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We derive necessary conditions for linear instability of shear flows and prove linear stability
of plane Couette, Poiseuille and Kolmogorov flows for wviscous flow with stress boundary
conditions (i.e. free-slip perturbations) thereby generalizing well-known inviscid stability
results. We give a straightforward derivation of classic inviscid results by combining the
perturbation energy and enstrophy equations. We then summarize the stability of var-
ious canonical shear flows and conclude the implications of energy stability and linear
theory. Furthermore, we examine inflectional instabilities and introduce their role in the
self-sustaining process.

1 Necessary conditions for linear instability

In the previous lecture the full flow v has been decomposed into a base shear flow U(y)%
and a perturbation u. The Navier-Stokes equations have been linearized about the base
flow U(y)% and this led us to the Squire and Orr-Sommerfeld equation after elimination of
the pressure. Since the equations for u have been linearized and its coefficients depend only
on U(y), we can reduce the solution to the consideration of perturbations of the form u =
a(y)eMe*®e? with «, v real (i.e. Fourier-Laplace expansion of u). Then Squire’s theorem
shows that it suffices to consider 2D perturbations (7 = 0) to investigate exponentially
growing modes, that is solutions with 2R(\) = A + A\* = 20 > 0. We define A = 0 — iw
where i? = —1 and ¢ and w are real.

We derived an energy and enstrophy equation for those linear 2D perturbations and
both equations include a production term that involves the perturbation ‘Reynolds stress’
—uv = o 2T(y)e?*t, where

T(y) = —a® ("0 + 40*) = ia (0DO* — 9*Dd), (1)

such that T'= 0 at the walls at y = y; and y = y» since v = 0 there. We write D = d/dy
for compactness. We drop the hat over ¢ below.

The perturbation energy equation derived in the previous lecture implies that for an
instability, o > 0, we must have

20/(!Dv|2+a2|v|2) +;/|¢|2 z/U/Tz —/(U—UO)T’ >0, (2)
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where [(---) is short for [’*(---)dy, the integral from the bottom wall at y = y1 to the
top wall at yo, the prime () = D(-) = d(-)/dy, that is U’ = dU/dy, U" = d*U/dy?,... The
function ¢ = (D? — a?)v is effectively the perturbation vorticity (see lecture 3).1

Equation (2) follows from multiplying the Orr-Sommerfeld equation (17) by v*, inte-
grating over the full channel from y = y; to y2 using integration by parts and taking the
real part of the result. The last expression in (2) was obtained by integration by parts of
JU'T and Uy is an arbitrary constant since [UyT” = Uy [T" = 0 because T = 0 at the
walls.

For free-slip boundary conditions, that is v = D?v = 0 at the walls (corresponding
to stress boundary conditions on the full flow, that is v -§ = 0 with d,v) fixed), the
perturbation enstrophy equation derived in lecture 3 reads

2a/¢|2+;/(|D¢|2+a2|¢y2) :/U”T’:/(—U”’)T > 0, (3)

and the enstrophy production [U”T" = [(—U")T should be positive for an instability
o > 0. This equation was obtained by multiplying the Orr-Sommerfeld equation (17) by
¢* = (D? — o®)v*, integrating over the channel using multiple integrations by parts then
taking the real part of the integral equation (i.e. adding its complex conjugate). This yields
the enstrophy equation (3) together with the boundary term

=[6D6+ 60|

B @
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on the right hand side of (3). This boundary term vanishes for v = D?v = 0 on the boundary
since ¢ = D?v — a?v. For no-slip, v = Dv = 0, the boundary term (4) is sign indefinite and

corresponds to the generation or destruction of enstrophy at the walls.
Now, since ¢ = (D? — a?)v, integration by parts with v = 0 at the walls gives

167 = [ (D% + 207 Dof? + auf?) o)
so we can combine the energy and enstrophy equation taking (3) - a2 (2) to obtain
20/ {|D*v|* + o?|Dv|*} + ;/\DMQ =
- /(U’” + o?UT = / (U"+a*(U—-Up)) T >0. (6)
We can go even further and take (6) - 52 (2) to obtain
20 [ {(UD*f? = #1Do?) + ® (IDof? = 8oP)} + 4 [ (D6~ B216P) =
- [ @) T = [ (0 @ O - T) T ()

'In the classical literature, e.g. [1, Chap. 4], it is common to use a streamfunction ¢(y) for the Rayleigh and
Orr-Sommerfeld equations, we prefer to use the vertical velocity v in those equations and our ¢ = (D?—a®)v
is effectively the vorticity, w = ;v — dyu = (i) "t (y)e e *®.



The left hand side of (7) is not necessarily positive even for o > 0 unless (3 is small enough.
Indeed, the left hand side consists of integrals of the form [(|Df|?> — 32|f|?) and each of
these integrals will be positive provided f < 7/2 for free slip boundary conditions v =
D?v = ¢ = 0 at the walls at y = +1 since for such functions one can show by variational

calculus that
1 7T2 1
_/mW@z/ww% (8)
. 4/,
1 5 7T2 1 5
[ ooy = [ joray, )
—1 —1

1 7_[_2 1
| D2k =7 [ (b (10)
-1 -1

so the left hand side of (7) will always be positive if o > 0 (instability) and 3% < 72/4. This
yields another necessary condition for instability

—/<U’”+ <a2+7f> U’>T:/(U”+ <a2+7f> (U—Uo)> >0 (11)

Condition (11) is expressed for a domain normalized to —1 < y < 1, for y; < y < yo the
factor 72/4 should be replaced by 72/H?, with H = y5 — 1.

Thus for a linear shear flow instability, o > 0, we must have positive energy production
JUT =— [(U=Uy)T' > 0 from (2), always, as well as condition (11) for viscous flow with
free-slip perturbations. Note that (11) together with (2) includes and therefore supersedes
(3) and (6) and we obtain the necessary conditions for linear instability for viscous flow
with free-slip, or for inviscid flow,

/(—U”’)T > <a2+;) /U’T >0 (12)

which, after integration by parts with T'= 0 at the walls, can also be written as

/U”T’ > <a2 + ;) /(U0 ~U)T' >0 (13)

where H = yy — y; is the total channel height, U is an arbitrary constant, [ = fyyl'" dy and
T = T\(y) is the perturbation Reynolds stress (1).

1.1 Linear stability of Couette, Poiseuille and Kolmogorov

The enstrophy equation (3) allows us to conclude that plane Couette flow U = y, plane
Poiseuille flow U = 1 — y? and any combination of Couette and Poiseuille U = a + by + cy?
for any constant a, b, ¢ (i.e. shear flow driven by both a pressure gradient and imposed
stress at the walls) are linearly stable for inviscid or viscous flow with free-slip, since all



these flows have U"”" = 0 and no enstrophy production, therefore o < 0 for any 0 < R < oo
from (3).2
Condition (12), or (13), allows us to show linear stability for free-slip of the Kolmogorov

flow
sin(y)

sin 3
whenever 3 < 7/2. The Kolmorogov flow (14) is normalized so U(£1) = £1 as for Couette
flow which it asymptotes to for 6 — 0, and we can take 0 > 0 without loss of generality.
The Kolmogorov flow is an inflectional profile with a vorticity maximum at y = 0. For (14),
we have —U" = 32U’ = (33 cos(By)/sin 8 so instability of the wall-bounded Kolmogorov
flow requires, from (12), that

Uly) = (14)

1 2

/ cos(By) T dy >0 and 2>+ %, (15)
—1

where T'(y) is defined in (1), so Kolmogorov flow (14) with 0 < 5 < 7/2 is linearly stable.

This includes Couette flow for § — 0 and the flow U(y) = sin(7y/2) used in the derivation

of the SSP model [9], as well as all sinusoidal profiles between those two flows.

Lou Howard (1997, private communication) provided a proof for the linear stability of
the U = sin(my/2) viscous flow with free-slip perturbations used in [9]. His proof made use
of the energy (2) and enstrophy (3) equations and U” = (—72/4)U for U = sinmy/2 to
eliminate the production terms through the combination (3) - 72/4 (2).

Linear instability for inviscid or viscous flow with no-slip or free-slip requires positive
perturbation energy production [U'T > 0 from (2). If we could show that U'T > 0
pointwise, for instance, then we could generalize the classic Rayleigh and Fjortoft theorems
of inviscid flow (see below) to viscous flow with free-slip perturbations. Indeed if we assume
that U'T is positive pointwise, not just on average as required by (12), then

T T
/(—U”’)T/:/( UU, )U’T Smax( [(]], >/U’T
Yy

and (12) would yield the necessary condition®

max <_Um) > o + % /H?. (16)
yi<y<pa \ U’ ) —

This would be a stronger version of Fjortoft’s theorem, implying for instance that a flow

such as U = y3 with U’ = 3y?> > 0 and U” = 6 > 0 could not be unstable but other

inflectional flows such as U = tanh(8y) could be unstable provided 3 is large enough. This

would be a nice result since the linear stability of shear flows (see e.g. [1, Chap. 4 ]) is in

2We stress again that these results only apply to viscous flows with stress boundary conditions, that is,
v-n and 0,v| fixed (i.e. fixed stress v0,v), where n is the unit normal to the wall and vy = v — (v-n)n
is parallel to the wall. From incompressibility, this yields v = D?v = 0 at the walls. For no-slip, (3) has an
extra boundary term of indefinite sign.

3as claimed in the lecture but flagged by Matt Chantry as only valid for U'T > 0 pointwise, which we
have not shown. Good eye, Matt!



an unsatisfactory state of affairs, with classic inflectional instability results derived only for
tnwviscid flows. If we could extend those results to wviscous flow with free-slip, this would
certify that the difference is not between inviscid or viscous flow, but between free-slip or
no-slip, as numerical calculations indicate. The physical difference arising because no-slip
allows the generation of enstrophy at the walls but free-slip or viscosity-free do not.

1.2 Inviscid results

The energy (2) and enstrophy (3) integrals, and the instability conditions (12), (13), still
apply for inviscid flow with 1/R = 0 in which case the Orr-Sommerfeld equation for v(y)

A +iaU — %(D2 —a?) | (D?* - o®)v — U"iaw = 0. (17)

reduces to the Rayleigh equation
(U—-¢)(D*—-a®v—-U"v=0 (18)

with A £ —iac, that is ¢ = i\/a = w/a +ic/a for A = 0 — iw with 2 = —1 and o, w
real. So an instability for Rayleigh’s equation occurs when S(c) = o/a > 0, taking o > 0
without loss of generality. The only boundary condition for Rayleigh’s equation is no-flow
through the walls, that is v =0 at y = y; and ys.

Rayleigh’s equation (18) allows us to derive an expression for 7”, the Reynolds force.
Substituting for D?v from (18) into T" = DT = dT'/dy calculated from (1) gives

T/_ . D2 * *DQ —9 u” ‘ ’2 19)
=ia(vD*v* —v*D%v) = 20 T—df v (
hence 7" has the sign of U” when o = R(\) > 0 (instability).

Rayleigh’s theorem (1880). Since T = 0 at the walls (1), 7" and therefore U” must
change sign in the domain for instability. Thus U” must vanish somewhere in the domain
but not everywhere (Couette flow) since o = 0 from (2) and (19) when 1/R = 0 and U” =0
everywhere.

Fjortoft’s theorem (1950). Substituting for 7" from (19) into (2) shows that insta-
bility requires (Uy — U)U” > 0 somewhere in the domain, for any Uy, which again gives
Rayleigh’s theorem that U” must change sign in the domain. Picking Uy = U(ys) = Us
where U” (ys) = 0, so both Us — U and U” change sign when y crosses ys, gives the pertur-
bation energy equation (2) as

Y2 Y2 (US _ U)U//
[ sy ay = " G e ay =0 (20)
1 1

for o # 0 and Fjortoft’s theorem that (Us—U)U” > 0 somewhere in the domain is necessary
for instability. This implies linear stability of flows such as U = 3 for which (Us — U)U" =
—6y* < 0, but possible instability of flows such as U = sin(8y)/sin 3 that have U” =
B%(Us — U), see e.g. [1, Fig. 4.2].



We can go further by substituting for 7”7 from (19) into (11) or (13), with Uy = Us, to
find that (U")? > (a? + n2/H?)(Us — U)U” somewhere in the domain. If we now assume
that (Us — U)U” > 0 everywhere, we obtain that

U// 9 7T2
5, (75) 2+ i )
is necessary for instabilitym where H is the full height of the channel. This implies stability
of the Kolmorogov flows U = sin(By)/sin § when || < 7/H as we already established for
viscous flow with free-slip, but now also includes other similar flows such as U = tanh Gy
which are only unstable for 3 large enough (left to the reader). Condition (21) effectively
contains the results of Friedrichs (1942) and Drazin and Howard (1966) [1, p. 133, 134].
Our derivation is more straightforward but the result is not quite identical since Friedrichs
provides an expression for a neutral wavenumber. Condition (21) shows that inflectional
instabilities are larger scale instabilities, that is, they require 0 < o? < 3% — 72/H?, where
B2 = max(U"/(Us — U)).

Since the production integral on the right hand side of (20) can written for any constant
Up in place of Us and in particular for Uy = ¢, = R(c), and since |U — ¢|* = (¢, — U)? + ¢?
with ¢; = S(¢) = 0/, we can infer that while U” = 0 somewhere is necessary for instability,
the maximum instability (max ¢;) occurs for values of ¢, that tend to maximize U”/(¢, —U)
and functions v(y) that are largest near those maxima. For profiles that are anti-symmetric
about the inflection point, such as U = sin Sy or tanh Sy, this will likely be for ¢, = Us.

2 Rayleigh’s piecewise linear models

Rayleigh’s eigenvalue problem (18) is difficult to solve when U(y) is a smoothly varying
function (figure 1(a)). However, if U(y) is defined as a piecewise linear function (as shown
in figure 1(b)), then the solutions of Rayleigh’s equation are simple exponential or hyperbolic
functions which must satisfy certain matching conditions at a discontinuity of U(y) or U’(y)

[1].

Figure 1: (a) Unbounded smooth shear flow. (b) Piecewise-linear unbounded shear flow.

The matching conditions can be derived by going back to the primitive equations [1, §23]
and [8, §6.2.1] and the reader should study those derivations. Here, we start from Rayleigh’s



equation (18) and imagine a continuous deformation from a smooth profile to a piecewise
linear profile, for instance a continuous deformation of U = tanh(y/h) into the piecewise
linear profile in fig. 1(b)). Then Rayleigh’s equation applies but U” — oo at corners and
0 everywhere else, i.e. U” tends to a sum of Dirac delta functions and Rayleigh’s equation
implies that D?v — oo at those points also, to balance the U” divergences. That is, the
jumps in U’ must be balanced by jumps in v' as governed by Rayleigh’s equation. Indeed,
Rayleigh’s equation (18) can be rewritten in the form

(U= — U’v)/ — (U = ¢)v =0, (22)

and integrating (22) across a vanishing rapid transition region for U’, say from y = yg — €
to y = yo + € with ¢ — 0T gives the jump condition
+
/ 1 Yo
[(U - =U U} =0. (23)
Yo
This jump condition corresponds to continuity of pressure [1, §23] and [8, §6.2.1].
If we also allow for jumps in U, these must be matched by jumps in v and that balance
is revealed by rewriting (22) as

<(U—c)2(UU_C>/>,—042(U—C)1)—O. (24)

which shows that v/(U — ¢) cannot jump since such a jump could not be balanced in
Rayleigh’s equation. Thus, the jump conditions for v at a jump of U is

[Uv_c]yg — 0. (25)

Yo

A discontinuous U profile corresponds to the Kelvin-Helmholtz model with a sharp interface
between two differentially moving fluid layers. The jump condition (25) corresponds to the
linearized material interface condition [1, §23] and [8, §6.2.1].

Away from jumps, when the velocity profile is piecewise linear, U” = 0, and so Rayleigh’s
stability equation (18) has the general solution

v(y) = Ae® + Be™ Y (26)

for arbitrary constants A,B. Therefore, we can use conditions (23) and (25) to match
solutions of the form (26) to solve any problem with a piecewise linear velocity profile.
For the piecewise linear unbounded shear flow, we take

UO lfy > ha
U(y) = Upy/h if —h<y<h, (27)
—UO lfy < —h,

as in figure 1b. Note that U” = (—=Uy/h)é(y — h) + (Uo/h)d(y + h) where §(-) is the Dirac
delta function and that U” changes sign. We could consider this problem as the limit for



e — 07 of the smooth profile with U” = (=Uy/h)G(y — h,€) + (Uy/h)G(y + h,€) where
G(y,€) = (me)~1/2 exp(—y?/€) is the standard Gaussian.
Solving (18) for (27) with v — 0 as y — oo gives

Aeia(yih) if y > h‘a
v(y) = ¢ Be® +Ce™® if —h <y <h, (28)
Dea(y+h) if y > —h,

with @ > 0 (and D here is a constant not the d/dy shorthand as before). Since U is
continuous, the jump condition (25) reduces to continuity of v at y = +h, hence

A= Be®t 4 Cem M,

29
D = Be %" 4 Ceh. (29)
It is now convenient to let ‘
C = -, A = h, 30
¢ i a=a (30)

(or equivalently taking h and Up has length and velocity scales leading to h = 1 and Uy = 1)
then applying the jump condition (23) at y = +h, substituting for A and D from (29) gives

(2a(1—¢) — 1)066‘ = Be %,

. . (31)
(2a(14¢) —1)Be* = Ce™ @,
which after elimination of B and C' yields ((2& — 1)? — 44%¢?) = e~1% and
1 — 24 2 _—4a
po 172~ (32)
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such that ¢2 — —las & — 0,2 =0at @ ~0.63 and ¢2 < 0in 0 < & < 0.63. A negative
¢2 means ¢ = ¢, + ic; with ¢, = 0 and ¢; = £|c|, hence instability. The growth rate (18)
A = —iac = ac; is real when ¢ is negative. Define A = a&; = ac;j(h/Up), so A = A(h/Up)
and this non-dimensional growth rate is plotted in fig. 2 as a function of the non-dimensional
wavenumber & = ah.

Kelvin-Helmholtz. The limit h — 0 yields the Kelvin-Helmholtz model with & = ah — 0
in (32) yielding ¢ — —1 so ¢ = +ilUy and A = —iac = +aly. The Kelvin-Helmholtz model
is ill-posed since A = alUp can be as large as one desires by taking « large enough, but
Rayleigh’s piecewise linear model with a length scale h, eqns. (27), (32) and fig. 2, is well-
posed and gives a qualitatively and quantitatively valid picture of the instability that only
occurs for a < 0.63/h. Although, ‘Kelvin-Helmholtz instability’ is often used to describe
general inflectional instability and vortex roll-up, the Kelvin-Helmholtz model is a bit too
singular to provide insights into the instability for smooth profiles U(y). The Rayleigh
model (27) is more physical and shows that the instability results from the interaction
between two regions where U”/(¢, — U) is large and positive with U” of opposite signs.
Valis [8, §6.2.4] provides a useful interpretation of the instability as an interaction between
edge waves for the Rayleigh model.
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Figure 2: Growth rate A = aé = ac;(h/Up) with ¢ given by equation (32). The flow is
unstable for & = ah < 0.63.

Reynolds stress. The perturbation Reynolds stress is given by (1)

1 ( dv* L dv

—v—a<vdy —vdy>. (33)

In the case of piecewise linear unbounded shear flow (28) this gives

0 if y > h,
—uv = § 2i(BC* — B*C) if —h<y<h, (34)
0 if y > —h.

then eliminating C' using (31) with ¢ = i¢; and 6 = &é; > 0 gives
—uv = 46|B|?e** > 0 (35)

in —h < y < h, where & = ah and 6 = o(h/Uy) with o0 = ac; > 0 for an unstable mode.
Therefore, constant positive perturbation Reynolds stress —uw occurs throughout the shear
layer and U'T > 0 pointwise (2) (but this is for the inviscid problem). The Reynolds stress
—v transports momentum from y = h to y = —h and vice-versa. The Reynolds force onto
the mean flow —duv/dy consists of two delta functions, one negative at y = h and a positive
at y = —h, slowing down the mean at y = h and speeding it up at y = —h.

3 Instability from viscosity and no-slip

Remarkably, viscosity and no-slip at the walls can lead to linear instability even for flows
with U"” = 0, such as plane Poiseuille flow U = 1 — 2, that are stable for free-slip as shown
in sect. 1. In plane Poiseuille flow, Heisenberg [2] found a weak linear 2D instability, that
occurs at R ~ 5772 [4] and disappears as R — co. In boundary layer flows Tollmien [7] and



Schlichting [6] demonstrated a weak 2D instability which has a critical Reynolds number
of approximately R ~ 500 and again disappears as R — oo. However, unlike the previous
two flows, Romanov [5] proved that plane Couette flow is linearly stable for all values of R
(although this was already believed since the work of Hopf (1914), [1, §31.1]). While pipe
flow (or Hagen-Poiseuille flow) has not been proven linearly stable for all R, it is believed to
be so, and this has been shown up to Re ~ 10° experimentally and R ~ 107 computationally
(see lecture 1). When the no-slip boundary conditions are replaced by free-slip boundary
conditions for the perturbations then we showed earlier in sect. 1 that plane Poiseuille and
Couette flows are linearly stable for all R. The instability for viscous flow with no-slip in
channel flow arises because of the generation of vorticity at the boundary (4). This is a
delicate process because viscosity leads to dissipation of enstrophy in the bulk as well as
generation of enstrophy at the boundary (3), these two viscous effects are of the same order
and oppose each other.

(Note: A lecture on the Orr-Sommerfeld equation for R < oo, with a look at Heisenberg
and Tollmien’s work and critical layers was skipped in the GFD program.)

4 Failures of linear theories

We now summarise the results derived from linear theory in the last two lectures. From the
previous lecture we have the governing linear equations

0 0 1 o\  ,,0v
9 g9 L) g2, i _
<8t+U8x R€V>V?) U =0, (37)

where v =y -vand n=y -V x v =0,u — d,w. For v =0, we can show that n — 0 for
n =0 or d,n = 0 at the walls, since the homogeneous n equation is an advection diffusion
equation. Exponential instabilities therefore can only originate from the v equation and
Squire’s theorem (lecture 3) shows that 2D (z,y), that is independent of the spanwise
direction z, are more unstable than 3D disturbances. However, the canonical shear flows
(Couette, Poiseuille, pipe) do not have a linear instability, except for a weak linear instability
for viscous plane Poiseuille flow with no slip at the walls.

Energy stability on the other hand (lecture 3 and [1, §53.1]) shows that 2D perturbations
depending on (y, z) only, independent of the streamwise direction z, lead to the lowest
Reynolds number below which the flow is absolutely stable. Hence linear stability theory
and energy stability theory give, literally, orthogonal results!

The z-independent perturbations of energy stability theory lead to the largest initial
perturbation energy growth since they maximize production over dissipation (lecture 3),
but such z independent perturbations ultimately decay. We discussed this in lecture 1 and
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can show it by considering the full non-linear Navier-Stokes equations with no z-dependence,

0 0
ou 0 ou ou %) 1_,
m+78{+v%+w&_7£j+F+Rvu,

0
w W, O, v Op 1 (38)
at+%{+”ay+waz_ ay TRV

0
ow 0 ow ow  dp 1

2
E%—uax +va—y+w$——£+ﬁv w,

where v = (u,v,w) and where F' in the u equation is a driving body force. The continuity
equation reduces to V- v = dyv + 0,w = 0. Hence, the equations for v and w decouple
from the equation for v and the latter is a passive scalar forced by F and redistributed
by v,w. This decoupling implies that v and w do not have any forcing and therefore
they decay because of viscosity, no matter their initial amplitude [3]. This was discussed
and proved in lecture 1. The proof is simple and consists in deriving the equation for
the cross-stream kinetic energy | A(v2 + w?) where A is the cross-section and showing that
4 1 (0 +w?) =—(1/R) [, (|Vv]*+|Vw[?) <0.

These z-independent perturbations also lead to the largest linear growth of the pertur-
bation energy. For such perturbations, n = 0,u — 9w reduces to

ou

77:&7

and we can therefore integrate equation (36) with respect to z to recover the streamwise
u = U(y) + @ velocity equation (38) linearized about the base shear flow U(y)

— — =V%ui= U (39)

Hence, z-independent but z-dependent v(y, z) perturbations can generate large perturba-
tions of streamwise velocity u and large n = d,u. However, they eventually decay in the
linear theory as well as in the full z-independent nonlinear theory, as there is no feedback
upon v. The reader is referred to the discussions and models in lecture 1.

5 3D, nonlinear ‘instability’

Thus linear theory of shear flows fails. Energy stability and upper bound theories (lecture
2) suggest x-independent perturbations as most effective at initial perturbation energy
growth and maximum momentum transport and energy dissipation, but truly z-independent
perturbations always decay, for all amplitudes. So we need a nonlinear, 3D theory. Ouch!

Yet, we’re not far. The z-independent perturbations indeed are very good at redistribut-
ing the streamwise velocity u and transporting momentum, that is maximizing —uv and
perturbation energy production —wwv U’. This is clear from equation (39) which for large R
gives @ ~ —vU't so —uv ~ v2 U't.

11



These perturbations are necessarily spanwise z dependent, otherwise continuity and
the boundary conditions would require v = 0. These perturbations typically introduce z-
inflections in the streamwise velocity profile and those lead to instabilities of inflectional
type, but as a result of z inflections, not y inflections as in the classical linear theory. These
inflectional instabilities extract energy and momentum from the u-fluctuations of course and
will therefore accelerate the return to the laminar flow, unless they manage to regenerate
v. This seems like a lot of ifs, however that is essentially the fundamental self-sustaining
process that leads to the possibility of 3D, nonlinear states disconnected from the laminar
flow, and ultimately the sustenance of turbulent shear flows. The self-sustaining process
will be written up in more detail in the next lectures. (There was lots of hand-waving and
jumping around by the lecturer that is difficult to write-up).
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