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1 Introduction

Consider a sea partially covered by a thin ice sheet, with a prevailing current driving water
under the ice edge. If the ice sheet is fixed relative to the flow then a Blasius boundary
layer will will develop beneath, due to the no-slip boundary condition at the underside of
the sheet. This viscous boundary layer will divert the oncoming flow, causing it to run
deeper under the ice, and thus produce a region of high pressure within the fluid in the
viscinity of the ice edge. This situation is illustrated in Figure 1. The pressure will cause
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Figure 1: Flow beneath an ice sheet leads to a Blasius boundary layer. The bottom of the
boundary layer is indicated by a dashed line.

deformations of both the sea surface and the ice sheet close to the ice edge. If the flow
is sufficiently rapid, and the sheet sufficiently thin, then the ice will fracture. Even if the
sheet remains intact, it may crumple when the flow speed exceeds some critical value. This
crumpling results from a standing flexural wave propagating downstream from the ice edge.

In this report we seek to describe mathematically the deformation of the ice sheet arising
from a steady incident flow at the ice edge. (The problem is equivalent to an ice sheet
moving across the surface of a stationary fluid.) The formulation of the problem is closely
analogous to that employed by Harper & Dixon [3] in their description of the so-called
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“Reynolds ridge”. In that problem a strong horizontal gradient in surface tension, due to
the presence of surfactant contamination, produces an effective no-slip boundary condition
beneath the contaminated part of the free surface. Again, a Blasius boundary layer forms,
leading to deformation of the free surface. In the present problem, the bending stiffness (or
flexural rigidity) of the ice sheet replaces surface tension in limiting the curvature of the
surface.

There is also an important analogy between the present problem and that of wave
scattering by the ice edge, as studied by Balmforth & Craster [1]. In that work, the
“forcing” applied to the ice sheet arises from a wave on the sea surface that is incident on
the ice edge. No background flow was included, and so there was no Blasius boundary layer
— in fact the fluid was regarded as perfectly inviscid. The inclusion of a background flow
in the present problem introduces advection terms into the linearised boundary conditions,
and so standing waves appear in the solution when the background flow exceeds a critical
value.

2 Formulation

Following Harper & Dixon, we regard the Blasius boundary layer beneath the ice sheet as
akin to a thin aerofoil; that is, the bottom of the boundary layer represents an inpenetrable
barrier to the incompressible fluid flow beneath. Outside the boundary layer we neglect
viscous effects, so that the flow may be regarded as irrotational. We may therefore describe
the fluid velocity u in terms of a velocity potential φ that satisfies

∇2φ = 0, (1)

u = ∇φ. (2)

The flow upstream is at speed U in the x direction and z is the vertical coordinate relative
to the undisturbed free surface. With regard to Figure 1, we take h(x, t) to be the height
of the free surface, and d(x) to be the thickness of the viscous boundary layer. If the ice
edge is located at x = 0 then

d(x) =

{

0, for x < 0

1.7208 (νx/U)1/2 , for x > 0
(3)

where ν is the kinematic viscosity. Provided that the deflection of the free surface remains
small, we may linearise our equations about a state of uniform flow beneath a horizontal free
surface. We also suppose that the viscous boundary layer follows the contours of the free
surface; this assumption will cease to be valid if the curvature of the free surface becomes
comparable to the thickness of the boundary layer [2]. The linearised boundary conditions
on the ice surface (x > 0) are

(∂t + U∂x)(h − d) = ∂zφ|z=0 (4)

(∂t + U∂x)φ|z=0 + gh = −B

ρ
∂4

xh, (5)
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where ρ is the fluid density and B is the bending stiffness of the ice [5], which is related to
the Young’s modulus E and Poisson ratio r by

B =
E∆3

12(1 − r2)
. (6)

Here, ∆ is the thickness of the ice, which we shall assume to be ≈ 1m. The characteristic
horizontal scale for deformations of the ice surface is the bending length, L ≡ (B/ρg)1/4;
for ice of thickness 1m, the bending length is approximately 50m [1].

On the free surface of the open sea, the bending stress vanishes, and in its place we
substitute surface tension, σ. We therefore replace (5) with a new dynamic boundary
condition for x < 0:

(∂t + U∂x)φ|z=0 + gh = +
σ

ρ
∂2

xh. (7)

The characteristic horizontal scale on the sea surface is given by the capillary length, l ≡
(σ/ρg)1/2 ≈ 3mm. Since l � L we do not expect surface tension effects to be significant in
determining the shape of the ice surface. We have chosen to retain surface tension firstly to
regularise any small scale effects occuring on the sea surface. We also have in mind possible
laboratory experiments using materials with a much smaller bending length than sea ice,
for which surface tension effects would not be negligible.

Due to the discontinuity at the ice edge, we shall need to specify additional “edge
conditions” between x = 0− and x = 0+. In particular, we balance forces and torques at
the ice edge by integrating (5, 7) and their first moments across an interval (−ε,+ε), then
allowing ε to tend to zero. Assuming that u and h are continuous, we obtain the edge
conditions

B∂3
xh|0+

= −σ∂xh|0− (8)

B∂2
xh|0+

= −σh|0− . (9)

We now seek two dimensional, steady state solutions of the governing equation (1)
subject to (4, 8, 9) and the two-part boundary condition

U∂xφ|z=0 + gh =

{

+gl2∂2
xh, for x < 0

−gL4∂4
xh, for x > 0

(10)

Following Balmforth & Craster [1], we shall apply the Wiener–Hopf technique, and so we
define half-range transforms

Φ+(k, z) =

∫ +∞

0+

φ(x, z)eikx dx (11)

Φ−(k, z) =

∫ 0−

−∞

φ(x, z)eikx dx (12)

The full Fourier transform is then Φ = Φ+ + Φ− (similar notation will be employed for
the transforms of d and h). With these conventions Φ+ is well defined (and analytic) in
the upper half of the complex k-plane, and Φ− is similarly well defined in the lower half of
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Figure 2: Branch cuts in the complex k plane used in the definition of Γ(k).

the complex k-plane. We suppose that Φ+ and Φ− can be analytically continued over the
complex domains ⊕ and 	, which include, respectively, the upper and lower half k-planes.
The full Fourier transform of φ (and of h, d, etc.) is then well defined in the intersection1

of ⊕ and 	. We now transform each of our equations in turn. From (1) we find

∂2
zΦ± = k2Φ± ± (∂x − ik)φ|0± (13)

⇒ ∂2
zΦ = k2Φ (14)

For simplicity, we restrict attention to the case of deep water. We then have a “lower
boundary” condition that φ → 0 as z → −∞. The solutions of (14) may then be written as

Φ(k, z) = Φ̂(k)eΓ(k)z , (15)

where Γ(k) is defined so that Γ(k) = ±k and ReΓ(k) ≥ 0. In what follows we shall require
a more formal definition of Γ(k). We therefore temporarily allow d (and hence φ and h) to
have some slow sinusoidal modulation in the y direction, with small wavenumber ε. Then
equation (14) is replaced by

∂2
zΦ = (k2 + ε2)Φ (16)

and so Γ(k) = (k2 + ε2)1/2, where we take the branch cuts to lie in the intervals [±iε,±i∞)
(see Figure 2). The two dimensional problem represents the limiting case in which ε → 0,
so we define

Γ(k) ≡ lim
ε→0

(k2 + ε2)1/2. (17)

We now transform the kinematic boundary condition (4) to find

−∂zΦ± = ikU(H± − D±) ± U(h − d)|0± (18)

⇒ −ΓΦ̂ = ikU(H − D) (19)

1Formally, the Wiener–Hopf technique requires the intersection of ⊕ and 	 to be some strip containing
the real axis. This and other technical details are not addressed here, but are described in detail in [1].
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where we have assumed that the boundary layer thickness d is continuous2 at x = 0. Lastly,
transforming the two-part dynamic boundary condition (10) yields

g(1 + L4k4)H+ = ikU Φ̂+ + gPice(k) + Uφ|0+
(20)

g(1 + l2k2)H− = ikU Φ̂− + gPsea(k) − Uφ|0− (21)

∴ gH + L4k4H+ + l2k2H− = ikU Φ̂ + gP (k), (22)

where

Pice(k) = L4(∂3
x − ik∂2

x − k2∂x + ik3)h|0+
(23)

Psea(k) = l2(∂x − ik)h|0− (24)

P (k) = Pice(k) + Psea(k) (25)

are polynomials in k whose coefficients are the (unknown) values of h and its derivatives at
the ice edge. Applying the edge conditions (8–9) we find that

P (k) = L4(−k2∂x + ik3)h|0+
, (26)

so P is O(k2) at k = 0. We may now eliminate Φ̂ between equations (19) and (22) to obtain
a single equation for the free surface:

H + l2k2H− + L4k4H+ =
U2

g

k2

Γ
(H − D) + P. (27)

In §3 we shall apply the Wiener–Hopf technique to this equation in order to find H(k) and
hence obtain the free surface h(x) via the inverse transform

h(x) =
1

2π

∫ +∞

−∞

e−ikxH(k) dk. (28)

Before this, it is instructive to consider two simpler but related problems in which there is
no discontinuity in the boundary conditions.

2.1 The Reynolds Ridge

If the boundary condition (7) holds over the entire surface then we replace (27) with

H + l2k2H =
U2

g

k2

Γ
(H − D). (29)

We now define the Weber number m based on the length scale l

m =
U2

gl
(30)

2We have also assumed that d → 0 as |x| → ∞, which is not the case for a Blasius boundary layer.
This difficulty can be resolved by introducing a slowly-decaying exponential factor in d(x), then allowing
the decay rate to tend to zero.
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and the operator
Dsea(k) = 1 + l2k2 − mlk2/Γ(k) (31)

so that (29) may be written in the form

Dsea(k)H(k) = −mlk2D(k)/Γ(k). (32)

We note that Dsea(k) = 0 is the dispersion relation for standing capillary–gravity waves on
the free surface:

Dsea(k) = 0 (33)

⇔ (Uk)2 = gΓ(k)(1 + l2k2). (34)

The full dispersion relation is obtained by replacing Uk −→ −ω + Uk. The phase and
group velocities for capillary–gravity waves are plotted in Figure 3. Provided that there
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Figure 3: The phase speed cp and group speed cg of capillary–gravity waves in a flow of
speed U .

are no roots of Dsea for real k we may readily solve (32) for H(k) and then find the free
surface height from (28) by integrating along the real k axis, leading to the solution for the
Reynolds ridge problem presented by Harper & Dixon. In general, Dsea(k) has four complex
roots, which we label as ks1, ks2, ks3 and ks4 according to their location in the complex
k-plane (see Figure 4). For m > 2 all four roots fall onto the real k axis, corresponding to
the existence of standing waves; we must then deform the integration contour in (28) to
avoid the singularities in the integrand. The particular choice of integration contour will
determine which waves are present as x → ±∞, and so we must apply a suitable radiation
condition. We see from Figure 3 that the group speed exceeds the phase speed for short
wavelength (capillary) waves, and the converse for long wavelength (gravity) waves. We
should therefore deform our integration contour so that standing capillary waves appear
upstream and gravity waves downstream in the solution [4]. For x > 0, the integrand in
(28) is exponentially small for Im k < 0, so we can close our integration contour at infinity
in the lower half k-plane; the solution will only contain waves arising from poles located
in the 	 domain. So we formally regard the two roots of Dsea with smaller wavenumber k
(corresponding to gravity waves) as residing in the lower half k-plane, and label them as
ks3 and ks4. This leads us to adopt the deformed integration contour shown in Figure 5.
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Figure 4: The roots of Dsea fall onto the real line for m > 2.

PSfrag replacements

Im k

Re k

ks1ks2

ks3 ks4

Figure 5: The integration contour used in the inverse transform (28) when m > 2.

2.2 Infinite Icesheet

Sufficiently far into the ice covered region we might expect effects from the ice edge to be
negligible, and therefore apply boundary condition (5) for all x. In this case, (27) is replaced
by

H + L4k4H =
U2

g

k2

Γ
(H − D). (35)

We proceed by analogy with §2.1; we define a Weber number

n =
U2

gL
(36)

and a dispersion operator

Dice(k) = 1 + L4k4 − nLk2/Γ(k) (37)

so that (35) may be written in the form

Dice(k)H(k) = −nLk2D(k)/Γ(k). (38)

Dice(k) also has four complex roots, which fall on the real axis when n >
(

256
27

)1/4 ≈ 1.75;
these roots correspond to standing flexural waves on the ice surface. As in the previous
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section, we must deform our integration contour around these singularities when evaluating
the inverse transform (28). Due to the similarities between Dice(k) and Dsea(k), the correct
contour is qualitatively identical to that sketched in Figure 5.

3 The Wiener–Hopf Technique

We begin by rewriting (27) in the form

Dice

Dsea
(k) =

(1 + L4k4)D − (L4k4 − l2k2)H− − P (k)

(1 + l2k2)D + (L4k4 − l2k2)H+ − P (k)
(39)

To proceed with the Wiener–Hopf method we must split the LHS of (39) into a product of
⊕ and 	 functions:

Dice

Dsea
(k) = −K+(k)K−(k). (40)

The functions K± must have neither poles nor zeros in their respective domains. We describe
the splitting procedure in detail in §A; for now we simply observe that the split is unique
up to multiplication of K± by constants, and that K±(k) = O(k) as |k| → ∞. We now
deduce from (39) that

K+[(L4k4− l2k2)H+ +(1+ l2k2)D−P ] =
1

K−

[(L4k4− l2k2)H−− (1+L4k4)D+P (k)] (41)

If D(k) is an entire function then this expression is of the form

A+(k) = A−(k) (42)

where A+ and A− are analytic in, respectively, the ⊕ and 	 regions of the complex k-
plane. Therefore A±(k) can be extended to an entire function A(k), which is necessarily a
polynomial. If, however, D(k) contains finite poles, then these must first be removed. For
example, if d is given by

d(x, k0) =

{

0, for x < 0

2 sin(k0x), for x > 0
(43)

with k0 ∈ R then

D(k, k0) = D+(k, k0) =
1

k + k0
− 1

k − k0
. (44)

Since this is a ⊕ function, the simple poles at k = ±k0 must formally be regarded as residing
in the lower half plane. We therefore define

A+(k, k0) = K+[(L4k4 − l2k2)H+ +
1 + l2k2

k + k0
− 1 + l2k2

k − k0
− P ]

+
1 + L4k4

0

K−(−k0)(k + k0)
− 1 + L4k4

0

K−(k0)(k − k0)
(45)

A−(k, k0) =
1

K−

[(L4k4 − l2k2)H− − 1 + L4k4

k + k0
+

1 + L4k4

k − k0
+ P ]

+
1 + L4k4

0

K−(−k0)(k + k0)
− 1 + L4k4

0

K−(k0)(k − k0)
(46)
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and conclude, as before, that A±(k, k0) = A(k, k0), a polynomial in k. The true boundary
layer d(x), given by (3), can be written as a superposition of modes of the form (43). In
particular,

d(x) =
1.7208

2
√

2π

( ν

U

)1/2
∫ ∞

0

d(x, k0)

k
3/2
0

dk0 (47)

The free surface h(x) can likewise be written as a superposition of single mode solutions
h(x, k0).

3.1 The single mode solution

We find from (45) and (46) that

H+(k, k0) =

1

K+

(

A(k, k0) +
1+L4k4

0

K−(k0)(k−k0)
− 1+L4k4

0

K−(−k0)(k+k0)

)

− 1+l2k2

k+k0
+ 1+l2k2

k−k0
+ P

L4k4 − l2k2
(48)

H−(k, k0) =
K−

(

A(k, k0) +
1+L4k4

0

K−(k0)(k−k0)
− 1+L4k4

0

K−(−k0)(k+k0)

)

+ 1+L4k4

k+k0
− 1+L4k4

k−k0
− P

L4k4 − l2k2
(49)

∴ H(k, k0) =
−2k0

k2 − k2
0

+

(

A(k, k0) +
1+L4k4

0

K−(k0)(k−k0)
− 1+L4k4

0

K−(−k0)(k+k0)

)

(

K−(k) +
1

K+(k)

)

L4k4 − l2k2

(50)

We find from (50) that H(k, k0) is O(A/k3) a k → ∞. In order for h(x) to be continuous,
H(k) must be O(1/k2), and so A(k, k0) must therefore be O(k); we write A(k) = a(k0) +
b(k0)k. The constants a and b are determined by the condition that H± should be analytic
for Im k ≷ 0, i.e. that the zeros in the denominators of (48) and (49) must represent
removable singularities. Since P (k) is O(k2) at k = 0, we therefore require that

A(k, k0) +
1 + L4k4

0

K−(k0)(k − k0)
− 1 + L4k4

0

K−(−k0)(k + k0)
+

1 + L4k4

K−(k)(k + k0)
− 1 + L4k4

K−(k)(k − k0)
(51)

is also O(k2). This implies that

k0a(k0) = − 2

K−(0)
+

1 + L4k4
0

K−(k0)
+

1 + L4k4
0

K−(−k0)
(52)

k2
0b(k0) = −2k0(1/K−)′|0 +

1 + L4k4
0

K−(k0)
− 1 + L4k4

0

K−(−k0)
(53)

For notational convenience, we now define

Ã(k, k0) ≡ A(k, k0) +
1 + L4k4

0

K−(k0)(k − k0)
− 1 + L4k4

0

K−(−k0)(k + k0)
(54)

= − 2

k0

(

(1/K−)|0 + (1/K−)′|0k
)

+
k2(1 + L4k4

0)

k2
0K−(k0)(k − k0)

− k2(1 + L4k4
0)

k2
0K−(−k0)(k + k0)

(55)
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We can now find the free surface height through the inverse transformation (28). In
order to evaluate this integral we make use of the fact that

K− + 1/K+

L4k4 − l2k2
=

K−

Dice
(56)

=
−1

K+Dsea
(57)

For x > 0, the integrand in (28) decays at infinity for Im k < 0. We therefore apply the
identity (56) and rewrite equation (50) as

H(k, k0) =
−2k0

k2 − k2
0

+ Ã(k, k0)
K−(k)

Dice(k)
(58)

We calculate h(x, k0) by collapsing the integration contour in (28) around the branch cut
in the lower half plane. In doing so, we pick up pole contributions from the poles at ki3, ki4

and ±k0, all of which are defined as residing in the lower half plane. The solution is

h(x, k0) = − 2nL|k0| sin(k0x)

1 + L4k4
0 − nL|k0|

+ 2 Im

{

Ã(ki4, k0)K−(ki4)

4L4k3
i4 − nL

e−iki4x

}

− 1

π

∫ ∞

0
dλ

nLλÃ(−iλ, k0)K−(−iλ)

(1 + L4λ4)2 + n2L2λ2
e−λx (59)

The corresponding solution for x < 0 is

h(x, k0) = 2 Im

{

Ã(ks1, k0)/K+(ks1)

2l2ks1 − nL
e−iks1x

}

+
1

π

∫ ∞

0
dλ

nLλÃ(iλ, k0)/K+(iλ)

(1 − l2λ2)2 + n2L2λ2
eλx (60)

3.2 The full solution

We deduce from (47) that the free surface height is

h(x) =
1.7208

2
√

2π

( ν

U

)1/2
∫ ∞

0

h(x, k0)

k
3/2
0

dk0 (61)

Since Ã is O(k0) as k0 → 0 (which can be deduced from (55)), the obvious singularity in
(61) is integrable, and the solution is well defined.

4 Results

The effect of the ice edge can be seen by comparing (58) with the solution for an infinite
icesheet (38). Indeed we can recover (38) by replacing

ÃK− −→ −(1 + L4k4)D (62)

in (58). In Figure 6 we illustrate the difference in a particular case. We find, as we might
expect on physical grounds, that the presence of the ice edge significantly alters the small
scale structure of the solution, but has negligible influence in the limit of zero wavenumber.
Both sides of (62) are −2/k0 + O(k2) as k → 0.
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Figure 6: The effect of the ice edge on the single mode solution in the case k0 = 1/L,
n = 1.5, l/L = 0.01. The real and imaginary parts of Ã(k, k0)K−(k) are shown along with
the function −(1 + L4k4)D(k, k0).

A Wiener–Hopf Splitting

We need to find K±(k) such that

Dice

Dsea
(k) = −K+(k)K−(k). (63)

To this end, we define

Rice =
Dice(k)

L4(k − ki1)(k − ki2)(k − ki3)(k − ki4)
(64)

Rsea =
Dsea(k)Γ(k)2

l2(k − ks1)(k − ks2)(k − ks3)(k − ks4)
(65)

Here, kij and ksj represent the roots of Dice and Dsea lying in the j-th quadrant of the
complex k plane. We note that ks2 = −k∗

s1 and ks4 = −k∗
s3 (similarly for the roots of Dice).

The functions Rice and Rsea have only branch cuts in their analytic structure, and tend to
unity for large k. Thus we may define

logRice+(k) =
1

2πi

∫ +∞

−∞

log[Rice(k
′)]

dk′

k′ − k
(66)

logRsea+(k) =
1

2πi

∫ +∞

−∞

log[Rsea(k
′)]

dk′

k′ − k
(67)

(68)

where the integration contour lies below the point k ′ = k. The integrands are continuous
provided that we take the branch of the logarithm with a cut along the negative real axis.
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The integration contour may then be collapsed around the branch cut in the lower half k ′

plane, which leads to

logRice±(k) =
1

π

∫ ∞

0
tan−1

[

nλ

1 + λ4

]

dλ

λ ∓ iLk
(69)

logRsea±(k) =
1

π

∫ ∞

0
tan−1

[

nλ

1 − l2λ2/L2

]

dλ

λ ∓ iLk
(70)

Some care is required in choosing the appropriate branches of tan−1 in these expressions.
For the first, we require tan−1 ∈ [0, π), but for the second, tan−1 ∈ (−π, 0]. This means
that the integrand in (70) is ∼ −1

λ∓iLk as λ → 0, implying a logarithmic singularity as k → 0.
We may now write

K+(k) =
L2(k − ki3)(k − ki4)

l(k − ks3)(k − ks4)
k
Rice+(k)

Rsea+(k)
(71)

K−(k) = −L2(k − ki1)(k − ki2)

l(k − ks1)(k − ks2)
k
Rice−(k)

Rsea−(k)
(72)

We note that K∗
±(k) = −K±(−k∗) and that K±(k) = O(k) as |k| → ∞.
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