermediate regime. Figure 11(e), shows a good agreement with the theoretical arguments.
The data lies just above the α = 0.5 curve, again indicating that the upper layer fluid is
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Figure 10: Equation (19) plotted with ĥ − 1 against t̂. It is plotted for α = 0, 0.2, 0.4, 0.5.

not in solid body rotation and the velocity decreases in time. For this moderate value of
Richardson number, relatively more energy is required to mix the two layers. As a result,
lesser energy is spent on driving the upper layer fluid. In figure 11(f), the data is very close
to α = 0.5 curve, indicating that most of the energy is consumed by the process of mixing.

Figure 12 shows the plot of ĥ − 1 against t̂ from equation (19) for an experiment with
two-layers, where the lower layer is linearly stratified. Figure 5 shows its vertical density
profiles. It appears from figure 12 that the data does not fit the theoretical model. It should
be noted, however, that the constant c1 needs to be recalculated after every profile. This
has not been done yet. Qualitatively, it can be seen that at the beginning, when g ′ is very
small, the data is close to the α = 0 curve. As g ′ increases, it gets closer to the α = 0.5
line, as expected. This is consistent with the argument that the larger the value of RiB or
stronger the stratification, the harder it is for the upper layer fluid to mix the denser lower
layer. Consequently, most of the energy is spent on mixing the fluids.

The flux coefficient, Γ, (defined in section 4) can be divided into 3 components: Γu:
mobilising flux coefficient, ΓD: dissipation flux coefficient, Γρ: Potential Energy flux coef-
ficient. Thus, Γu determines the amount of energy from the disk going into mobilising the
fluid in the upper layer, ΓD determines the energy spent on dissipation and Γρ, the energy
that is used up in lifting the fluid parcels from below. The reason for dividing Γ into three
components is to understand and establish the fraction of energy extracted from the disk
to drive the upper layer fluid, mix the two layers together and dissipate.

The growth of the interface occurs due to entraining of the lower layer fluid. Thus,
equation (12) can be written more precisely in terms of Γρ as

dh

dt
= 2ΓρcD

u3
u

g′h
, (20)

dh

dt
=

2ΓρcD

Rim

Lm

h
uu, Lm = Rim

u2
u

g′
, (21)
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ĥ
−

1

1

 

 
data
α=0
α=0.2
α=0.4
α=0.5

(b) RiB = 0.275, c1 = −0.0015

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t̂

1

ĥ
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(f) RiB = 0.935, c1 = −0.00086

Figure 11: Plot of ĥ−1 against t̂ with value of α ranging from 0 to 0.5. The data lies above
α = 0.5 curve, suggesting that these experiments fall under the intermediate regime.
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Figure 12: Linear Stratification, Ri = 0.24, c1 = −0.00082

Remember Lm is the interfacial length scale. From the definition of c1, given by (15), it
seems reasonable that it should be defined more precisely as c1 = 2cDΓu, since it is the
mobilising component of flux that plays an important role here. As discussed before, the
kinetic energy provided by the rotating disk is spent on dissipation, increasing the kinetic
energy of the upper layer by mobilising it and increasing the potential energy of the flow
by lifting the heavier lower layer particles and mixing them with the upper layer. Since the
flow has high Re,

ε =
a2u

3
u

h

(from classical turbulence theory)
Parametrizing the change in kinetic energy of the two-layer fluid by ε, produces the following
equation

d

dt

(

u2
uh

2

)

= a1εLm(= −F − D + M), (22)

where F is the force responsible for changing the potential energy of the flow, D is the
dissipation and M is the force applied on the upper layer for driving the fluid. a1 is a
scaling parameter.

d

dt

(

u2
uh

2

)

= 2ΓucD
Lm

h

u2
u

2
uu, (23)

if a1a2 = ΓucD. From (21),

cD
Lm

h
uu =

Rim
2Γρ

dh

dt
, (24)

d

dt

(

u2
uh

2

)

=
u2

u

2

2ΓuRim
2Γρ

dh

dt
. (25)
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Assume,
u2

u

2
=

Ω2R2

2

(

h0

h

)2α

,

(

1 −
2RimΓu

2Γρ

)

u2
u

2

dh

dt
− 2α

Ω2R2

2
h2α

0 hh−2α−1 dh

dt
= 0, (26)

(

1 −
2RimΓu

2Γρ

)

u2
u

2

dh

dt
− 2α

u2
u

2

dh

dt
= 0, (27)

RimΓu

Γρ
= 1 − 2α. (28)

It has been found experimentally that Rim = 0.2 (see [3], [6]). Substituting α = 0.4 (as
suggested by figure 11(e)) along with Rim = 0.2, analysis reveals that

Γu ∼ Γρ.

This is an interesting result showing that for intermediate values of RiB , an equal amount
of energy goes into driving the fluid and in mixing the layers.
Moreover, if α = 0,Γu = 5Γρ. Thus, for the solid body rotation case (small RiB), the
proportion of energy that goes into driving the fluid is much larger than the proportion
that is spent on mixing. On the other hand, if α = 0.5,Γu = 0. As mentioned before, this
represents the case where there is no change in the kinetic energy of the upper layer fluid.
Thus, all the energy is spent on entraining the lower layer fluid.

6 Conclusion

It can be concluded from the above analysis and experimental work that a Ri−1
B law for

mixing is not found. Moreover, the fluid velocity in the upper layer is not always ΩR. It
would appear that the upper layer is not always spun-up during the experiment and is not
constant with h. It can be seen both from the theory and the density profiles that the height
of the interface decreases with time. For moderate values of Richardson number, energy
spent on mixing is of the same order as the energy that goes into mean velocity. For values
of RiB ≥ 1, the dynamics is completely different. The flow is no longer turbulent. This
implies that the Reynolds number can play a significant role in determining the dynamics
and can no longer be ignored. The qualitative behavior observed during an experiment at
these values of RiB is very different than the observed behavior for lower values of RiB .
The fluid is no longer mixed by eddies at the interface. The interface in this case is very
thin and dominated by wave activity.

It is safe to say that the model developed here can capture the various aspects of mixing
for RiB ≤ 1. More work is required to understand the higher Richardson number cases.
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