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1 Introduction

The melting of the Greenland and Antarctic ice sheets currently contributes approximately
1.1 mm per year of the total 3.3 mm per year rise in global sea-level [1]. Most notably,
Greenland’s contribution to this rate has increased more than 8-fold between 1994 and 2014
[2]. Recent studies have attributed the accelerated mass loss of the Greenland Ice Sheet to
increased melting and ice loss at its marine interface [3–5]. Though much progress has been
made to identify the primary mechanisms driving this enhanced mass loss, many aspects
of this ice-ocean interaction remain poorly constrained. One such aspect is the impact of
subglacial discharge.

Subglacial discharge refers to the release of meltwater from beneath the ice sheet into
the ocean. This meltwater enters the ocean from the grounding line and rises along the face
of a glacier as a turbulent plume. The turbulent mixing that occurs along the plume’s path
enhances submarine melting, and such melting may also promote the calving of icebergs [6–
9]. Recent modeling efforts have shown that the submarine melt rate along a glacier’s front
is sensitive to the spatial distribution of subglacial outlets [10, 11]. In particular, model
results show that a distributed line plume can produce up to five times as much melting as a
single point source with the same discharge [10]. Despite its importance, the near-terminus
hydrology of marine terminating glaciers remains poorly constrained [12]. This is in no
small part due to the immense difficulty of accessing these regions.

The purpose of this project is to further our understanding of near-terminus subglacial
discharge by exploring its dynamics with simple models and lab experiments. Here, we
focus our attention on the transition that occurs as meltwater exits a subglacial channel
and begins to rise as a buoyant plume. We refer to this transition as subglacial plume
lift-off. We are specifically interested in where this lift-off occurs as it defines the extent to
which relatively warm seawater floods a subglacial channel. This will help us determine the
geometry of a subglacial channel’s outlet to the ocean.

In this report, we present simple models for subglacial plume lift-off in a rectangular
channel. This is accompanied by results from a series of laboratory experiments that at-
tempt to replicate the essential dynamics of plume lift-off. We conclude by using our results
to speculate on the extent of seawater intrusion under real-world glaciers.



2 Theoretical Model for a Salt Wedge

2.1 The estuarine analogy

In the subglacial plume lift-off zone, cold, fresh subglacial water rises into warm, salty
seawater. It is conceivable that, under the right conditions, this lift-off may occur deep inside
the subglacial channel. In this scenario, the ocean floods into the subglacial channel and
undercuts the glacier. We assume that the dynamics of such an intrusion is fundamentally
similar to that of a salt wedge estuary. A salt wedge estuary forms when a fast flowing
fresh river discharges into a saline ocean with weak tidal mixing [13]. In this case, the salt
wedge refers to the intrusion of seawater inside an estuary and coincides with where the
river outflow lifts off the seabed and flows over the ocean [14]. In our case, the salt wedge
refers to the section of the subglacial channel that is filled with seawater. This is illustrated
in Figure 1.

We note that the dynamics of a salt wedge is somewhat similar to that of a two-layer
exchange flow. In a typical two-layer exchange flow, two fluid reservoirs of different densities
exchange mass via a narrow channel [15, 16]. Within the exchange flow’s channel, light fluid
flows above dense fluid in opposite directions. However, the flow within a salt wedge system
is mostly uni-directional as the saline lower layer only partially intrudes the channel and
terminates at a front. We believe the dynamics of a subglacial system is more similar to
that of a salt wedge than a two-layer exchange flow.

2.2 An idealized salt-wedge with no entrainment
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Figure 1: Schematic showing a cross-sectional view of a salt wedge in a rectangular channel

The schematic in Figure 1 illustrates an idealized salt wedge in a rectangular channel. Here,
freshwater enters the channel from the right as salt water flows in from the left. The terms
u1 and u2 are the along channel, layer averaged, velocities in the upper and lower layers,
respectively.



To build our mathematical description of a subglacial salt wedge, we adapt the two layer
salt wedge model presented in [17]. Like [17], we assume that the freshwater and salt water
layers are well mixed and flow at a uniform speed. We likewise assume that the interface
between the two layers is infinitely thin and features no interfacial mixing. However, unlike
[17], which assumes a free upper surface for the top layer, we assume a rigid upper boundary
to better represent the conditions within a subglacial channel. Additionally, we permit the
channel to be tilted at a slight angle θ. Lastly, we restrict the height of the channel H to
be constant but, for generality, permit its width w to vary.

Given the above assumptions, we can model this system using a pair of shallow water
equations. With the stipulation of no entrainment, the continuity equations for the upper
and lower layers are
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Here, h1 and h2 are the thicknesses of the upper and lower layers, respectively. The
thickness of the individual layers sum to give the height of the channel, H. Similarly, Q1

and Q2 are the volume fluxes of each layer, which in steady state are conserved along the
channel. Continuing with our assumption of no entrainment, the momentum balance for
both layers are given by
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where Ci and Cd are the coefficients for interfacial and wall drag, ∂P/∂x is the along channel
pressure gradient, and g′ is reduced gravity. In (3) and (4), we parameterize the interfacial
and wall drag forces using the quadratic drag law. For interfacial drag, the transfer of
momentum between the two layers is assumed to be proportional to the square of the
difference between the layer-averaged velocities. For wall drag, the loss of momentum is
assumed to be proportional to the square of the flow velocity that is adjacent to the wall.
The 1/h1 and 1/h2 terms in (3) and (4) represent the scaling for drag along the top and
bottom walls of the channel. The 2/w term is the corresponding scaling for drag along both
side walls. If the width of the channel is much greater than its height, the effect of side wall
drag is negligible.

Reduced gravity is defined as

g′ =
∆ρ

ρ0
g, (5)



where ∆ρ is the density difference between the two layers, g is the acceleration due to gravity 
and ρ0 is a reference density. If the temperature of the two layers are the same, ∆ρ/ρ0 may be 
approximated by

∆ρ

ρ0
= β∆S, (6)

where ∆S is the salinity difference between the two layers and β ∼ 8× 10−4 PSU−1 is the
haline contraction coefficient [17].

The along channel pressure gradient, ∂P/∂x, serves a similar role to the hydrostatic
pressure gradient induced by the sea surface slope gradient in a salt wedge estuary. In that
system, the sea surface slopes downward towards the ocean and forces flow in the seaward

direction. This is distinct from the force represented by g′
(
∂h2
∂x

)
, which acts to drive flow

that flattens the interface between the two layers.
To simplify the system, we assume a steady state where the freshwater volume flux,

Q1, is constant and the lower layer is stagnant (u2 = 0). Furthermore, we assume that
freshwater flow is always positive (Q1 > 0). Additionally, we substitute the upper layer
velocity u1 in the momentum equations in favor of the upper layer volume flux by using the
relationship u1 = Q1/w h1, to obtain
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where have used h2 = H − h1 for constant H. Combining the above equations and doing
some algebra, we find
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At this stage, we define the non-dimensional upper layer Froude number as

Fr21 =
Q2

1
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=
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. (10)

By this definition, the upper layer Froude number varies in the along channel direction as
h1 and u1 vary. When Fr1 = 1, the flow is said to be critical. Flows for which Fr1 > 1
and Fr1 < 1 are classified as supercritical and subcritical, respectively. We also define the
Froude number for the special case where h1 = H as
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Fr0 is known as the freshwater Froude number [17]. Using (10), we re-write the previous
equations as
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The above equation describes the shape of a steady, non-entraining salt wedge in a
rectangular channel, with variable width w and constant tilt θ. To gain some insight, we
first consider the simpler case of a horizontal channel (θ = 0) with constant width, for which
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The salt wedge is defined as the distance between the freshwater lift-off point (i.e. the
nose of the wedge) and the point at which Fr1 = 1. For convenience, we designate x = −L
as the freshwater lift-off point and x = 0 as the point where the flow becomes critical. In
this framework, the length of wedge is given by L. Additionally, Fr1 = 1 at x = 0 and
Fr1 = Fr0 at x = −L. To obtain the full shape of the wedge, we begin our integration of
(13) from the point of critical flow, at x = 0. Since Fr1 = 1 at x = 0, this determines h1
at that boundary1. The integration is carried out in the negative x-direction (towards the
freshwater source) until h1 ≈ H. Through this process, we can determine the freshwater
liftoff point and the length of the salt wedge L.

Since the terms on the right of (13) are always positive, supercritical flow in the upper
layer results in ∂h1/∂x being positive. This means the freshwater layer will expand upon
encountering the salt wedge and continue to do so until it becomes subcritical. However,
if Fr20 > 1, subcritical flow cannot occur within the channel. Therefore, a salt wedge
cannot exist in a flat, uniform channel where Fr20 > 1. If the upper layer flow is subcritical
(Fr21 < 1 and thus Fr20 < 1), (13) predicts that the upper layer will decrease in height upon
encountering the salt water layer. Unlike the supercritical case, this is conducive to a tw-
layer flow and potentially a salt wedge.

If h1 decreases indefinitely in the downstream direction, there must be a point along the
channel where Fr21 = 1. However, at this point, (13) becomes singular and thus appears to
preclude the existence of such a flow. This apparent paradox can be avoided if we return
to the more general case of a channel with variable width. If the width of the channel
expands in the downstream direction, it is possible for the right of (12) to sum to zero. If
that is case, the flow becomes critical wherever (h1/w) (∂w/∂x) balances the other terms in
(12). More importantly, this permits the formation of a salt wedge. Alternatively, we can
avoid this breakdown of our model by specifying that Fr1 = 1 at the mouth of the channel,
thereby establishing a hydraulic control at x = 0.

To summarize, a steady salt wedge can only occur if the flow in the freshwater layer is
subcritical. Furthermore, for a salt wedge to occur in a horizontal rectangular channel with
uniform cross-section, critical flow must occur outside the channel. More generally, critical
flow can only be supported by a change in channel geometry.

1For practical purposes, we set Fr1 = 1− ε at x = 0 to avoid the singularity associated with critical flow.
For these simulations, ε = 10−4.



Figure 2 shows solutions of equation 12 for a 10m channel with various freshwater flow
velocities. The stated flow velocities are the freshwater flow rates that are imposed at the
x = −L boundary, where the plume lifts off the channel. The parameters used for this
integration reflect that of a shallow estuary. Here, it is assumed that the width of the
channel is much greater than its height and that there is no drag along the upper surface.
Following [17], we set Ci = 10−4, which is a value that is typical of salt-wedge estuaries.

Though this example is somewhat contrived, it allows us to visualize some key features
of a salt wedge. In Figure 2, we see that the slope of the interface is steepest at both ends
where h1 ≈ H and h1 ≈ 0. This is expected since h1 = 0 and h1 = H are singularities in
equation 12. Additionally, Figure 2b suggests an inverse relationship between the freshwater
flow speed and the equilibrated wedge length.

For the parameters chosen in this example, the wedge length is much longer than its
height. However, this aspect ratio is set by the interfacial drag coefficient, which in this
case is 10−4. More generally, the wedge aspect ratio is dependent on some combination of
the interfacial and wall drag coefficients, which are generally not known.



0 10 20 30 40 50

Distance (km)

0

2

4

6

8

10

In
te

rf
a
ce

 h
e
ig

h
t 

(m
)

(a) Interface height versus along channel distance
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(b) Wedge length versus freshwater Froude number (Fr2
0 = u2/g ′H)

Figure 2: (a) Numerical solutions of equation 12 for a flat estuarine channel with various
freshwater flow rates imposed at x = −L. For this example, H = 10m, g′ = 0.25 ms−2

and Ci = 10−4. The value g′ = 0.25 corresponds to a freshwater and saltwater layer with
salinities of 0 PSU and 25 PSU respectively. (b) Wedge length versus freshwater Froude
number for the solutions shown in the top plot.

3 Laboratory Experiments

3.1 Experimental set-up

The main goals of these laboratory experiments are to test the theory outlined in the
previous section and to obtain a scaling relationship that allows us to predict the extent of
seawater intrusion in a hypothetical subglacial channel. Figure 3 provides a schematic of



our experimental setup.
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Figure 3: A schematic detailing the salt wedge experiments.

For all experiments, freshwater was pumped through a narrow rectangular duct into a
much larger tank filled with saline water. The salt water tank was approximately 150 cm
long, 16 cm wide and 35 cm deep The rectangular duct/channel was approximately 100
cm long and had an inner cross-section of 2.1 x 2.1 cm2. This experimental configuration

chosen so that a steady salt wedge would develop within the rectangular channel for
the range of flow rates that could be supplied by the freshwater pump.

For these experiments, there were three main control parameters: the freshwater flow
rate, the salinity of the main tank and the slope of the rectangular channel. The freshwater
flow rated was varied using an adjustable pump over an approximate range of 5-30 cm3/s.
After careful calibration, this allowed us to precisely set the volume flux of freshwater into
the tank. The tank or ambient salinity was varied by mixing local seawater (∼33 PSU) with
various amounts of freshwater. The tube slope was adjusted via a simple pulley system.

If we define the Reynolds number as

Re =
uH

ν
, (14)

where u is the imposed freshwater velocity prior to lift-off, H is the height of the channel and
ν = 10−6 m2/s is the kinematic viscosity. The imposed flow rate of 5-30 cm3/s corresponds
to a Re range of 250-1400.

Once set, the freshwater flow rate and tube slope remained fixed during an experiment.
However, over the course of an experiment, a mixed layer would form at the top of the
tank and grow overtime. To minimize the impact of this dilution, experiments were termi-
nated when the depth of the diluted mixed layer grew to fill the upper two-thirds of the
tank. To delay the recirculation of this diluted water to the opening of the rectangular
channel, a styrofoam block was inserted above the channel’s outlet. This styrofoam block
was approximately 10cm high and spanned the width of the tank to form a partial dam.

To maintain a constant water level within the tank, a siphon into the mixed layer. In
some runs, the salt water within the tank was replenished via a pump that was connected to
a larger salt water reservoir. By tuning the siphon’s drainage rate and salt water inflow rate,



it was possible to maintain a quasi-steady mixed layer depth and thus maintain constant
ambient salinity at the level of the rectangular channel for an extended period of time.

3.2 Experimental procedure and data processing

The first set of experiments were conducted with the tank filled with seawater and the
rectangular channel in a horizontal position (θ = 0). With the freshwater pump turned on,
the flow rate was held constant until a salt wedge appeared and visibly came to rest within
the channel. Once that was realized, the flow rate was adjusted and held constant until
the salt wedge evolved to a new equilibrium. This was repeated several times and came to
end when the surface mixed layer began to encroach the lower third of the tank. At the
end of an experimental run, the tank was drained then refilled with salt water for the next
experiment.

A second set of experiments was conducted using seawater mixed with different amounts
of freshwater to produce solutions with salinities that range from 16-33 PSU. A third set of
experiments was conducted with the channel tilted at small positive angles as indicated in
Figure 3.

Each experiment was video recorded with a digital camera that was mounted on a tripod
facing the tank. The camera height was adjusted so that it was approximately level with
the channel. To highlight the interface between the two layers, the inflowing freshwater was
dyed blue and the tank was backlit by a diffuse light source. An image of the salt wedge,
as observed during an experiment, is provided in Figure 4.

Figure 4: A closeup image of a part of the rectangular channel during an experiment. Here,
a salt wedge is observed in the lower half of the tube. For reference, the height of the tube
is 2.1 cm

To obtain quantitative data from these experiments, the video recordings were converted
to a series of images sampled at every second. To identify the interface between the layers,
the images were analyzed through their red channel. Since the dyed water was almost
completely opaque to red light, the red channel provided the sharpest contrast between the
two layers - much more so than the green and blue channels. This contrast was exploited
through the use of a simple red-light intensity threshold. This thresholding was applied to



vertical sections of the tube in the image. Starting from the saline layer at the base of the
tube, the interface was taken to be wherever the red light intensity fell below 10% of its
maximum value. The majority of this process was automated with a set routines written
in Python.

4 Horizontal Channel Experiments

4.1 Results summary

Figures 5 - 6 show example results for a single experimental run. In this run, the freshwater
inflow was gradually reduced in five steps. The leftmost, dark blue bold line in Figure 5
indicates the initial equilibrated wedge position. Subsequent bold lines indicate the wedge
position just before the pump speed was adjusted. This shows that the image processing
algorithm was able to cleanly resolve the shape of the wedge.

Figure 5: The evolution of a salt wedge for a horizontal channel experiment. Here, the
freshwater volume flux was gradually reduced in five steps. Each line represents the position
of the salt wedge interface at a 5 second interval. The bold lines indicate the final wedge
position just before the freshwater volume was changed.

Figure 6a shows the evolution of the salt wedge length over the duration of the exper-
iment. This plot confirms the salt wedge approached an equilibrium position before each
step-change in the freshwater flow rate. In subsequent runs, this experiment was repeated
in reverse to ensure that these longer wedge lengths did in fact reach their equilibrium
positions. The right plot of Figure 6 shows the wedge length has an apparent inverse re-
lationship with the freshwater volume flux. This relationship bears close resemblance to
theoretical curve previously shown in Figure 2.
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(b) Equilibrium wedge length versus volume flux

Figure 6: (a) Wedge length versus time for the volume fluxes shown Figure 5. The vertical
dashed lines indicate when the freshwater flow rate was ramped down to a new value. (b)
Equilibrated wedge length versus the freshwater volume flux.
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(b) Equilibrium wedge length versus freshwater Froude Number

Figure 7: (a) Plot showing results for all horizontal channel experiments. Dark circles
represent experiments with pure seawater. Colored squares represent experiments done with
diluted seawater. Multiple data points are plotted for repeated runs. The ambient salinity
S0 for each experiment is provided in the legend. (b) Results for horizontal experiments
rescaled in terms of the freshwater Froude number Q2/(g′H3w2).

Figure 7 shows the results for all horizontal channel experiments. Experiments with
pure seawater are indicated by black circles. As indicated by the overlapping data points,
most of these experiments were repeated several times at the same freshwater flow rate.
The colored dots show results for runs done with diluted seawater. Three different seawater
to freshwater ratios (3:1, 2:1 and 1:1) were used to produce tank salinities of 24.75 PSU,
22 PSU and 16 PSU. We observe that decreasing the tank salinity, and thus the density
difference between the two fluids, reduces the length of the salt wedge for a given flow rate.
This is consistent with our theory as reducing the density difference between the two layers
is expected to reduce the tendency of the saline layer to slide under the fresh layer.

The effect of varying ambient salinity is mostly accounted for by rescaling the freshwater
volume flux by each experiment’s reduced gravity g′. This is shown in the lower plot of
Figure 7, which compares the equilibrium wedge length with the non-dimensional freshwa-



ter Froude number. With this rescaling, the results mostly collapse along a single curve.
However, we note that the runs done with the lower ambient salinities are still slightly
offset from the other experiments. This slight discrepancy suggests the effect of varying the
ambient salinity is not completely captured by g′.

4.2 Comparison with theory

Our next step is to compare the results described in the previous section with our theoretical
expectations. The interface slope equation for a flat rectangular duct is given by (13) and
is reproduced here for convenience
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From our experiment, we have direct measures of all values in the above equation except
the wall and interfacial drag coefficients. Though there is a rich literature devoted to the wall
drag experienced by single layer pipe flows [18–20], there is very little experimental precedent
for the two-layer salt wedge system described here. Moreover, it is not immediately obvious
that the wall drag scaling developed for single layer flow is appropriate for this particular
two layer flow. Furthermore, we have no a priori knowledge for the value of the interfacial
drag coefficient. Our recourse is to approximate these coefficients from the experimental
data.

To accomplish this, we first reduce our number of unknowns to one by considering three
limiting cases: Ci = Cd, Ci = 0 and Cd = 0. Next, we rescale the x-coordinate in our model
such that x = Co x̂, where Co = Ci and/or Co = Cd depending the limiting case being
considered. Doing this eliminates the drag coefficients from our model and gives
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For each case, we find solutions for the scaled wedge lengths L̂ using the flow parameters
from our experiments. With these theoretical wedge lengths, we then find Co such that
L = Co L̂. We accomplish this by performing a linear least-squares fit for each L̂ versus L
distribution. The result of this analysis is shown in Figure 8.
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Figure 8: Plot showing scaled theoretical wedge lengths L̂ versus experimental wedge lengths
L for the three cases described by equations (15)-(17). The blue, green and red dots
represent solutions for L̂ assuming Ci = 0, Cd = 0, and Cd = Ci, respectively. The colored
dashed lines represent the best fit line for each distribution. Here, the best fit line is forced
to pass through y = 0.

The result of this analysis is shown in Figure 8, which plots the scaled theoretical wedge
lengths L̂, from equations (15)-(17), against their measured counterparts. Here, we have
forced the best fit line to pass through y = 0. For each case, we see that the relationship
between L̂ and L is somewhat linear. The R-squared value for each fit is somewhat good
(R2 ∼ 0.8) but the best fit lines generally lie above the data points associated with shorter
wedges. This indicates that assuming Co L̂, where Co is the slope of the best fit line, will
generally underestimate the salt wedge length for higher flow rates or Froude numbers.
Figure 9 shows that this is the case.
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This discrepancy suggests that the relationship between L̂ and L is not truly linear.
A closer examination of Figure 8 reveals that the distribution of data points at shorter
wedge lengths have a smaller slope than those at longer wedge lengths. Since shorter wedge
lengths are associated with higher flow rates, this result suggest that the drag coefficients
have an inverse relationship with the freshwater flow rate. This inverse relationship is well-
established for the case of single layer pipe flow. For laminar flow pipe flow (Re < 2000),
the Darcy friction factor fD for wall drag is given by

fD =
64

Re
, (18)

where fD = 8Cd [18, 19]. This formulation suggests we should instead model our drag
coefficients as

Cd =
C̃d

Re
, (19)

Ci =
C̃i

Re
, (20)

where is Re is given by (14). With this parameterization for the drag coefficients, we repeat
the previous analysis now seeking values of C̃d and C̃i that best match our experimental
data. For each case, our scaled salt wedge model is given by



∂h1
∂x̂

=
Fr21

(Fr21 − 1)

1

Re

(
1 +

2h1
w

)
for C̃i = 0, (21)

∂h1
∂x̂

=
Fr21

(Fr21 − 1)

1

Re

(
H

H − h1

)
for C̃d = 0, (22)

∂h1
∂x̂

=
Fr21

(Fr21 − 1)

1

Re

[(
H

H − h1

)
+

(
1 +

2h1
w

)]
for C̃d = C̃i. (23)

The result of this analysis is shown in Figure 10. In this case, the relationship between
the scaled theoretical wedge lengths and the measured wedge lengths are well approximated
by a straight line that pass through y = 0. Additionally, the quality of the line fits are
significantly better (R2 > 0.9). However, we note that in this case, Ci = 0 assumption
produces a linear fit that is notably worse than the others. As expected, we see that the
theoretical wedge lengths now have a much better agreement with the data (Figure 11).
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Figure 10: Like Figure 8 but now showing solutions for L̂ for (21)-(23), which assume the
drag coefficients are inversely proportional to Re.
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Figure 11: Data from Figure 7 overlain with theoretical curves for the three limiting cases
described by (21)-(23). Here, the drag coefficients are assumed to be inversely proportional
to Re.

From our regression analysis, we find that the Cd = 0 and Ci = Cd scenarios produce
theoretical wedge lengths that have equally good agreement with our data. When Ci = Cd,
the best agreement is obtained when

Ci = Cd ≈
7

Re
. (24)

This result is similar to the drag parameterization for laminar flow in a pipe [18]. We
note that this result can only be validated for the range of Froude numbers we tested in the
laboratory.



Figure 12: Comparisons between observed and theoretical wedge shapes. The observations
are from a single run where the freshwater flow rate was varied back and forth between 6.7
cm3/s and 14.2 cm3/s. Data from the higher freshwater flow rate run are represented by
the lower distribution of purple-red dots; the greenish dots represent the data for the higher
flow rate. The black dashed lines represent the theoretical solution for each distribution.
The theoretical wedge shapes were obtained by assuming Ci = Cd ≈ 7/Re.

Next, we compare the shape of the observed salt wedge to that predicted by theory.
Figure 12 shows direct comparisons between theoretical (black dashed lines) and observed
(colored dots) interface shapes. The observations chosen here are for a single experimental
run where the freshwater flow rate was varied between two flow rates that almost span
the range of flow rates used throughout the experiments. In this example, we see that the
observed wedge shapes agree reasonably well with our theoretical expectations.

5 Sloped Channel Experiments

5.1 Results summary

The experimental results described thus far have all been in the laminar regime (Re ∼
250-1400). In each case, the interface between the salt and freshwater layers was always
well defined and resembled the image shown in Figure 4. While this bodes well for our no-
entrainment theory, the real subglacial system (with its much larger scales) is well within
the turbulent regime. Thus, the final phase of this experiment, was an attempt to observe
the salt wedge in a more turbulent state with significant interfacial mixing.



Figure 13: Solutions of (12) for a fixed freshwater flow rate at different channel slopes. For
these simulations Q1=15 cm3/s, H = w = 2.1cm, g′ = and Ci = Cd ≈ 7/Re.

Given the narrow constraints of the rectangular channel and the limited range of the
pump, the best way to achieve a state of significant interfacial mixing was to tilt the tube
so that freshwater layer flowed upwards into the salt water tank. Introducing an upwards
tilt allowed the freshwater layer to accelerate under the influence of its own buoyancy. This
also introduced an additional tendency for the salt water layer to flow down slope into
the channel. Together, both effects act to enhance the velocity shear across the interface
((u1−u2)/H). This tendency is captured by the original theory as demonstrated in Figure
13.



10 12 14 16 18 20 22 24 26 28

Volume flux Q (cm3/s)

0

10

20

30

40

50

W
e
d
g
e
 l
e
n
g
th

 (
cm

)

(a) Equilibrium wedge length versus volume flux

S0 '  33 PSU, θ= 3. 3◦

S0 '  33 PSU, θ= 2. 2◦

S0 '  33 PSU, θ= 1. 2◦

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Freshwater Froude Number (Q/
√
g ′H 3w2 )

0

10

20

30

40

50

W
e
d
g
e
 l
e
n
g
th

 (
cm

)

(b) Equilibrium wedge length versus freshwater Froude Number

Figure 14: Equilibrium wedge length as in Figure 7, but for sloped channel experiments

Results for the sloped channel experiments are shown in Figure 14. As predicted by
(12), increasing the channel slope produces longer salt wedges for a given flow rate. These
results are for experiments conducted at relatively shallow channel slopes. At 3.3◦, the
steepest angle shown in Figure 14, the salt wedge still showed no signs of entrainment.

However, at slightly steeper channel slopes and higher freshwater flow rates, small am-
plitude interfacial waves began to appear. At even steeper slopes and higher freshwater flow
rates, these interfacial waves grew and eventually began to overturn. At the steepest slopes
obtained with the tank (θ ∼ 8◦), the salt wedge transitioned into what visibly appeared to
be an unsteady flow with significant interfacial mixing.
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Figure 15: Rotated images showing the time evolution of interfacial waves inside a “steeply”
sloped channel. For this experiment, the channel was tilted at 7.8◦ and the freshwater flow
rate was set to 28 cm3/s. In the top image, the red and blue arrows indicate the direction
of the upper and lower layer flows while the orange bar shows the approximate position of
the salt wedge.

Figure 15 shows rotated image snapshots of breaking interfacial waves in the wake of a
salt wedge inside a channel tilted at 7.8◦. For this run, the freshwater flow rate was held
at 28 cm3/s for just over 12 minutes. For the latter part of this run, the nose of the salt
wedge occupied roughly the same position within the channel. During this period, the flow
downstream of the salt wedge displayed episodic bursts of interfacial mixing, an example of
which is presented in Figure 15.

At t = 0 seconds in Figure 15, the region downstream of the salt wedge was in a relatively
quiescent state. Approximately five seconds later, a pulse of salt water entered the channel
from the left. As this pulse of salt water travelled down the channel, it created wave-
like disturbances that overturned and causing mixing across the interface (t = 10 − 20s).
During this time, the salt wedge gradually contracted in size. The end result of this intense
mixing was an intermediate layer of mixed fluid that continued to flow down the tube. At



t = 35s, the now diluted pulse of salt water replenished the salt wedge and the two layer
flow returned to its initial quiescent state.

Such strong mixing episodes clearly violate the no-entrainment assumption used to build
the earlier theory. We must therefore revise our theory to account for this new behavior.

6 Revised Theory for a Salt Wedge with Entrainment

6.1 Derivation

θ

freshwater outflow

Salt wedge h2

H
h1

u2

u1

x

z

Figure 16: Schematic showing a cross-sectional view of a salt wedge in a sloped rectangular
channel - now including entrainment.

With entrainment, the upper and lower layer continuity equations are given by

∂h1
∂t

+
∂q1
∂x

= e, (25)

∂h2
∂t

+
∂q2
∂x

= −e, (26)

where e is the entrainment rate, q1 = h1 u1 and q2 = h2 u2. The entrainment rate e has
units of velocity and is parameterized in terms of the velocity difference between the layers

e = E (u1 − u2). (27)

where E is an entrainment coefficient. Summing the continuity equations, we see that the
total volume flux is conserved along the channel

q1 + q2 = q0. (28)



Likewise, salt conservation is given by

∂

∂t
(S1 h1) +

∂

∂x
(q1 S1) = eS2, (29)

∂

∂t
(S2 h2) +

∂

∂x
(q2 S2) = −eS2, (30)

where salinities within each layer, S1 and S2, are assumed to be uniform. Using (25) and
(26), the salt conservation equation becomes

h1
∂S1
∂t

+ q1
∂S1
∂x

= e(S2 − S1), (31)

h2
∂S2
∂t

+ q2
∂S2
∂x

= 0. (32)

During entrainment, the upper layer expands and becomes more saline while the lower
shrinks and maintains its salinity. In other words, entrainment is directed from the lower
layer to the upper layer. Furthermore, S2 is constant and determined by its value at the
mouth of the channel.

As before, reduced gravity is given by

g′ =
ρ2 − ρ1
ρ0

g = β (S2 − S1)g (33)

where β is the saline contraction coefficient. Using the above relation, we can re-write the
upper layer salt budget as an equation for g′

h1
∂g′

∂t
+ q1

∂g′

∂x
= −e g′. (34)

The momentum conservation equations are given by

∂u1
∂t

+ u1
∂u1
∂x

=
G1

h1
− Cd u

2
1

(
1

h1
+

2

w

)
− Ci

(u1 − u2)2

h1
+
e(u2 − u1)

h1
, (35)

∂u2
∂t

+ u2
∂u2
∂x

=
G2

h2
+ Cd u

2
2

(
1

h2
+

2

w

)
+ Ci

(u1 − u2)2

h2
, (36)

where

G1 =− ∂P

∂x
− ρ1 g tan θ − 1

2
h1 ρ1

∂g′

∂x
, (37)

G2 =− ∂P

∂x
− ρ1 g tan θ − ρg′

(
tan θ − ∂h1

∂x

)
. (38)

These momentum equations are analogous to the ones introduced earlier for the no-
entrainment case. Here, there are new additions that account for momentum exchange
between the two layers due to entrainment and the fact that g′ can now vary in the along
channel direction.



After subtracting (36) from (35) and doing some simplifications, we arrive at

∂

∂t
(u1 − u2) + u1

∂u1
∂x
− u2

∂u2
∂x

= g′
(

tan θ − ∂h1
∂x

)
− 1

2
g′x h1

−Cd

[
u21
h1

(
1 +

2h1
w

)
+
u22
h2

(
1 +

2h2
w

)]
− Ci (u1 − u2)2

(
1

h1
+

1

h2

)
− E (u1 − u2)2

h1
.

(39)

The four main variables of interest are u1, u2, h1 and g′. These variables can be evaluated
using equations (25), (28), (34) and (39) provided the parameters q0, θ, E,Cd and Ci are
specified. In steady state, our four independent equations are

q1 + q2 = q0, (40)

∂q1
∂x

= E (u1 − u2), (41)

q1
∂g′

∂x
= −E (u1 − u2) g′, (42)

u1
∂u1
∂x
− u2

∂u2
∂x

= g′
(

tan θ − ∂h1
∂x

)
− 1

2
g′x h1 − Cd

[
u21
h1

(
1 +

2h1
w

)
+
u22
h2

(
1 +

2h2
w

)]
− Ci (u1 − u2)2

(
1

h1
+

1

h2

)
− E (u1 − u2)2

h1
.

(43)

For the sake of generality, we non-dimensionalize the above system of equations using
the following scaling relationships: x = Lx̂, h1 = Hĥ1, h2 = Hĥ2, w = Hŵ, u1 = Uû1,
u2 = Uû2, g

′ = g′oĝ
′ and q1 = HUq̂1. Here, H = h1 + h2 is the height of the channel and

U is a characteristic velocity scale, which we define as U =
√
g′0H. This allows us to state

the upper and lower layer Froude numbers as

Fr21 =
u2

g′h1
=

U2 û2

g′0Hĝ
′ĥ1

=
û21

ĝ′ĥ1
, (44)

Fr22 =
û22

ĝ′ĥ2
. (45)

In this non-dimensional framework, our system parameters can be written as

tan θ =
H

L
Ŝ, (46)

Cd =
H

L
Ĉd, (47)

Ci =
H

L
Ĉi, (48)

E =
H

L
Ê, (49)

q0 =
q̂0
H U

. (50)



With these choice of scalings, our non-dimensional conservation equations have the exact
form as the original dimensional equations ((40) - (43)). For the sake of convenience and
at the risk of confusion, we now drop the hats off the non-dimensional variables.

Using u1 = q1/h1 and u2 = q2/h2, we re-write the momentum equations in terms of
volume fluxes as

(
q1
h21

+
q2
h22

)
∂q1
∂x
−
(
q21
h31

+
q22
h32
− g′

)
∂h1
∂x

= g′S +
1

2
h1

q0
q21

∂q1
∂x

−Cd

[
q21
h31

(
1 +

2h1
w

)
+
q22
h32

(
1 +

2h2
w

)]
−
(

Ci

h1h2
+
E

h1

)(
q1
h1
− q2
h2

)2

.

(51)

Here, we have made use of the fact that h1 +h2 = 1 and q1 +q2 = q0 in our non-dimensional
framework. Additionally, by combining (41) and (42), we find

∂

∂x
(q1 g

′) = 0. (52)

This means the along slope buoyancy flux q1 g
′ is conserved in this model. Moreover,

from our definition of g′, it follows that g′ = 1 upstream of the salt wedge where the
freshwater layer fills the entire channel. Since the total volume flux is given by q0, it follows
that

g′ =
q0
q1
. (53)

With some rearrangement to (51), we can now completely outline our model for an
entraining salt-wedge in a sloped channel as

h1 + h2 = H = 1, (54)

q1 + q2 = q0, (55)

∂q1
∂x

= E

(
q1
h1
− q2
u2

)
, (56)

Γ
∂q1
∂x
−
[
Fr21 + Fr22 − 1

] ∂h1
∂x

= S − Cd

[
Fr21

(
1 +

2h1
w

)
+ Fr22

(
1 +

2h2
w

)]
−
(

Ci

g′h1h2
+

E

g′h1

)(
q1
h1
− q2
h2

)2

,

(57)

where Γ = 1
g′

(
q1
h2
1

+ q2
h2
2
− 1

2
h1q0
q21

)
. In the previous non-entraining case, the flow was critical

when Fr1 = 1. Here, critical flow occurs when the composite Froude number G2 = Fr21 +
Fr22 is unity. It should be noted that when E = 0, equations (55)-(57) reduce to equation
13 - the original salt-wedge model that did not permit entrainment.

As before, x = 0 is defined to be where the flow becomes critical, which here is where
G2 = 1. At the nose of the wedge, where x = −L, h1 = 1 and q1 = q0. In the non-entraining
case, we found solutions for h1 by starting our integrations at x = 0, where Fr21 = 1, and
integrating in reverse until h1 ≈ H. In that case, the critical point is associated with a
unique value for h1. However, in this case, there are many possible combinations of h1 and



h2 for which G2 = 1. For this reason, we begin the numerical integrations at x = −L where
h1 = H2 and continue forward until G2 = 1. Once this criteria is met, L can be determined.

6.2 Simulations

In this section, we present simulations of our revised salt wedge model that permits en-
trainment. For these simulations, we assume a rectangular channel with a 2.1 cm ×2.1
cm cross-section, similar to the one used in the laboratory experiments. At the boundary
x = −L, the integrations were initialized with a 15 cm3/s freshwater flux, which is again
similar to what was used in some of the laboratory experiments. As described earlier,
integrations were done in the positive x direction and came to end when G2 = 1.

Following [6], we model the entrainment coefficient E as

E = Eo sin θ, (58)

where θ is the slope of the channel and Eo is some constant. With this parameterization,
entrainment is only permitted for non-zero channel slopes.

2Similar to the method for the non-entraining simulations, we specify h1 = H − ε at x = −L to avoid the
singularity associated with zero lower layer thickness with ε = 10−4.



Figure 17: Figure showing solutions for the two-layer salt wedge model with entrainment
for various channel slopes and entrainment coefficients. Rows: (From top to bottom) Solu-
tions for along channel interface height, upper (solid lines) and lower (dashed lines) layer
velocities, composite Froude number and reduced gravity. Columns: Solutions for various
channel slopes θ. From left to right: θ = 1◦, θ = 2.5◦, θ = 5◦. These simulations were for a
rectangular tube with a 2.1 cm ×2.1 cm cross-section. The upper layer flow was set to 15
cm3/s at x = −L. Additionally, Ci = Cd ≈ 7/Re.

Solutions for our two-layer salt wedge model for various channel slopes and entrainment
coefficients are shown in Figure 17. Figure 17 a-d show simulations for various entrainment
coefficients for a channel with a 1◦ slope. The values for the entrainment coefficients range
from Eo = 0.018 to Eo = 0.36, corresponding to half and ten times the value used by [6].

In Figure 17a we observe that increasing the entrainment rate reduces the length of
the salt wedge. This is because higher entrainment leads to a more rapid thinning and
acceleration of the lower layer. Since the Froude number is inversely proportional to layer
thickness, the acceleration of the initially thin lower layer drives a quick increase in the
composite Froude number and thus a fast approach to critical flow (Figure 17 b-c). As
expected, the reduced gravity decreases more rapidly in the along channel direction with



higher entrainment (Figure 17d).
Figure 17 e-h show similar results for a channel slope of 2.5◦. In the non-entraining case,

increasing the channel slope increases the length of the salt wedge for a given freshwater
flux. Here, we observe that this response depends on the entrainment efficiency. For low
entrainment efficiency, a steeper channel slope leads to a longer wedge (for example, the
case for Eo = 0.018 in Figure 17 a, d), but at higher entrainment rates, a steeper channel
can lead to a shorter wedge. The reason for this is two-fold. First, with our parametrization
of entrainment (equation 58), increasing the channel slope results in a direct increase in the
entrainment rate. Second, increasing the slope of the channel enhances the velocity shear
across the two layers, which also enhances entrainment. Both effects tend produce shorter
salt wedge intrusions due to their effect on the lower layer thickness and composite Froude
number.

At θ = 5◦, we see the dominating effects of entrainment (Figure 17 i-l). The salt wedges
produced by these simulations are all shorter and thinner than the previous cases. This
behavior is again dominated by the rapid increase in Fr22.

While these simulations are illuminating, they do not reproduce the initial expansion and
subsequent contraction of the salt wedge downstream of its nose as shown in Figure 15. This
points to several limitations of our salt wedge model. One reason for this discrepancy is that
our salt wedge model has no time dependence. The mixing observed in the lab was driven
by the intermittent breaking of interfacial waves. Therefore, accurate representation of this
process may require a time dependent model. Second, our entrainment model assumes that
momentum and mass from the lower is efficiently mixed throughout the upper layer. In
contrast, the mixing observed in the laboratory was mostly concentrated near the two-layer
interface. One could think of the laboratory observations as a case where the entrainment
efficiency is relatively low. However, a more appropriate model for this type of mixing may
be a three layer model, where entrainment results in the expansion of an intermediate layer
with mixed fluid. Nevertheless, these simulations represent a significant improvement over
the non-entraining model and will form the basis for future theoretical development.

7 Seawater Intrusions in a Realistic Subglacial Channel

As a final exercise, we use the salt wedge model developed in the previous section to predict
the extent of seawater intrusions under real-world glaciers. For this exercise, we will assume
a 10m by 10m channel that is oriented at a very shallow slope θ ≤ 1. For this channel,
we find a range of subglacial discharge rates that produces freshwater Froude numbers Fr0
between 0.2 and 0.9. Here, we note that our empirically derived drag coefficients are only
valid for laminar flow and do not apply to this much larger system with Re ∼ 107. From
pipe flow theory, the wall drag coefficient is expected asymptote to some mean value (which
will depend on wall roughness), rather than rapidly approach zero at very large Re [18]. As
a matter of convenience, we simply assume Cd = Ci = 7/1000 - the approximate value for
laminar flow when Re = 1000.
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Figure 18: Solutions of salt wedge intrusions using parameters representative of a subglacial
outlet. (a) Equilibrium salt wedge length versus subglacial discharge at x = −L for different
entrainment coefficients as represented by (58). (b) Equilibrium salt wedge length versus
freshwater Froude number Fr0. For this simulation, we assume a 10m by 10m subglacial
channel and a range of subglacial discharge rates that produce Fr0 values between 0.2 an
0.9. Since this system is well within the turbulent regime (Re ∼ 107), we assume constant
drag coefficients Cd = Ci = 0.007.

The results of this simulation are shown in Figure 18. Here, the equilibrium salt wedge
length represents the extent of seawater intrusion into the subglacial channel. For a channel
of this size, a Fr0 range of 0.2 - 0.9 corresponds to a subglacial discharge range of approxi-
mately 30 m3/s to 140 m3/s. These values are consistent with parameters commonly used
in axisymmetric plume models representing subglacial discharge in Greenland [10, 21].



For the imposed range of freshwater discharge Q, we see that the range of seawater
intrusions span several orders of magnitude. For subglacial discharge above 100 m3/s,
the extent of seawater intrusion is minimal (less than a meter). For subglacial discharge
below 50 m3/s, the salt water intrusion extends hundreds of meters into the channel. This
result suggests that subglacial channels with weak discharge likely have deep intrusions of
seawater. Since the flooding of seawater will likely enhance melting within the subglacial
channel, particularly along the lower walls that are in contact with the ocean, our results
suggest that these channels will widen over time.

As the channel widens, our theory predicts even deeper seawater intrusions. For exam-
ple, consider the the case Q ≈ 90 m3/s. For this channel geometry, Fr0 = 0.6. In this state,
the extent of seawater intrusion is only a few meters. However, a doubling of the channel’s
width results in a halving of the Fr0. Assuming Q remains constant, the expected seawater
intrusion is for Fr0 = 0.3. From Figure 18b, we see that the length of this intrusion ranges
from several hundred to several thousand meters - depending on the entrainment efficiency
assumed.

Though this example is very idealized, it clearly illustrates the potential for salt wedges
to greatly widen an initially narrow subglacial channel. These results appear to be consistent
with recent field observations that suggest that subglacial discharge enters the ocean through
broad line plumes rather than concentric point sources [9, 21]. However, we emphasize that
these results are on a preliminary model and hinge on assumptions that are not completely
justified. As stated in the previous section, our entraining salt wedge model does not
accurately represent entrainment at steep channel relatively steep slopes. Additionally, our
empirically derived drag coefficients are only valid for low Reynolds number flows.

8 Summary

In this study, we explored the dynamics of subglacial plume lift-off using a combination of
idealized models and laboratory experiments. We developed our theoretical framework with
the critical assumption that the subglacial flow system is fundamentally similar to that of
a salt wedge estuary. With this understanding, we first formulated a theory that describes
the steady-state properties of a non-entraining salt wedge confined to a rectangular channel.
This theory predicts the shape and length of a salt wedge for a given freshwater volume
flux, channel geometry and slope.

In parallel with this theoretical effort, we conducted a series of laboratory experiments
to observe the behavior of a salt wedge in a rectangular channel. In these experiments,
freshwater was pumped through a narrow rectangular tube into the bottom of tank, filled
with water of higher salinity. Experiments were conducted with various freshwater flow
rates, tank salinities and channel slopes. With the rectangular tube in a horizontal position,
there were no visible signs of mixing across the salt wedge interface.

One key limitation of our salt wedge theory is that it relies on unconstrained coefficients
for wall drag, Cd, and interfacial drag, Ci. These coefficients were ultimately determined
by applying a least squares fit to the experimental data. From this analysis, we found that
Cd = Ci ≈ 7/Re produced the best agreement between theoretical and observed wedge
lengths (Figure 11). This result is only valid for the narrow range of laminar flow observed
in our laboratory experiments.



Results from experiments conducted with small positive channel slopes (θ less than ∼ 3◦)
were qualitatively similar to those from the horizontal channel experiments. However, at
steeper channel slopes, waves began to appear along the salt wedge interface. At the steepest
channel slopes tested, the interfacial waves became unstable and caused mixing between the
two layers (Figure 15). Since this observation violated our initial theoretical assumptions,
an attempt was made to incorporate entrainment into our salt wedge theory.

This effort led to a revised salt wedge model that permitted the freshwater layer to ac-
quire mass and momentum via entrainment of the more saline lower layer. A key assumption
in this model is that both layers remain homogenous during and after entrainment. Follow-
ing [6], the entrainment rate was assumed to be proportional to the shear across the salt
wedge interface and the sine of the channel slope. With this revised salt wedge model, we
find that increasing the entrainment rate leads to shorter salt wedges. At high entrainment
rates, momentum is efficiently transferred from the upper layer to the lower layer. If the
lower layer is initially thin, this results in a rapid increase in the lower layer Froude number
and thus the composite Froude number. This was the case in our simulations since we
began our integrations at the nose of the salt wedge, where the freshwater begins to lift off
the base of the channel.

With our entraining salt wedge model, we speculated on the extent of seawater intru-
sions for a typical subglacial outlet system. Though these results are preliminary, we find
that the extent of seawater intrusion into a subglacial channel can be quite significant and
there is a strong tendency for the subglacial channel to expand laterally. This tendency
for the subglacial system to form wide discharge outlets would be consistent with recent
observations of broad line plumes at tidewater glaciers in Greenland [9, 21].

9 Future work

Though insightful, our revised model did not reproduce the observed thinning and subse-
quent expansion of the freshwater layer as it lifts off the channel and begins to entrain the
lower layer (Figure 15). For future work, we propose further developing the two-layer salt
wedge model to better represent our experimental results. One possible improvement to
our model would be to introduce an intermediate layer along the salt wedge interface. Close
observations of experiments done with a steeply sloped channel revealed that the entrain-
ment was mostly confined to the interface. This is similar to what has been observed in
exchange flow experiments [15, 16]. Furthermore, the transient mixing observed in some of
our experiments seems to warrant a time-dependent salt wedge model.

A natural extension of our laboratory experiments would be to repeat them at a higher
Reynolds number. Achieving full turbulence would almost certainly require a much larger
experiment set-up. Doing this would allow for proper determination of the drag coefficients
that better represent actual subglacial flow, which is highly turbulent.
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