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A look at energy stability, valid for all amplitudes, and linear stability for shear flows.

1 Nonlinear stability
Associated Navier-Stokes equation:
Ov+v-Vv+VP=F+1vV?v with V-v=0 (1)

In this equation v = R~ is the nondimensional viscosity coefficient, where R is the Reynolds
number. Let us assume a base flow U(x,t) that is a known solution to equation (1) driven
by the body force F (e.g. an imposed pressure gradient F = —XdPy/dx in channel flow,
or gravity for flow down an inclined channel) and/or the boundary conditions. Next we
perturb the flow as v = U + u where u = (u, v, w) represents the perturbation. We plug
this v into equation (1) which yields:

(U+u)+U-VU+u-VU+U -Vu+u-Vu+V(P+p) =F +vV}(U+u) (2)

Since U is a solution of equation (1) the associated terms cancel and we get the perturbation
equation:

ou+U-Vu+u-VU+u-Vu+ Vp=rvViu (3)

with the incompressible constraint V - u = 0. For the domain V' with fixed boundary 9V,
the boundary condition for u is homogeneous, namely, u‘ gy = 0 or periodic. Note that the
decomposition v = U—+u into a base flow plus a perturbation is different from the Reynolds
decomposition v = v + v/ into a mean plus a fluctuation. The base flow U is a solution of
the Navier-Stokes equations and is independent of the perturbation u, but the mean flow
is v is not a solution of Navier-Stokes and is coupled to the fluctuations v’ through the
Reynolds stresses.

In order to calculate the total kinetic energy of the perturbation, we multiply equation
(3) by u and integrate over the domain V'

/u-(8tu+U-Vu+u-VU+u‘Vu+Vp—l/V2u>dV:0 (4)
v
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Direct computation using integration by parts and the incompressibility condition (V-U =
0 — V-u=0) yields

2
d/|udv = /—u-VU-udV—V/Vu:VquV
dt v 2 vV 1%
S /fﬂys.udv-g/|vuﬁdv (5)
v v

Production Dissipation

where S is the symmetric tensor strain rate tensor defined as S;; = %(&-Uj + BjUi) and
u;Siju; = ui(0;U;)u; using Einstein summation and Vu : Vul £ (9;u;)(0;u;) = |[Vul? +
|Vol?+|Vw|? £ |[Vul?. Since the dissipation term is always positive, if the production term
is negative or zero the the flow is absolutely stable, that is, stable to any perturbation u.

Ezample: Rigid body rotation is absolutely stable, since the production term is 0. In this
case
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Definition (growth rate): We can think of the right hand side of (5) normalized by 2F £
[, lul?dV as a growth rate since if the perturbation had the form u £ e(x), as would
be the case for time independent U in the linear limit, we would have |u|? = exp(20t)|ul?
and (2E)"'dE/dt = 0 = R()\), so o, the real part of ), is called the growth rate. We have
—u-S-u < A\paxt - u where \pax is the largest eigenvalue of the real and symmetric (—S).

Manipulating the right hand side of equation (5) gives
s Jy—u-S-uwdv v, |[VuPdV

g [ uPdv ) v
M Jy [02AV v J,, [Vulav .
= fv lu|2dV fV luj2av T T

and this provides a simple upper bound on the growth rate of any instability.

Theorem (Serrin 1959): For any steady solution U there exists a critical Reynolds number
Rep > 0 such that for any flow with Re < Rej, the system is absolutely stable. See [2,
§53.1] or [1, §9.6].

Next let’s turn to shear base flows, i.e. U = U(y)% and

o Z o U
S = %’ 0 0|, where U £ m (8)
0 0 0 y



The corresponding kinetic energy takes the form
2
LA / —wWav - u/ |Vul2dV (9)
v dy v

that is very similar to the fluctuation energy equation derived in lecture 2, but again the
production term there involved the mean shear rate dU /dy that depends on the Reynolds
stress wv, while here we have the base shear rate dU/dy that is independent of uv. For
shear flows, the growth rate o < max(U’/2) (assuming U’ > 0) and this maximum would

require very large Reynolds numbers v = 1/R — 0 and © = —v with w = 0, localized near
the max of U’. In the case of nondimensional Couette flow U(y) = y, the energy equation
reads

d 2

/ ﬁdv = / —uvdV — y/ |Vul2dV (10)

dt Jy 2 v v

From this equation it can be seen that —uv > 0 occurring somewhere in the domain V is
a necessary condition for instability. Turning to the energy stability of shear flows, if we

define the critical value vg
dU
/ —uv—-dV
v dy

u/ |Vu|?dV
Vv

A
Vg = max

(11)

it directly follows that
d 2
/ [l gy < (ve — 1/)/ |Vul2dV. (12)

The inequality (12) shows that the perturbation is stable if vg < v & R < 1/vg = Rg.
This is a sufficient condition for stability and is known as the absolute stability threshold.
Therefore an argument for absolute stability turns into an optimization problem (11) with
the constraints V- u = 0 and u|8V =0

Remark: For Couette flow, the critical Reynolds number for absolute stability is about 20.7,

see [2, §53.1].

2 Linear stability

The flow is decomposed into a base flow U and a perturbation about the base flow u
v=U+nu. (13)

Plugging into the Navier-Stokes equations and neglecting the quadratic nonlinearity u- Vu

gives
ou+U-Vu+u-VU+ Vp =rvV3u. (14)



The base flow is now taken to be a shear flow, U = U(y)%. Taking the curl of (14) and
dotting with the vertical unit vector ¥ gives

1 au
(0 + U0, — EVQ)" =—0.v a (15)
where 7 = § - V X u is the vertical component of the vorticity and v = § - u is the vertical
component of the perturbation velocity. Taking the curl of (14) twice and dotting with the
vertical unit vector gives

d*U

(O + U0y — %v"‘)v% — 0
Equations (15) and (16) are known as the Squire and Orr-Sommerfeld equations, respec-
tively. Note that the v equation (16) is decoupled from the 1 equation (15). There are two
basic kinds of boundary conditions at the walls of the channel. One is no-slip boundary
condition v = v = w = 0 which implies there is no perturbation at the walls. In the Orr-
Sommerfeld equation this boundary condition takes the form v =0, v, = —u; —w, = 0 and
17 = u,—w,; = 0. The other is ‘free slip’ boundary conditions (i.e. stress or Neumann bound-
ary conditions on the full flow) v = u, = w, = 0 which implies v = 0, 7y = Uy, — Wz; = 0
and vy, = —Uzy — W,y = 0 at the walls of the channel. Next we turn to the Fourier anal-
ysis of the Orr-Sommerfeld system, since U = U(y) only, equations (15) and (16) admit
solutions of the form

’U(ZL’, v, 2, t) _ @(y)e/\tei(a:r+’yz)

where X is a complex-valued growth rate, o and v are the real streamwise and spanwise
wavenumbers, respectively, and 7(y) and ©0(y) are complex functions. Plugging the above
forms of v and 7 into equations (15) and (16) gives

1
[A + il — E(DZ )| = —ipoU’ (17)
[A +ial — %(02 — k:Q)] (D? — k¥ — U"iat = 0 (18)

where a prime indicates a y-derivative, D = d/dy, and k? = o? + 2. Equation (18) can be
simplified by multiplying through by &/«

~ 1

[)\ +ikU — E(DZ - kQ)} (D? — k*)o — U"iki = 0 (19)
where A = \k/o and R = Ra/k.
Squire’s theorem. Equation (19) is (18) with o = k and rescaled growth rate and Reynolds
number. Therefore a three dimensional perturbation with wavenumbers («,y) at Reynolds

number R with growth rate A is mathematically equivalent to a two dimensional perturba-
tion with wavenumbers (k,0) but with Reynolds number R = Ra/k < R and growth rate



R\ = R(A)k/a > R(N). In other words, for any 3D unstable mode (a,~) there is a 2D
unstable mode (y/a? +~2,0) with larger growth rate at a lower Reynolds number. This
is Squire’s Theorem [3], [2]. Another way to derive this result, is to let al/(y) = kU(y) in
(19) and conclude that a 3D perturbation is equivalent to a 2D perturbation with a weaker
shear flow U(y) = aU(y)/k.

Furthermore, it is easy to show that the homogeneous 7 equation, that is (17) with
v = 0 has only damped modes (multiply the homogeneous equation by n* the conjugate
of 7, integrate from wall to wall and add the complex conjugate of the result to show that
A+ A* =20 < 0). This is physically obvious since (17) is an advection diffusion equation
when v = 0, in fact the decay of fV n?dV for v = 0 can be shown for the full linear PDE
(15). Thus the eigenvalue problem for (15), (16), reduces to the consideration of the Orr-
Sommerfeld equation (19) for 2D perturbations only. Note that equation (17) with v # 0
exhibits transient growth for 3D perturbations with d,v # 0, as discussed in lecture 1. The
physical mechanism behind this is the redistribution of streamwise velocity U(y) by the
perturbation v to create u perturbations and n = d,u — d,w.

3 Energy equation

From Squire’s theorem it suffices to consider (18) with £ = «
[)\ + il — %(DQ - a2)] (D? — a*)o — U"iatd = 0. (20)
The equation for the complex conjugate v* reads
[A* —ial — %(DQ - oﬂ)} (D? — o®)i* + U"iav* = 0. (21)

since U(y), @ and R are real and where \* is the complex conjugate of A\. Doing the following
surgery: 0% - (20) + 0 - (21) and integrating from the bottom of the domain (y = y;) to the
top of the domain (y = y9) yields

o [ 2 9212 v 2 [0
(et x) [ (Do + @)y = [T Urrdy - [y, (22)
Y1 Y1 Y1
kinetic energy production dissipation
Here T £ ia(0D0* — 0*D0) = —a?uw, and ¢ £ (D? — o?)0 with

Y2 Y2 Y2
/ |p|2dy = / |D%v — o?v|?dy = / (ID?*6|* + 202D + a'[0*) dy > 0. (23)

Y1 Y1 0
It is noted that when doing the integration by parts, the boundary condition @’ gy = 018

used, and either D@‘ oy = 0or D2®| oy = 0 can be applied to lead the same equality (22).
In other words, (22) holds for both no-slip and free-slip boundary conditions.



Equation (22) is simply the version of (9) for 2D eigensolutions v = ¥(y)eMe® with
u = (y)eMe!® = (i/a)Dd eMel®® to satisfy dyu + dyv = 0 and the ‘Reynolds stress’ for
such a perturbation is

—_ Ak A

1
—uT = — (0 + a0*) e*7t = —

T
" (’[}D@* _ i}*D@) eQO’t = ?eQUt (24)

where 20 = A + A\* and v is the horizontal average of uv. Likewise, ¢ = (D? — a?)d
is effectively the z component of vorticity w, = 9,v — dyu = (iat — (i/a) D?*9) eMel® =
(—i/)é(y) Meiow.
For free-slip boundary conditions, o = D?% = 0 at the walls, we can derive a useful form
of the enstrophy equation, i.e. an equation for the integral of vorticity squared. Consider
yyf [(D? — a?)d* - (20) + (D* — a?)d - (21)]dy = 0 to obtain

o [ vE 2 (" 2 212
() [Clofdy =~ [0 Tay— [ (Dol + ol ay (25)
Y1 Y1 R n
prod:;ction dissipation >0

It follows directly that U" = 0 implies linear stability for free-slip, that is 20 = X + A* < 0.
In other words plane Couette flow U(y) = y and plane Poiseuille flow U(y) = 1 — ¢?, in
—1 <y < 1, are linearly stable for free-slip (i.e. imposed stress) boundary conditions as
well as any combination of Couette and Poiseuille U(y) = a + by + cy?, among other flows.
We’ll discuss this further in the next lecture.

The enstrophy equation (25) only holds under free-slip boundary condition, since ﬁ} v =
D?% gy = 0 leads to the cancelation of the boundary terms in integration by parts but a
boundary term of indefinite sign subsists for no-slip ¥ = Do = 0 at the walls. The physical
meaning of these boundary terms is that vorticity can be generated (or destroyed) at the
walls for no-slip but not for free-slip.
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