
Fluid-Structure Interactions in the Living
Environment

Schedule:
1. June 20: [MS] A primer on continuum and fluid mechanics. Mass conservation, momentum

balance, the Eulerian and Lagrangian frame. Boundary conditions.
2. June 21: [MS] Canonical fluid-structure problems: elastic structures interacting with high-speed

flows. Flags, streamlining. Mathematical approaches: boundary integral methods, unsteady
Kutta condition, elasticity, conformal mapping methods.

3. June 22: [MS] Flapping flight: symmetry-breaking and the transition to flapping flight. Studying
collective flight through simple models and experiments.

4. June 23: [PH] High Re fluid-structure interactions in sports: sailing, ski jumping, cycling, kite
boarding.

5. June 24: [PH] Low Reynolds number swimming introduction: RFT and a slender-body theory
teaser, three-link swimmer, single flagellum, two flagella, optimization.

6. June 27: [MS] Low Reynolds number phenomena. Nonlocal Slender-body theory and numerical
methods for many body interactions; Buckling of elastic bodies by flow, and anomalous
stresses.

7. June 28: [MS] Collective behavior at low Reynolds number. Bioactive suspensions, simulations,
continuum theories. Fluid-structure interactions in cellular biomechanics.

8. June 29: [PH] Thin films with elastic boundaries: crawling, peeling, adhesion, soft objects
moving near rigid boundaries.

9. June 30: [PH] Hydrodynamics of textured surfaces: hairy textures, symmetry-breaking,
Darcy-Brinkman flow.

10. June 31: [PH] TBD
Some useful reference texts:

 Incompressible Fluid Dynamics:
George Batchelor – An Introduction to Fluid Dynamics
D.J. Acheson – Elementary Fluid Dynamics
C. Pozrikidis – Boundary Integral and Singularity Methods for Linearized Viscous Flow

 Complex Fluids and Solids
R.G. Larson – The Structure and Rheology of Complex Fluids
G.A. Holzapfel – Nonlinear Solid Mechanics
Doi & Edwards – The Theory of Polymer Dynamics

 Bio Mechanics, Fluids, Locomotion
S. Childress – Mechanics of Swimming and Flying
S. Vogel – Life in Moving Fluids
S. Vogel – Comparative Biomechanics
R.M. Alexander – Principles of Animal Locomotion



(1) Basic concepts of fluid and continuum mechanics

The volume of fluid V and the velocity field.
Consider a volume V filled with a fluid or continuous material. At each time t and at each point

x the fluid has a velocity ux, t and density x, t. Describing the fluid flow as passing through a
fixed (lab) coordinate frame is called the Eulerian frame.
Notation:

x  x,y, z  x1,x2,x3
u  u,v,w  u1,u2,u2

The basic constituents of the velocity field – translation, deformation,rotation
Consider a steady flow, fixing x and considering a nearby point x  r:

ux  r  ux  ux r O|r|2
break up into symmetric and anti-symmetric parts
 ux  12 u  ur  12 u  ur
 ux  E r W r

w. u ij  ui/x j called the rate-of-strain tensor, and E ij  ui/x j  uj/x i/2 (the symmetric
rate-of-strain tensor) and Wij  ui/x j  uj/x i/2. The velocity field can be decomposed as
1. A translation ux
2. A pure straining flow: E is a symmetric matrix, with 3 real eigenvalues  i and 3 associated,

mutually orthogonal eigenvectors pi.
trE  uix i    u  

i
 i

Recall that the trace is invariant under similarity transformations.
 i’s are called the principal rates-of-strain
pi’s are called the principal axes of strain

Locally



drdt  Er Wr
Consider first the linear system

r  Er  PP1 r, with ii   i
Setting

  P1 r    
The local effect of E is to deform, through compression and expansion, a ball centered at r  0
into an ellipsoid whose principal axes are the principal axes of strain. The velocity Er is called
a pure straining flow.
Example:

E 
1 0 0
0 1 0
0 0 2

An incompressible straining flow
 trI/3  trI/3
 S   ur0I/3 S I/3

By construction, trS  0   i  iS. Hence the velocity field Sr is divergence free and induces
no change in volume, while Ir r is a pure (isotropic) compression or expansion.

3. R is an anti-symmetric matrix with purely imaginary eigenvalues

W  12
0 3 2
3 0 1
2 1 0

where     u is called the vorticity. Vorticity is a fundamental quantity in incompressible
fluid dynamics.



Wr  12
2r3  3r2
3r1  1r3
1r2  2r1

 12   r

The velocity field Wr is a rigid-body rotation (and is divergence free), w. angular velocity 12 .
Note

r 12   r 
ddt r  r  0 fixed length
ddt r    0 fixed angle

 generates a cone upon which r moves.
In summary: The local flow is composed of (i) a translation; (ii) a pure straining flow, itself

decomposable into an incompressible part, and an isotropic expansion or compression; (iii) a rigid
body rotation.
Conservation of Mass

Consider a fixed subvolume V0  V with outward normal n . The mass of V0 at time t is:
MV0, t  V0

dVxx, t

The flux of mass through an Eulerian volume V0
The rate of change of MV0, t is balanced by the flux of mass through its boundary V0, or

ddt V0
dVx  V0

dSx  u n   #   
This is the integral form of mass conservation. Using the divergence theorem we can write



V0
dVx t     u  0

As V0 was arbitrary, this gives the continuity equation:

t  x   u  0   #   

which is a PDE governing the evolution of material density in a moving fluid or continuous material,
and is called the differential form of mass conservation. j  u is called the mass density flux.
The Lagrangian formulation

The quantities u and  have been expressed in the Eulerian frame, e.g.,  is measured at a fixed
point x. In the Lagrangian frame a quantity, say , is measured in the frame of moving fluid. Let
Xt satisfy

dXdt  uXt, t with X0  X0
The function Xt is called the Lagrangian, material, or particle path. Consider Xt, t, that is,
the evolution of fluid density along a Lagrangian path.

A Lagrangian path
Then

ddt Xt, t 
t x, t  X  xx, t

xXt
 t  u  x xXt

The operator DDt  t  u x is called the Lagrangian, material, or substantial derivative. It is the
Eulerian expression for the time-rate-of-change of quantities along Lagrangian paths. And so

D
Dt   x  u   #   

Some properties of the substantial derivative:
 DDt fg  f Dg

Dt  g Df
Dt plus other usual aspects of a derivative

 Df
Dt  0  fXt, t  fX0, 0, i.e., f is conserved along particle paths.

Previously we had considered a fixed, or Eulerian volume V0. Now, let t be a time
dependent volume moved by the flow from 0:



The deformation of the  under the flow
That is, solve

dXdt  uXt, t with X0  X0 X0  0
t is the set of all consequent Xt, and is called a Lagrangian or material volume.

Lagrangian flow-map: A Lagrangian variable is one that stays constant along a Lagrangian
path. The key idea of the Lagrangian formulation is to use the set of initial coordinates X0  0 as
independent spatial coordinates. So, consider the time-dependent transformation of spatial
coordinates

 X, t
found by solving

Xt , t  uX, t, t with X, 0  
(i.e.,   X0). X, t is the Lagrangian flow-map and  is the Lagrangian variable.

The evolution of the Lagrangian flow-map.
The Lagrangian flow map has many important properties:

(1)
t fX, t, t  ft  Xt  xf xX,t

 ft  u  xf xX,t
 Df

Dt xX,t



Hence, the substantial derivative relates the Eulerian and Lagrangian frames.
(2) A fundamental object defined by the Lagrangian flow-map is the deformation tensor or

matrix F, defined as the Jacobian of the flow-map:
F  X or F ij  X ij

F encodes the deformations of the Lagrangian flow-map relative to the initial state. Let
V, t  uX, t, t. Then F evolves by

F ijt  t X ij  j
X it  V ij

 j uiX, t, t  uiXk
Xkj

or
Ft  V  xu|X, tF with F, 0  I

or in Eulerian variables:
DFDt  xuF with Fx, 0  I

This introduces D  xu, the rate-of-strain tensor. A related tensor is E  xu xu/2, the
symmetric rate-of-strain tensor.

(3) Let J be the Jacobian determinant of the flow-map, that is,
J, t  detF  det F1,. . . ,Fn  det X1,X2,X3

Note: J, 0  1. We have the following important and standard result from dynamical systems
theory for its evolution: Louiville’s Formula:

t J, t  x  u|X, tX, t, t  J, t
Proof: In Rn

F  X1, ,Xn  F1,. . . ,Fn
The Jacobian can be expressed in terms of the multi-linear operator, the wedge product:

J  F1  F2 . . .Fn
which has the properties:
1. F1  . . .  U  W . . .Fn  F1  . . .  U . . .Fn  F1  . . . W . . .Fn
2. F i  spanF j, j  i  J  0
3. ddt J  F 1  F2 . . .Fn  F1  F 2 . . .Fn . . .F1  F2 . . .F n

Now,
F i  t X i  uiX, t, t

 uiX1 X1  uiX2 X2 . . . u iX i X i . . . uiXn Xn
 uiX i F i  Ti with Ti  spanF j, j  i

Then



ddt J  u1X1 F1  T1  F2 . . .Fn

 F1  u2X2 F2  T2 . . .Fn . . .
 F1  F2 . . . unXn Fn  Tn

 u1X1 J  u2X2 J . . . unXn J
 x  u J

(4) The effect of change in geometry: Consider two nearby Lagrangian points  and    d.
Now consider the displacement of these points in the Eulerian frame under the flow of the material:

dX  X, t  X, t  F, td
Then, |dX|2  dTFTFd  dTCd. Hence C  FTF controls the relative stretching of Lagrangian
line elements by the flow. C is the right Cauchy-Green tensor, which is symmetric and positive
definite (spd), satisfying detC  detF2  J2  0. C satisfies the dynamics equation:

Ct  F tTF  FTF t  FT uT F  FT xu F  2FT E F
We can also write d  F1dX, or |d|2  dXTFTF1dX  dXTFFT1dX  dXTb1dX. Here

b  FFT

is the left Cauchy-Green (or Finger) tensor, which is also spd, and satisfies
detb  detF2  J2  0. This tensor arises very naturally in the theory of rubber elasticity. This
has the far more attractive dynamics:

DbDt  xu F FT  F FTxuT  xu b  b xuT

Note: (i) C and b have the same invariants. Let F  UDVT be the singular value decomposition of
F, so that D contains the singular values, and U and V are orthogonal matrices. Then,

C  FTF  VD2VT and b  FFT UD2UT

and so C and b have the same eigenvalues,  l2, and hence have the same invariants. (ii) The
evolution for b is closed, and does not require knowledge of F. This is not so for C.

Side Note: The operator b  DbDt  xu b  b xuT is called the upper convected derivative
and is intimately related to conservation principles in the Lagrangian frame. First, a simple proof of
the result of Cauchy. For the incompressible 3D Euler equations, vorticity transport is given by (in
the Lagrangian frame)

t  xu   xu FF1   F t F1  FF1 t 
or

F1  t  0 giving   F 0
which is the result. Hence, any vector or matrix satisfying

Wt  xu W also satisfies W  F W0
Consider now the dyadic matrix Z  WWT  F W0W0TFT. Then

Zt  xu Z  Z xuT



In general, we have the result that Z satisfies the conservation law
F1ZFT t  0 or Z  F Z0FT

if and only if
Z Zt  xu Z  Z xuT  0

Mass Conservation in the Lagrangian frame
The mass of a Lagrangian volume does not change in time, that is

Mt  M0
where M can be expressed as:

Mt  t dVx x, t tf. to Lagrangian coords
 0 dV X, t, tJ, t

Then
0  Mt  M0  0 dV X, t, tJ, t  , 0

As 0 was arbitrary we have
X, t, tJ, t  , 0   #   

This is one Lagrangian form of mass conservation. As J also represents the measure of an
infinitesmal volume, it says that if the volume increases, then the density must decrease. This now
gives sense to incompressibility of a fluid or material. Incompressibility means that material
volumes, infinitesimal or otherwise, do not change their volume. That is, J, t  1, and
consequently X, t, t  , 0. This has two consequences, following Liouville’s formula:

x  u  0 and D
Dt  0

Hence, incompressible fluids are have divergence free velocity fields, and the density is conserved
along Lagrangian paths.

To recover the Eulerian form, take a time-derivative of Eq. (1”’) and use the relation with the
substantial derivative and Liouville’s formula:

0  t X, t, tJ, t
 D

Dt X, t, t J, t  X, t, tx  uX, t, t J, t
 D

Dt X, t, t  X, t, tx  uX, t, t J, t
If the flow is smooth, then J  0, and we have

D
Dt x, t  x, tx  ux, t

which we have already proved.
The Lagrangian statement of mass conservation yields the following fundamental result:
The Transport Theorem: For any smooth fx, t



ddt tdVxf  tdVx  Df
Dt

Proof: Use that tX, t, tJ, t  0 and that tfX, t, t  Df/DtX, t, t:
ddt t dVxf  ddt 0 dV Jf  0 dV t Jf

 0 dV f t J  J ft
 0 dV J ft  t dVx  Df

Dt
Side Note: If the flow is incompressible, then the deformation tensor F satisfies   FT  0 at all

times.
Proof: In Eulerian coordinates, using that ui/x i  0, F satisfies

tF ij  uk F ijxk  uixk Fkj

 t F ijx i  ukx i
F ijxk  uk xk

F ijx i  uixk
Fkjx i

The underlined terms are identical under interchange of k and i. Hence
t F ijx i  uk xk

F ijx i  0 or
DDt   FT  0 where F0  I

Balance of momentum and forces in a fluid or deformable material
The acceleration of a fluid particle is given by

at  d2
dt2 Xt  ddt uXt, t

 ut  u  xu  DuDt Xt, t
where notationally u  xui  ujxjui.

A Lagrangian subvolume  being
acted upon by body forces (fbody) and

forces of stress s A .
Now, let’s develop Newton’s 2nd Law for balance of forces in a fluid. The momentum carried by

a Lagrangian volume of fluid t is



mt  t dVx u
Generally, forces come in two flavors, body and stress:
 Body forces – externally imposed forces such as gravity or electro-magnetic fields, that exert a

force/unit mass. Let gx, t be such a force/unit mass. The total body force exerted upon tis:
fbody  t dVx g

 Forces of stress – Forces arising from the mechanical contact of the volume , across , with
the rest of the fluid or material. According to Cauchy, the (Cauchy) stress s (units of force/unit
area) across a surface with outward normal n , at a point x, has the form

s  n or si  ijnj
 is called the Cauchy stress tensor and it is a central focus of nearly all modeling of complex
fluids and deformable materials. Conservation of angular momentum implies that the stress
tensor is symmetric. The total force of stress exerted upon t is:

fstress  t dSx n
Newton’s 2nd law then gives

ddt m  fbody  fstress
Applying the transport theorem to the expression for d/dtm and the divergence theorem to the
expression of fstress gives:t dVx  DuiDt  t dVx gi t dVx x j ij

or
 DuDt  x  g

Write
  pI  d with trd  0

Newtonian fluids are those that have a linear relation between the deviatoric stress d and the
rate-of-strain tensor u. All others are termed non-Newtonian.

Classical examples – (1) the Euler equations. d  0. Take the stress to be only in the direction
of the normal, that is:

   px, tI
p is called the (mechanical) pressure, and is compressive for p  0. Hence,

 DuDt  xp  g (L. Euler, 1755)
When the fluid is incompressible, then we have a closed set of evolution equations

 DuDt  xp  g
D
Dt  0 and x  u  0

Very Important Note: Here the pressure plays the role of a Lagrange multiplier that enforces



incompressibility, adjusting itself at each time to ensure that velocity remains divergence free. This
system is nonlinear due to the nature of the substantial derivative, but also nonlocal as the
divergence free condition yields an elliptic character to the equations.

(2) the isotropic Navier-Stokes equations for an incompressible fluid.
   px, tI  2E

yields the N-S equations
 DuDt  xp  u  g
D
Dt  0 and x  u  0

 is bulk or shear viscosity.
(3) a different example: Neo-Hookean elastic solid –    pI  GJ1b gives the simplest model

of a perfectly elastic solid that dissipates no energy. If the material is incompressible, then when
combined with

DbDt  xu b  b xuT and x  u  0 J  1
this system is closed.
Momentum balance in the Lagrangian frame

What is the analogous expression for momentum balance in the Lagrangian frame? For this, we
need Nanson’s formula. This crucial identity allows a change of surface variables between Eulerian
and Lagrangian descriptions (Holzapfel, Eq. 2.55):

n dSx  J FT N dS
Here n is the normal to a patch of surface of area dSx in the Eulerian frame, while N is the surface
normal to the originating Lagrangian surface of size dS. Now, here is the proof not given by
Holzapfel of Nanson’s equality in differential form:

x    J1    FTJ
Proof: Consider the (stress) tensor  as a set of vectors indexed by i, the row index. i.e.,

ij  ji. Then, x   i  ji
xj . Now
p ji  jixq

xqp  jixq Fqp or  i  x i  F

and hence, x i   i  F1 or taking a trace: jix j  jip Fpj1

We now make use of the following identity:
p Fpj1J    FTJj  0

(Do this as an exercise.) And so,
x  i  J1 p ijFpj1J  J1 p ijF jpTJ  J1    FTJi

Hence, we have



tx   dVx  0    FTJ dV

or setting P    FTJ    J1PFT we havet x   dVx  0   P dV or
Here  is the symmetric Cauchy stress tensor, and P is called the first Piola-Kirchoff stress tensor.
Since  is symmetric,

PFT  FPT

The tensor P is itself not generally symmetric. We also havet  n dSx  0 P N dS
which defines the two stress vectors:

sx, t,n   x, tn and S, t,N   P, tN
where s is the (Cauchy) stress relative to the current configuration, and S is the (first Piola-Kirchoff)
stress relative to the reference configuration.

Now, reconsidering balance of momentum,
ddt t dVxx, t ux, t  t dSxx, t n  t dVxx, tgx, t

or, rewriting everything in Lagrangian variables, i.e. letting V, t  uX, t, t,
G, t  gX, t, t, and using , t J, t 0:

ddt 0 dV, t uX, t, t J, t  0 dV 0 Vt , t
 0 dS P, t N   0 dV 0 G, t

And applying the divergence theorem yields:0 dV 0 V t, t  0 dV   P, t  0 dV 0G, t
Now using the arbitrariness of 0, we have

0 Vt    P  0G
Very nice.

And so, back to the Neo-Hookean solid:
  pI GJ1b  P  pFT  GF

Ignoring incompressibility for the moment, in the Lagrangian frame this yields:
0 Vt  G   F

Ft  aV
that is, two coupled linear PDEs.

For an incompressible material J  1, we would have:



0 DuDt  xp  Gx  b
DbDt  xu b  b xuT

  u  0
For small displacements: u  u, b  I c, and expanding to first-order in :

0ut  xp  G x  c
c t  xu  xuT  2E

  u  0
Taking a time derivative of the first equation and setting q  pt, we have

0utt  xq  G x  xu
  xq  Gu

  u  0
That is, an "incompressible" wave equation.
Conservation of Energy

We will come back to this if necessary. Usually associated with non-isothermal situations,
which get quite ugly.
Back to the Navier-Stokes Eqs and its properties.

Let us assume constant density , so that
 DuDt  xp  u  g

x  u  0
1. Boundary conditions on the N-S equations:

A body of time-dependent (surface St)
moves through a fluid above a solid wall.

 On a solid boundary, as at point B above, we require for a viscous fluid the no-slip
condition: u|B 0. For an inviscid fluid, u|Bn wall  0 so that no fluid penetrates the wall.

 On an impenetrable time-dependent body with surface St which has velocity V and which
exerts a stress T on the fluid, we require that u|BS  V and |BS n  T.



 At an interface St between two fluids, or at least two continuum materials, with stress
tensors 1 and 2, we require 1 n  2 n  T where T is the surface traction. Typically,
T  n for surface tension.

2. The N-S equations have a symmetric stress tensor: ij  pij   u ixj  u j
xi . This

guarantees conservation of angular momentum.
3. If no work is done on the system, then N-S has a decaying kinetic energy: Let  be either a

fixed closed domain upon whose boundaries the no-slip condition is applied, or all of R3. The
kinetic energy is given by

K  12  u2dVx
and satisfies

K 
viscous dissipation to heat

  |u|2dVx 
work done on the system

 g  u
The latter term is zero if the body force arises from a potential. Work can also be done by the
time-dependent motion of boundaries in the fluid.

4. The N-S equations are Galilean invariant; that is their form is conserved under the
transformation u  u  U where U is a constant velocity.

5. Vorticity,     u, is a fundamental quantity for incompressible flows and has distinctly
different dynamics in two and three dimensions:
 Vorticity transport and diffusion g  0 of 2-d fluid in the x  y plane. Here, vorticity is a

scalar    z. Taking a curl of the momentum equation:
DDt  

where   / is called the kinematic viscosity. This is an advection-diffusion equation.
 In 3-d we have instead:

DDt  u   
The extra term, u  , is the so-called vorticity stretching term, and is the term that shows
how the vorticity vector field can be amplified or diminished by the local straining flows of
the fluid flow, in addition to being advected and diffused. To see this, we recall thatu  E W, where W  f    f for any vector f. Hence we have

DDt  E   
Recall that the symmetric rate-of-strain tensor E is trace-free. If  is aligned with a
principal direction of positive (negative) rate-of-strain, then the magnitude of  will be
increased (decreased) (neglecting diffusion). What we shall see shortly is that vorticity
actually induces the velocity field, and hence the straining flow in which it evolves. This
coupling of vorticity stretching/depletion to the vorticity dynamics itself makes the
understanding of the 3-d Navier-Stokes equations especially difficult.

 It is worth examining vorticity transport in the Lagrangian frame in the absence of
viscosity. Both equations reflect fundamental conservation laws of the Euler equations. In
2d, the statement D/Dt  0 simply becomes, in the Lagrangian frame:

t  0  , t  0



or that vorticity is conserved in the Lagrangian frame, that is, along Lagrangian particle
paths. The 3d statement is similar, but more complicated. We manipulate the vorticity
advection equation in the Lagrangian frame using the evolution equation for the
deformation tensor F:

t  xu   xu  FF1
F tF1  FF1 t

giving the conservation law:
F1 t  0  , t  F, t0  

This is the so-called Result of Cauchy, which states that vorticity is stretched or depleted by
the action of the deformation tensor.

6. The vorticity-stream formulation establishes the relation between velocity and vorticity.
2D:   u  0    such that u    y,x    vx  uy  xx  yy  . For
an open flow this then yields the Biot-Savart law.

x  12 2 dAx ln|x  x  |x  
ux  12 2 dAx

x  x 
|x  x  | x 

7. In the Lagrangian frame for an inviscid flow we have
uX, t, t  12 2 dA 

X, tX, t
|X, tX, t| X, t, t

and using the definition of the Lagrangian frame, and conservation of vorticity along particle
paths, we have

Xt, t  12 2 dA 
X, tX, t
|X, tX, t| 0

which is a closed set of equations for the Lagrangian flow map (vorticity moves itself).
8. Important, special solutions. In general the nonlinearity of the NS equations, u  u, prevents

finding analytical solutions, and most know solutions are steady-states for which u  u  0.
Most such solutions are unidirectional flows.

The Reynolds Number

The Reynolds number is perhaps the most important dimensionless constant in fluid dynamics.
Its magnitude quantifies the relative balance of inertial and viscous forces in a fluid. Consider a
body of characteristic size L moving with speed U through a Newtonian fluid. This also defines a



characteristic time T  L/U. Rescale variables as
x  L x, t  L/Ut, u  U u, and p  P p

Then the incompressible NS eqns become:
Re DuDt   P/L

U/L2 p  u and   u  0
where all variables are without dimension. Note that the divergence free condition remains
unchanged. The dimensionless constant

Re  U2L2
UL  "inertial" force

"viscous" force  UL

is famous Reynolds number. We have left the pressure scale to be determined. Because of the role
the pressure plays in satisfying the divergence free condition it is simply scaled to keep it in the
dynamics, regardless of what limiting system in Reynolds number is considered. Consider two
extreme, but centrally important cases:
 Re  1, meaning that the fluid dynamics is dominated by the inertial forces of the fluid. This

is typical for the locomotion of most birds, fish, whales, etc. In this case, choose
P  Re  U/L, and we have

DuDt  p  1Re u and   u  0
Taking the formal limit Re  , we get the Euler equations:

DuDt  p and   u  0
We emphasize that this is a formal limit because in the presence of boundaries, static or
dynamic, the no-slip condition is a singular perturbation and makes that limit a possibly singular
one; There can be a persistent shedding of vorticity produced at the wall even in the limit of
infinite Reynolds number. While the Euler equations retain the convective nonlinear of the NS
equations, their lack of diffusion gives their dynamics a great deal of geometric structure that is
useful in understanding the structure of solutions, as well as giving special tools, such as
potential theory, for constructing special classes of solutions.

 Re  1, meaning that the fluid dynamics is dominated by the viscous forces of the fluid. This
is the typical situation for micro-organismal locomotion, transport of small particles of any sort,
and indeed any dynamics that takes place on either a sufficiently slow time-scale, or at a
sufficiently small spatial scale. In this case, we choose P  U/L, giving



Re DuDt  p  u and   u  0
and the formal limit Re  0 yields the Stokes equations:

p  u  0 and   u  0
Note that the Stokes equations are linear, constant coefficient PDEs. For the Stokes equations
there is no loss of boundary conditions, unlike the Euler equations, since the highest order
spatial term is retained. Unlike either the NS or Euler equations, the Stokes equations are not
necessarily solved as an initial value problem as the equations do not contain any time
derivatives. They are typically solved as a boundary value problem, where any dynamics
devolves from time dependence in boundary data or in solution domain (e.g. as in free boundary
problems).
Note that if there free bodies in the fluid, then the low Reynolds number scaling requires that
they exert zero net force and torque upon the surrounding fluid. To see this, a body in the fluid
moves through Newton’s 2nd law as

mbX c   dSx  n or in dimensionless units
mbU2
L X c  L2  dSx U

L   n which can be rearranged to yield
Re mbmf X c   dSx  n where mf  L3

Hence, if Re  1, then the inertial term can be dropped so long as mb/mf is not large, and we
will generate the constraints

F   dSx  n  0 and
T   dSxX  Xc    n  0

 Moderate Reynolds number. In this regime both inertial and viscous forces are important, and
this is a regime that has come under increasing scrutiny, for example in studies of small insect
locomotion, and efficient mixing in micro-fluidic devices. In the low and high Reynolds
regimes there have been many tools – asymptotic reductions, special numerical methods – that
have greatly aided in understanding the fluid dynamics. All of these tools fail in the moderate
Reynolds number regime, or must be used at best perturbatively, and theoretical studies have
been almost exclusively computational in nature.

The Stokes Equations
The Stokes equations have considerable analytic structure. Again,

 p  u  f and   u  0
It is often useful to write them as:

    0 and   u  0 with    pI  2E
Taking a divergence of the momentum equation gives that

p    f
so the pressure satisfies a Poisson equation and is harmonic in the absence of an external force.
Taking a curl of the momentum equations gives that



    f
so the vorticity also satisfies a Poisson equation. As before, the divergence free condition implies
the existence of a vector stream function  which satisfies   , and hence

2    f
and so the stream-function satisfies a biharmonic equation.
An Application – Lubrication Theory

Lubrication theory concerns the dynamics of a fluid – a Stokes fluid – in a thin gap. Force
balances in such flows are dominated by shear stresses. This arises in many, many instances, such as
in the lubrication of joints (a very interesting fluid dynamics problem), or the locomotion of snails
and of worms, as well as in many engineering settings such display device design, and scientific
problems in pattern formation. The main point here is to derive a simplified version of the Stokes
equations that can be more easily analyzed. Consider a long thin channel (in 2d) such as is sketched
below, with a horizontal length-scale L and characteristic height h, with aspect ratio   h/L  1.
We assume the fluid obeys the Stokes equations:

 px  u  0
 py  v  0

ux  vy  0
We scale each direction on its characteristic length, as well as the associated velocities:

x  Lx; y  hy; u  L/Tu; v  L/Tv; p  Pp
We assume that there is some characteristic time-scale T, perhaps related to an imposed wall
velocity, or a force, though this would be given by the precise application. Then, rescaling the
(dimensional) Stokes equations we have

 PT 2px  2uxx  uyy  0
 PT py  2vxx  vyy  0

ux  vy  0
We choose the pressure scale so as to balance pressure stress against the shear stress in the horizontal
momentum equation. That is, P  /T2 and so

 px  2uxx  uyy  0
 py  4vxx  2vyy  0

ux  vy  0
At leading order we have the reduced Stokes equations:

 px  uyy  0
py  0

ux  vy  0
and so



p  px, t
 ux,y, t  12 y2pxx, t  ax, ty

that is, the horizontal velocity is a parabolic plus linear shear flow. The vertical velocity is then
given by:

vx,y, t  0
y 12 y2pxx  axy dy   y3

6 pxx  y2
2 ax

There are similar reductions that can be used for non-Newtonian problems involving shear-thinning
of -thickening, and elasticity (e.g., see FKSP2001 for its development in non-Newtonian Hele-Shaw
flow).

The reduced Stokes equations worked out in 3d leads to Darcy’s law for 2d Hele-Shaw flow:
v   b2

12 2p and 2  v  0

The Stokes solution for a sphere
Consider a sphere of radius a moving at velocity U U . George Stokes showed that the fluid

stress on the sphere is given by
  p cos   3U2a 

where the polar axis of the sphere is taken in the  direction. We then have for the force F on the
sphere the famous Stokes formula:

F  S dA   6aU

The Jeffrey equation for ellipsoidal particles
Consider an axisymmetric ellipsoid of length l and diameter d rotating in a linear flow

u  U  Ax so that u  A  W  E. Let the unit vector pt point in the direction of the major
axix, Xct be the ellipsoid center, and assume that no force or torque acts upon the ellipsoid. Then
(Jeffrey, 1922)

X c  U  AXc
p  Wp  2  12  1 I  ppEp
 I  pp W  2  12  1 E p

with   l/d.
 Sphere:   1  p  Wp  12   p. Rotation of the director about the vorticity vector. The

strain flow contributes nothing to the rotation of the sphere.
 Slender rod:     p  I  ppu p. Rotated by the flow, but constrained from stretching.
 Plate:   0  p  I  ppW  Ep  I  ppuTp
Fundamental Solutions of the Stokes Equations

Because the Stokes equations are constant coefficient linear PDEs, solutions to them can be
represented in terms of Green’s functions. There are several important fundamental solutions for the



Stokes equations, such as the Stokeslet, Rotlet, and Stresslet.
Formal Construction of the Stokeslet: Find a solution to the equation

     q  v  ê x and   v  0
where ê is an arbitrary unit vector, and  is the 3-d -function. Recall that the 3d free-space Green’s
function for the Laplacian is

G  14 1|x |
i.e., G  x. Taking a divergence gives q  ê   ê G  ê G and so we choose

q  ê G  14 x
|x |3  ê  14 x

|x |2  ê  Pkêk
Hence, the fundamental solution for the pressure is

Pk  14 x k
|x |2

We then have
q  14 1

|x |3 I  3xx ê
 v  ê  ê  G

Now we construct two functions B1, B2 that satisfy
B1   & B2  G

and let
v  1 êB1  ê  B2

Now, plucking out only the radially symmetric particular solutions for B1,2 gives:
B1  G and B2  18 |x |

where further calculation gives
v  18 I  xx|x | ê

The rank-two tensor
S  18 I  xx|x | or Sik  18 ikx ix k|x |

is called the Stokeslet or the Oseen tensor. It has a long-range R1 decay and is a negative definite
matrix. It can be used to construct other relevant fundamental solutions. We define the Stresslet as
the rank-three tensor Tijk satisfying  ij  Tijkêk, or

Tijk  Pkij   Sikx j  Sjkx i
 34

x ix jx k
|x |2

The Stokeslet and Stresslet can be used to construct a boundary integral representation for
solutions of the Stokes equations, which we very roughly outline (see Pozrikidis for a more detailed
derivation). Consider a closed body B with surface  and outer normal n , and with a surface stress
distribution  and surface velocity u. Let ,u be the Stokes solution that satisfies |n   and



u|  u  .
The Lorentz Identity

A fundamental identity satisfied by any two solutions ,u and  ,v of the Stokes equation is
the Lorentz identity:

   v  u  0 or xk kiv i  kiui  0
Using symmetry of the stress tensor, we can write:

   v  u   : v   : u
 pI  2Eu :EvWv qI  2Ev :EuWu   0

The Classical Boundary Integral Formulation
We let  ,v be the Stresslet/Stokeslet pair. Following Pozrikidis, redefine x  x  y, and

integrate the above equality over the punctured fluid domain /Dy (with normal into the domain)
where Dy is the -ball about y, hence excluding the singular point from the domain. The
divergence theorem then gives

0  |xy |v ix yikx nkx   uix ikx ynkx dAx

(1) On |x  y|  : Note that on the boundary of Dy, x y n, xy  Sijx yikx nkx dAx

 18  xy 
ij  ninj ikx nkx dAx  0 as   0

since the area element scales as 2. Now the second term is given by:
34 |xy | ui ninjnk

2 nkdAx  34 2 |xy | uininjdAx

 34 22 0
2 d 0

 d sinuiy  Oni,nj,
 34 0

2 d 0
 d sin n n uy  O

 34 0
2 d 0

 d sin
cos2 sin2 0 0

0 sin2 sin2 0
0 0 cos2

uy

 ujy
One can thus show that:

ujy  Sjix  yix  uixTijkx  ynkxdAx

or in nicer notation
uy   Sx  yx  uxTx  yn xdAx

Note that S is even wrt its argument, while T is odd.



Hence, we have expressed the velocity at every point in the fluid as a function of the surface
stress and velocity. Of course the surface velocity and the fluid velocity are related by the no-slip
condition, and so it remains to take the limit y  x  . The hard one is the stresslet, so let’s do that
one first. The dominant part of the limit to the surface should arise from this integral:

I  |xx0 | uixTijkx  ynkxdAx

where x0 is the closest point to y. Let’s replace the  patch with a flat disk, and assume that
y  x  r n0   R0 e where R0 is a rotation matrix (R0z  n0) and e  cos, sin, 0. That
is, this is a little , coordinate system on the patch. Then

y  x  r n0   R0 e
r2  21/2

:
I  34 0

2 d 0
 d  u rn0  R0e n0rn0  R0e

r2  25/2 rn0  R0e

 34 r 0
2 d 0

 d  u rn0  R0e
r2  25/2 rn0  R0e

 34 r 0
2 d 0

 d  r2u  n0n0  2u  R0eR0e
r2  25/2

Ok, we need to calculate
0

2 du  R0eR0e R0 0
2 dee R0Tu

 R0I  zzTR0Tu
 u u  n0n0

And so
I  34 r 0

 d  2r2u  n0n0  2u u  n0n0
r2  25/2

 32 0
 d/r /r

1  /r2 5/2 u  n0n0  34 0
 d/r /r3

1  /r2 5/2 u u  n0n0

 32 0
 x
1  x25/2 dx u  n0n0  34 0

 x3
1  x25/2 dx u u  n0n0 ;   /r

 12
2  1 32  1
2  1 32

u  n0n0  14 1
2  1 32

32  22  1 32  2 u u  n0n0
Now, we need to take r  0 for  fixed, that is,   . This yields

I  12 u  n0n0  12 u u  n0n0   12 u
And so, in this limit we have



ujx   Sjix xix dAx

12 ujx  P  uix Tijkx xnkx dAx

or
12 ux  P  ux Tx xn x dSx    Sx xx dSx/

or a Fredholm integral equation of the second kind for the surface velocity, or a first-kind equation
for the surface stress. If we are given the surface stress, then this equation can in principal be solved
for the surface velocity, and then used to give the fluid velocity everywhere in the fluid domain.
This is one of the fundamental relations of the Stokes equations.

Now, for illustration, consider a rigid body moving under an applied force F and torque L, that is dSx xn x  F and  dSxx  Xc  x  L
and being rigid means that for the surface velocity u  U  x  Xct  t. Before inserting
this into the integral equation we note two identities for x   (the fluid domain):

P  vTx xn x dSx  0 for any constant vector v.
P  x lTijkx xnkx dSx  0

or
ux    Sx xx dSx/

which means that for rigid bodies, taking the limit x  , we have:
U  x  Xct  t    Sx xx dSx/

which is an integral equation for  in terms of the two unknowns U and . The system is closed by
the specification of the force and torque. The body is then evolved via

X c  U and   
Note however that this is essentially a first-kind integral equation for the surface stress , and is
widely used but ill-conditioned. Need an argument for this...
The formulation of Power & Miranda

PM1987 use an Ansatz of a velocity induced by a distribution of stresslets:
ux   x Tx xn x dSx . . .

This is incomplete however because this flow induces no force or torque upon the body, i.e., ux n x dSx  0 and x   Xc  ux n x dSx  0
Indeed, in the 2nd-kind integral equation there is a rank-two deficiency. To corrct this, one must add
explicit flow contributions from a Stokeslet (which generates a unit-scale force) and a Rotlet (which
generates a unit-scale torque). Hence,

ux   x Tx xn x dSx  Sx  XcF  Rx  XcL



together with the conditions that relate  to F and L: xdSx  F and x   Xc  xdSx  0
which identifies  as a force density. The extra terms are known as the completion flow.

Taking x   then gives
U  x  Xct  t   12 x  P  x Tx xn x dSx  Sx  XcF  Rx  XcL

which is a well-conditioned, full-rank system for , U, and .
To solve this problem, the whole game is the numerical quadrature of the singular integral

contribution. Recall that T is odd, with a |x |2 singularity, and the integral is apparently of principal
value type. However, let’s introduce surface coordinates ,, and so write

P  x Tx xn x dSx  P  ,Tx,x,n ,J,dS
Then, wlog setting ,  0, 0, we have in the neighborhood of the singularity that

x,x0, 0  x 0, 0  x 0, 0  HOTs
Both x and x are both tangent to , and hence orthogonal to n. This means that the PV integral
actually has a singularity of first-order, not second, which is integrable. Still, before proceeding we
recall another identity:

P  Tx xn x dSx  12  for any constant  .
Hence

 12 x  P  x Tx xn x dSx  x   xTx xn x dSx

which has no divergence at all, which is not to say that it is smooth. The integrand is actually
bounded but multi-valued at the origin, with a value depending upon the direction of approach. This
is the convenient form for numerical integration. An easy approach is the so-called Point Vortex
Method, which comes from the vorticity formulation of the 2D Euler equations. The Biot-Savart
integral has a similar structure.
U  x  Xct  t   12 x  x   xTx xn x dSx  Sx  XcF  Rx  XcL

Reintroduce the surface coordinates, discretize uniformly in them (i.e., generalized spherical surface
coordinates), and use collocation: ,  j,jTx,xj,jn ,J,dS    I,;j,jdS
which is ill-defined for ,  j,j. Approximate the integral simply by omitting the singular
point in the evaluation: I,;j,jdS  hh 

k,l
k,li,j

klIk,l;j,j

where k and l are quadrature weights. This will yield second-order accuracy (KS2011) using the
trapezoidal rule. The integral relations of  to F and L are nonsingular.

So, the set of equations have the form:



U  x ijXc    hh 
k,l

k,li,j
klIk,l;j,j  Sx ijXcF  Rx ijXcL

hh
k,l

klkl  F
hh

k,l
klxklXc  kl  L

This is a large dense system of equations, Az  b, for N  3N  N  6 unknowns. Not so bad to
solve directly for a single body, but for many it becomes prohibitive. Instead one uses an iterative
scheme, such as GMRES, that only requires matrix multiplies. Matrix multiplies require ON2
floating point operations. This can be reduced to ON using methods such as FMM (Greengard et
al), or kernel-independent FMM (Biros, Zorin, et al). Effective preconditioning can key to finding an
solution, accurate to a specified tolerance, in a number of steps that is N independent (or at least
weakly so).

Comments:
1. Is easily reformulated for solving for forces and torques, given the rigid body motion

(NRZS2016).
2. Close interactions of bodies is problematic. This is being overcome (slowly) through the

development of QBX schemes.
3. If one needs to know the surface stresses, Keaveny & Shelley (2011) have developed a 2nd-kind

integral equation formulation based on the Power-Miranda formulation. It is only applicable to
rigid body motion (new Spagnolie work), and was used as the basis for shape optimization
studies of magnetically driven microswimmers (KSW2013). Also, the completion flow is not
unique, and they show that different choices can lead to markedly improved numerical results.

4. Coupling of many bodies, and to background flows, is straightforward.
Slender-Body Theory

See Tornberg & Shelley (J. Comp. Phys. 196, 8-40 (2004); TS2004) for discussion and
references (most especially Keller & Rubinow ( JFM 1976), Johnson (JFM 1980), and Gotz (PhD
thesis 2000)).
The dynamics of a small rigid rod in a background flow

For a rigid rod we can write Xs, t  Xct  spt. Assume that the length of the rod is very
small relative to the length-scale of the flow, i.e., Ux  UXc  UXcx  Xc

 X c  UXc  s p  UXc p  I  ppTf
with L/2

L/2 ds fs  0 and
L/2
L/2 ds Xs, t  Xct  fs  p  L/2

L/2 ds sfs  0
we have

f  I  12 ppT X c  UXc  s p  UXc p
and from the force-free condition and oddness of f gives



X ct  UXc and hence f s I  12 ppT p  UXc p
Zero torque gives:

p  I  12 ppT p  UXc p  0 
p  p  UXc p  0

Now we use that p  p  g  I  ppg and that p  p  0 to get
p  I  ppTUXc p

Finally, we calculate the force itself:
f  s I  12 ppT ppT : Up   s

2 ppT : Up
Applied to Simple Swimmers

Here given in 2d, proceeds as follows: Consider a inextensible swimmer of finite length L, with
its time-dependent shape given by s  s, t, the curvature. We represent the body as

Xs, t  X t  I0Xs s, t
s, t  t  I0s, t

where
I0fs  0

s f ds  1L 0
L ds 0

s f ds
 I0f  1L 0

L I0f ds  0
so that we care dealing naturally with centroidal coordinates. Then

Xt  X tt  I0 Xs t & t   tt  I0 t  
Xt  X tt  I0 Xs  tt  I t 

 X tt   ttI0Xs   I0 Xs I0 t 
f  

2 D X tt   ttI0Xs   I0 Xs I0 t 
and finally:

0
L ds Ds X tt   tt 0

L ds Ds I0Xs s
 0

L ds Ds I0 Xs I0 t  s
0
L ds Xs  Ds X tt   tt 0

L ds Xs  Ds I0Xs s
 0

L ds Xs  Ds I0 Xs I0 t  s
A couple of comments are in order:

1. First, note that the viscosity does not show up in determining the velocity or the rate-of-rotation.
This is typical of Stokes. If the motion of a boundary is specified independently of the viscosity,
then the consequent fluid motion will be also independent of it. This is easily seen by noting



that viscosity could be scaled out of Stokes by rescaling the pressure. However, this is no
longer true if boundary forces that are irreversible, rather than boundary position, is specified.

2. This analysis is easy to replicate for 3d motions, where a rotation matrix R with two degrees of
freedom replaces the angle .

3. What happens if the swimmer is executing only small amplitude motions, that is,   , with
  1. From the presence of  t on the RHS of the equations we see immediately that the RHS
is O. We note that   I0 is the only term appearing. Wlog we assume that X t and  t are
zero. Then

  
Xs  1  12 22  O4,  O3
Xs    O3, 1  12 22  O4
X  s  L/2  12 2I02   O4,I0  O3

and so
D I  XsXs  1  22  O4   O3

  O3 2  22  O4

 D  1  O2 O3
O3 2  O2

I0Xs   X (in this instance)
 I0  O3, s  L/2  12 2I02   O4

I0 Xs I0 t   I0 t   O3, 1  12 22  O4
 t  12 I02   O3, I0  16 2I03   O4

and so again:
D I0Xs 

 1  22  O4   O3
  O3 2  22  O4

I0  O3
s  L/2  12 2I02   O4

 I0  s  L/2  O3
2s  L/2  O2

 D I0Xs   s  L/2  O3
O2



D I0 Xs I0 t 

  1  22  O4   O3
  O3 2  22  O4

 12 tI02   O3
I0t   16 2tI03   O4

   12 tI02   I0t   O3
2I0t   O2

 D I0 Xs I0 t   2I0t   O4
O3

Note that since   0, we can write   ps where p|s0,L  0. Then, s  L/2  pThe
first equation then becomes

1  O2 O3
O3 2  O2

x t
y t  p  O3

O2  t

 2I0t   O4
O3

The only leading order behaviors that are consistent with this equation are that x t  O2,
y t  O3, and  t  O, that is, that the speed of the swimmer increases only quadratically
with amplitude of deformation. This is consistent with Taylor’s results for a swimming sheet in
a Stokes fluid. This calculation needs to be finished.

While slightly tiresome, I would like to rewrite all of the "swimming" material in a form
invariant under the precise position and rotation. Define

R cos  sin
sin cos ;

      I0; Xs, t  X t  R Y
Ys  cos, sin  Xs  R Ys & Xs  R Ys
X t  R Y t 
Xt  R Y tt   ttI0Ys   I0 Ys I0 t 

using that
D I  XsXs  RI  YsYsRT  RDYRT

f  
2 RDY Y tt   ttI0Ys   I0 Ys I0 t   

2 R g
It is easy to show that

0
L g  0 and 0

LY  g  0
and finally:



0
L ds DYs Y tt   tt 0

L ds DYs I0Ys s
 0

L ds DYs I0 Ys I0 t  s
0
L ds Ys  DYs Y t   tt 0

L ds Ys  DYs I0Ys s
 0

L ds Ys  DYs I0 Ys I0 t  s
In this form everything is expressed in terms of purely geometric quantities.
Deriving the Batchelor formula

Consider a system volume V of volume L3 and containing N particles of length-scale lb. Assume
that V can be parcellated into many subvolumes of length-scale l. We will make some separation of
scale arguments when we need them, such as lb  l  L.

We would like to calculate the total average stress in a volume containing a Newtonian liquid in
which are immersed many small bodies, where each body exerts a stress gi on the surrounding fluid.
Center the volume on point x and write x. Let the fluid subdomain be  f and the particle
subdomain be p  n Bn. We assume that both fluid and particle is described by the zero
divergence stress tensors  f and p, respectively, and require that g  p|B in   f|B in. The bodies
have outward normals while  has inward.

We write    f  1  p with  being the indicator function of  f. The average stress  is
then:

x  1V x dVy y  1V fx
dVy  fy  px

dVy py
Now some work. We make two assumptions for now, first that inertia is unimportant, and second
that there is no intersection of an immersed body with .

(1) First show that     0:
  fx

dVy  fy  x dS  fyny
 px

dS  fyny  fx
dV    fy

The first term is zero because of the force-free condition on each particle (this could be relaxed), and
the second because it just is.



  px
dVy py  px

dS pyny  px
dS  fyny  0

Note that I did not use that p is divergence free.
(2) The pressure and velocity are only defined in the fluid region, and so I define

ū  1V f fx
dVy u 

  fx
dVy u  x dS u  n

 px
dS u  n  fx

dV   u
 0

Here we assume that there is no mass flux from the particles (this could be relaxed to model volume
changes and fluid exchange).

(3) Now let’s average our Newtonian stress tensor:fx
dVy  f  fx

dVy pI  u uT
 V f pI   uuT

 V f pI   xunT  nuT  px
unT  nuT

and now calculate ū to eliminate the outer boundary term:
 fx

dVy u  x dS unT

yielding: fx
dVy  f  V f pI  ū ūT   px

unT  nuT
Nice.

(4) and we average our particle stress tensor, using Batchelor’s little trick to express the internal
particle stress in terms of surface quantities:

px
dVy ijpy  px

dVyikp y y jyk
 px

dSy ikp y jnk  px
dVy y j yk ikp

Now we use that   p  0, and writepx
dVy py  px

dSy gyT
In summary then, we have derived the Kirkwood-Batchelor formula:



   0,   ū  0 with
  V fV pI  ū ūT  1V px

dSy gyT   px
unT  nuT or

 p  ū    e and   ū  0
with e   1V f px

dSy gyT   px
unT  nuT

a. Two spheres connected by a spring in a linear backgroundflow.
As a model for a polymer coil, consider two spheres connected by a spring between their centers

X1 and X2, and moving in a background flow. We assume that the two spheres have no direct
hydrodynamic interaction, and only interact through the spring. We then use Stokes’ formula to
calculate the dynamics of the spheres. Label the spheres 1 and 2, of radius a, so that

6aX 1uX1  FX1  X2
6aX 2uX2  FX1  X2

These two particles comprise a zero force particle, as was assumed for deriving Batchelor’s formula.
For the distension, or end-to-end displacement, vector R  X1  X2 we have

6aR 1uX1uX2  2FR
Expanding in small displacement about the midpoint XcX1  X2/2

6aR xuXcR  2FR 
R xuXcR  13a FR and similarly

X c  uXc
Note that we have a stretching equation again for R. What is the extra stress produced by this single
pair? Let the sphere surface be given by Xi  ary with y a surface coordinate on the unit sphere.
From Batchelor

e   1V f S1S2
dSx gxT  unT  nuT with g   fn

the stress exerted by the flow upon the sphere. Assuming that each sphere moves rectilinearly as a
rigid body, we have u1,2  consts, and g1  3

2a FR and g2   3
2a FR, so that

e   1V f S dSy
3
2a FRX1  aryT  3

2a FRX2  aryT
u1nT  nu1T  u2nT  nu2T

  1V f
3
2a 4a2FRRT   1V f 6a FRRT

where we used that for any closed surface S dSn  0. If the spring is a linear Hookean spring,
FR  kR we then have

e  1V f 6ak RRT



b. A rigid fiber in a linear background flow.
b. A swimming rod in a background flow.

Consider a slender rod Xs, t  X t  spt with l/2  s  l/2 where we pose a propulsive
surface stress for negative s and a no-slip condition and consequent drag for positive s. Slender body
theory:

x t  u   I  ssf
where   8/c  0 (following TS2004; c  ln2e) and f is the force/length acting on the fluid
by the filament.

(i) No background flow: The first version to consider is the following system:
 l/2  s  0: U  usp  I  ppf1

where f1  fsp with f  0 and
0  s  l/2: Up  I  ppf2

That is, U is the speed of propagation, us is the surface slip, f1 is the propulsive stress, and f2 is
the drag stress. This is completed by the requirement of zero total force. Note that f2 must be in the p
direction. Given f we then have the three equations

U  u   2f
U  2f2

 l/20 ds f  l2 f2  0
This set of equations has the solution:

f2  1l/2 l/20 ds f
U  2 1l/2 l/20 ds f  0
u  U  2 f   4l l/20 ds f  2 f  0

Example 1: f a constant.
f2  f, U  2 f, u   4 f

Or, using that f  2ag with g the surface stress:
U  28/|ln2e| 2ag  |ln2e|

2
lg  2 lg

Let’s try and calculate the extra-stress contributions. From above, it’s density has the form:
S  l/2l/2 ds fsxTs   l/20 dsfpX t  sptT  0

l/2 dsf2pX t  sptT

  l/20 ds sf ppT  0
l/2 ds sf ppT  12 s2|l/20  s2|0l/2 fppT  l24 fppT

  l24 2agppT   2 l3gppT  1l3gppT



Note that 1,2 are solely geometric constants.
(ii) With a background flow: Now let xs, t  x0t  spt so that x t  x 0  sp . Here it will be

interesting to make general the sets where different BCs are applied. Let l/2,l/2  1  2where 1 and 2 are disjoint measurable sets (!) with l i  meas i and  i their characteristic
functions. Hence, we consider

1: x 0  sp  usp  ux0  sp  I  ppf1
where f1  fsp  g with f  0

2: x 0  sp  ux0  sp  I  ppf2
Here g will pick up the part of the stress due to rotations, and u || picks up the effect of motive stress.
Note, this is a choice!

Noting that f  1 f1  2 f2 we have:
 x 0  sp  1 usp  ux0  sp  I  ppf

The condition of zero force gives
x 0  1l l/2l/2 ds ux0  sp  1l 1

ds usp
The torque is given by,

l/2l/2 ds sp  f p  I  12 pp l/2l/2 ds s2p  1 susp  sux0  sp
Noting that p  I  12 pp g  p  g for any g gives

l/2l/2 ds sp  fp  l/2l/2 dss2p  sux0  sp
  l312 p  p  p  l/2l/2 ds s ux0  sp 

p  p  12l3 p  l/2l/2 ds s ux0  sp
Now use that p p  q I  ppq and that I  ppp  p :

p  12l3 I  pp l/2l/2 ds s ux0  sp
This is the generic result since the slip velocity drops out. And so, we have

f  I  12 pp
1 us  1l 1

ds us p
 ux0  sp  1l l/2l/2 ds ux0  sp
s 12

l3 I  pp l/2l/2 ds s ux0  sp
Or, on 1:



 fsp  g  I  12 pp
us  1l 1

ds us p
 ux0  sp  1l l/2l/2 ds ux0  sp
s 12

l3 I  pp l/2l/2 ds s ux0  sp
which gives:

us  1l 1
ds us   2 fs

Note that this equation can only be uniquely inverted if l1  l, otherwise the mean is left
undetermined. Applying the integral operator on the left yields:1

ds us   2 ll2 1
ds fs

yielding the lovely expression
us   2 fs  1l2 1

ds fs
We then have

x 0  1l l/2l/2 ds ux0  sp  2 1l2 1
ds fsp

We also have

g  I  12 pp  ux0  sp  1l l/2l/2 ds ux0  sp
s 12

l3 I  pp l/2l/2 ds s ux0  sp
Finally, for the remaining force:

f2
1 1l2 1

ds fsp
 I  12 pp ux0  sp  1l l/2l/2 ds ux0  sp

s 12
l3 I  pp l/2l/2 ds s ux0  sp

(iii) Now, let’s assume that l is small relative to the scale of the linear flow, so that
ux0  sp  ux0  sux0p:

x 0  ux0  2 1l2 1
ds fsp

p  I  ppux0p
g   2 ppux0ps

f2 1l  l1 1
ds fsp  2 ppux0ps



f  1 fsp  g  2 f2
 1 fsp  2 1l2 1

ds fsp  2 ppux0ps
(iii.a) Single particle input power calculation

Pt   ds fTu
  ds 1 fsp  2 1l2 1

ds fsp s 2 ppux0p
 x 0  sp 1 2 fs  1l2 1

ds fs p
 1

ds fsp s 2 ppux0p
 x 0  sp  2 fs  1l2 1

ds fs p
 2

ds 1l2 1
ds fsp s 2 ppux0p  x 0  sp 

Let’s assume that f ||  Const, then
x 0  u0  2 l1l2 fp

Pt  1
ds fp s 2 ppu0p  x 0  sp  2 1  l1l2 fp

 2
ds l1l2 fp s 2 ppu0p  x 0  sp 

 fl1 p  u0 2 f  
2 1

ds s u0 2 fp TppTu0p
 fl1 p  u0  2 l1l2 f  

2 2
ds s u0  2 l1l2 fp TppTu0p

 2 l l1l2 f ||2 
l1l2 f 1

ds s  2
ds s pTu0p

Ok, there it is, though it needs checking (don’t like this model giving infinity as l2  0. Note that the
first term is independent of being either Pusher or Puller. The second is not, and changes sign
accordingly:

Pusher: Let 1  l/2, 0, 2  0, l/2. Then
P  2l f ||2  f l28 pTu0p

Puller: Let 1  0, l/2, 2  l/2, 0. Then
P  2l f ||2  f l28 pTu0p

I think that there is a sign error somewhere along the line. Check. Still, the two cases give
oppositely-signed contributions relative to the first term. This sets the baseline in the paper.

Side calculation: Power for single SS swimmer, using David’s notation from the supplementary
material notes. Now swimmer is length 2l.



Pss  ll ds u  f
with

f  sf0sm1srs  ms
M ll ds sf0sm1srs p

uU  sm1sussp
and

U   2cM ll ds sf0sm1srs
uss  2cf0srs  m1sU

yielding

Pss  ll ds sm1suss sf0sm1srs
 ms

M ll ds sf0sm1srs
 ll ds sm1suss sf0sm1srs  U2c ms
 ll ds sm1s2cf0srs  m1sU sf0sm1srs  U2c ms

 ll ds sm1s
2cf02ssm1sr2s

Uf0srs1  2sm12s
m1s U2

2c ms

  U2M2c  ll ds 2cf02s2sm12sr2s  U2
2c sm12sms

2U2sm13sf0srs
What a mess; Don’t really see what to do...

(iii.b) Single particle extra stress calculation:

 ds f xT  l/2l/2 ds s 1 fsp  2 1ll1 1
ds fsp

 
2 ppTux0ps pT


1l2 1

ds fs  2
ds s  1

sfs ppT

 
2 l312 ppTux0ppT

Simplify further by assuming that f ||  Const, so that
x 0  ux0  2 l1l2 f || p

 ds f xT  f l1l2 2
ds s  1

ds s  2 l312 ppT : u ppT

This form is pretty interesting because it involves first moments of the regions where propulsive
stress and no-slip are separately applied, and their difference determines whether one has a pusher or



a puller. Also, shear-thinning etc should drop immediately out of this.
b. The extra stress calculation

   1lb3 m
M Bm

dS gXT   1lb3 m
M m

ds fxT

  NL3
M/lb3N/L3 1l3g 1M 

m

M
pmpm  n S C 1M 

m

M
pmpm

where S  1l3g (units of force x length) , and C  M/lb3/N/L3 is the local concentration.
c. Scaling

The normalization from SS2008 is
1L3  dVx S dSp   n  NL3

Now rescale as x  lcx, u  Uu, and   n. Normalization becomes
1

L/lc3  dVx S dSp   1
where   1/4 if  is a constant. Fluxes become

x  p  u  DplcU x ln
p  I  ppxu p  dplcU p ln

and momentum balance:
 u  q  lc2U 1lc nS x   dSppp

 lc n1l3g
2lg/ x   dSppp

 lc Nl3
L3 l1 12 x   dSppp

 lcl1 12 x   dSppp
So, choose lc  l/ and   1/2 so that

 u  q  x   dSppp
and the fluxes are then

x  p  u  DplU x ln
p  I  ppxu p  dplU p ln

If as observed at low  in SS2007 that dp  d p and Dp  D p/, we have



x  p  u  D plU x ln
p  I  ppxu p  d plU p ln


