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In the turbulent regime of Rayleigh–Bénard convection, steady 2D solutions (which are unstable)
transport heat about as quickly as fully turbulent 3D convection, provided the horizontal period
of the steady solutions is chosen to maximize heat transport [3]. This suggests the possibility
that steady 2D states might actually transport more heat than any time-dependent flow. If this
is true for solutions of the PDEs governing Rayleigh–Bénard convection, proving it would likely
be very difficult. (There are methods for rigorously bounding heat transport [1] in the PDEs,
but the bounds are somewhat conservative.) However, we can pose the analogous question in a
sequence of ODE models of increasing dimension, which approximate the full PDEs increasingly
well. Determining which states maximize heat transport in the ODE case is easier for two reasons.
First, it is less expensive to compute various solution branches in the bifurcation structure. Second,
methods of polynomial optimization can be used to produce computer-assisted upper bounds on
heat transport that are very precise.

The first part of the project is to derive a systematic hierarchy of increasingly accurate ODE
models of Rayleigh–Bénard convection for certain natural boundary conditions by truncating
Fourier expansions of the PDE variables. The truncations we will use are not arbitrary: we want
truncations leading to ODEs that preserve certain properties of the PDEs as in [4]. Then we will
study some of our models in detail. The smallest model in the hierarchy will be the famous Lorenz
equations, which are well studied already and provide guidance, so we will start by studying the
second-smallest system of ODEs.

Each ODE model can be studied from two complementary angles, which can be pursued in
parallel. One angle is to build an understanding of the various types of solutions to the ODE model,
not only by numerical integration but by using numerical bifurcation analysis to find various steady
and time-periodic solutions that may or may not be stable. This can be done relatively easily using
bifurcation analysis software such as MatCont. The other angle is to use computational methods
of polynomial optimization to produce global upper bounds on heat transport in the ODE model.
This too can be done using existing software; it has has been done for the Lorenz equations already
[2], and we can build on the code used in that study. For a given ODE model, if we can compute a
precise upper bound on heat transport and also find a particular steady state whose heat transport
is equal to the upper bound, then this proves that maximal heat transport is achieved by steady
states, as opposed to any chaotic (i.e. “turbulent”) or other time-dependent solution.
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