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Abstract

Sea ice forms rapidly in gaps in ice cover, driven by large heat fluxes from the ocean
to the atmosphere. The resulting brine rejection forms a cold, salty water mass that
sinks and flows away from its source. Here, we present a mechanism for secondary
ice formation due to supercooling at the interface between this cold, salty water mass
and the relatively fresh mixed layer overlying it. Motivated by Ice-Tethered Profiler
(ITP) measurements from the Canada Basin that show the onset and persistence of
these conditions, we develop a model for supercooling-driven frazil ice formation that
can be generalized to the Arctic or Antarctic. We quantify the contribution of the
frazil ice formed through this mechanism to the thickness of the overlying sea ice and
the resulting evolution of the mixed layer temperature and salinity fields.

1 Introduction

1.1    Motivation

Sea ice has a key impact on the planetary energy budget, and impacts air-sea ex-
changes near the poles [1, 16]. In a changing climate, the fate of sea ice is of crit-
ical importance, but complicated dynamics make prediction challenging. Sea ice
has long posed an impediment to observing ocean properties in the Arctic. Since
the mid-2000s, Ice Tethered Profilers (ITPs) have been deployed to mitigate this
challenge [15]. ITPs are anchored in sea ice and periodically measure conductivity,
temperature, and depth (CTD) profiles of the underlying water column, producing
unprecedented year-round hydrographic observations of the ice-covered Arctic Ocean.
These measurements provide insight into ocean circulation under sea ice as well as
thermodynamic interactions between the sea ice and ocean [14].

Most sea ice growth is driven directly by local surface cooling where the ocean is



Figure 1: Ice Tethered Profiler observations from the Canada Basin (figure from [13]).

exposed to the atmosphere, such as in polynyas and leads, which are gaps in sea ice 
cover [8]. As sea ice forms, it excludes salt from its crystal structure, leaving behind 
very cold, saline water known as brine. The dense brine then sinks until it is neutrally 
buoyant, and may flow outward from where it formed, intruding beneath the relatively 
warm and fresh mixed layer insulated by the surrounding sea ice. Some ITP profiles 
show the arrival of cold, salty water mass at a depth of around 20m (e.g. the transition 
from the dark blue to red lines in figure 1a-b), which is speculated to be brine 
generated by this primary ice formation process. Due to the salinity dependence of the 
freezing point, each of these water masses is at its local freezing temperature (figure 
1c). Because heat diffuses faster than salt, as the mixed layer loses heat to the 
underlying brine, it may become supercooled (figure 2). This could result in the 
nucleation of ice crystals called frazil ice. However, measuring supercooling directly is 
difficult, because the instrument itself can act as a nucleus for ice formation. It is 
desirable to develop a model for this mechanism to identify an observable signature of 
the process and to quantify its potential for secondary frazil ice production.

1.2 Double-diffusive supercooling

A number of earlier studies utilized theory and laboratory experiments to investigate 
similar processes related to double-diffusive supercooling. Notably, Martin and Kauf-
mann’s 1974 experimental setup allowed them to describe a three-phase ice growth 
process that occurs in under-ice melt ponds [5]. In this situation, the meltwater tem-
perature is 0oC and salinity is 0 g/kg, causing the upper layer to become less dense 
as it cools (freshwater has a maximum density at 4oC), which drives convective insta-
bility. Stigebrandt (1981) similarly developed a theory where convective instability 
arises in both layers [11]. Voropayev et al. (1995) build on these earlier results, still 
considering an overlying layer of purely fresh meltwater but adding turbulence to their 
model to better reproduce observed quantities of frazil production [17]. Observational 
results are presented in McPhee et al. (2013), who propose a similar supercooling 
mechanism. Instead of an intrusion of cold brine on a timescale of days to weeks, they 
observe a tidally-advected salinity front that is speculated to induce double-diffusive

supercooling in a fully turbulent water column [7].



Figure 2: Schematic of double-diffusive supercooling. The initial temperature in-
dicated by the red dashed profile is the salinity- dependent freezing point (right).
Because heat diffuses faster than salt (left), after a short time, the temperature in
the upper layer has decreased (solid red profile), while the salinity remains at its ini-
tial value (yellow profile). The blue triangle represents supercooling of the boundary
layer, where the temperature is below the freezing point.

1.3 Frazil ice

Jeffries et al. (1995) measured sea ice cores from the Beaufort Sea and found that 9%
of ice thickness was formed from incorporated frazil ice, including layers ranging from
5cm to 60cm thick [2]. They speculate that most of that ice may be attributed to
under-ice melt pond growth (see section 1.2), with a plausible alternative being “ice
pumps,” analogous to those observed in the Antarctic by Langhorne et al. (2015). Ice
pumps arise due to the pressure dependence of the freezing point. In the Ross Sea, this
happens where deep ice shelves melt and the buoyant meltwater becomes supercooled
as it ascends, producing a platelet ice layer up to about 1m thick [4]. Building on
these observational studies, modeling studies including Svensson and Omstedt (1994)
and Rees Jones and Wells (2017) make significant contributions to understanding
the conditions that generate frazil ice and facilitating generalization of supercooling-
driven frazil ice growth and the subsequent dynamics to other situations [12, 10].

The aim of this project was to use an idealized model to quantify the parameters
affecting the magnitude and persistence of supercooling driven by double-diffusion at
the interface between a mixed layer and underlying cold brine water mass, and ulti-
mately quantify the contribution of the resulting frazil ice formation to the thickness
of the overlying sea ice.



We use an idealized model of supercooling at the base of a well-mixed under-ice layer
to simulate a situation similar to the one seen in ITP observations (e.g. figure 1).
See figure 3 for a schematic representation of the model setup. The model simulates
mixed layer temperature T and salinity S, as well as the number density N and mean
radius R̄ of ice crystals suspended in the layer. The layer is assumed to be well-mixed,
with the temperature and salinity both uniform with depth. The frazil ice crystals
are assumed to be disc shaped, with a constant thickness H and variable radius R [6].
The crystals rise through the layer at a velocity proportional to the mean radius, but
otherwise there is no flow in the mixed layer.

The initial salinity S0 of the mixed layer is chosen based on observations, and its initial
temperature T0 is the freezing point determined by its salinity. The underlying cold
brine layer will be referred to as the reservoir. The reservoir salinity is assumed to be
constant and greater than the mixed layer salinity, and its temperature (also constant)
is also at the salinity-dependent freezing point, making the reservoir colder than the
mixed layer. The freezing point Tf is assumed to be approximately independent of
pressure (i.e. a function of salinity S) and calculated as

Tf (S) = Tf (S0) + Γ(S − S0), (1)

where Tf (S) is the freezing temperature at salinity S0 and Γ = −0.06oC [3]. Mixed
layer temperature and salinity are subject to diffusion of heat and salt across the
bottom boundary, with diffusivities of heat κT and salt κS acting across a boundary
layer of thickness δ. Under molecular diffusion, κT � κS, but the ratio τ = κT/κS
may vary with the level of turbulence.

2.2 Model formulation

To model the ice crystal suspension, we assume a crystal size distribution such that
n(R) is the number density of crystals of any given radius R, as illustrated in figure
4. The total number density N is defined as

N̄ =

∫ ∞
0

ndR, (2)

measured in units of crystal number per unit volume, and the mean radius R̄ as

R̄ =
1

N

∫ ∞
0

RndR. (3)

2 Model

2.1 Model setup



Figure 3: Model schematic and list of variables. Subscript 0 indicates the initial value
of a variable. Tf (S) is the salinity-dependent freezing point as defined in (1). C0 is
an initial ice crystal concentration as defined in (10). Ice crystal image from [6].

The rise velocity of disc shaped ice crystals may be parameterized simply with the
linear relationship

wc = γR, (4)

where the constant γ = 16 s−1 is estimated from experimental data [6, 10].

The time derivative of n(R) can be formulated relatively simply following [10] as

∂n

∂t
= − ∂

∂R
(Gn)− wc

∂n

∂z
, (5)

where G = G0

[
Tf (S)− T

]
and the growth constant G0 is defined as

G0 =
κTmρwcw
ρiLH

. (6)

The first term on the right hand side of (5) is due to crystal growth, which shifts the
crystal size distribution n(R) to the right. The second term is the settling of crystals
as they rise. In order to model the suspension of ice crystals in a well-mixed layer,
we integrate (5) with respect to R and z.



Figure 4: Schematic of crystal size distribution. R0 is the initial radius and R̄ is the
mean radius.

This leads to the equation for evolution of the depth-averaged number densityN :

D
∂N

∂t
= γR0N0 − γR̄N, (7)

which is a balance between influx of crystals at the initial radius R0 and number
density N0 at the base of the mixed layer, and the settling of crystals at the mean
radius and number density at the top. This is independent of the growth term because,
while crystal growth shifts the size distribution, it has no effect on the total number
of crystals.

Because the mixed layer temperature and freezing temperature are assumed to be
independent of depth, the supercooling is distributed through the mixed layer and
crystals continue to grow radially as they rise. By multiplying (5) by R before inte-
grating, we arrive at an equation for the change in mean radius R̄:

D
∂(NR̄)

∂t
= DG0

[
Tf (S)− T

]
N + (α + 1)

[
γR2

0N0 − γR̄2N
]
, (8)

with mixed layer depth D, latent heat of solidification L, ice density ρi, seawater
density ρw, and molecular diffusivity of heat κTm. α is a parameter that accounts for
the shape of the crystal size distribution, defined as

α ≡
∫∞
0
R2ndR

R̄
∫∞
0
RndR

. (9a)

The distribution shape determines the relationship between R̄2 and R2. If all crystals
are the same size (corresponding to a delta function distribution), α = 0. Otherwise,
α > 0. For example, for a Gaussian distribution with standard deviation σ,



α ≈ σ

R̄
. (9b)

For the purposes of this report, we found the impact of α to be negligible, so henceforth
we consider (8) with α = 0.

The ice concentration can thus be expressed as the characteristic volume of a crystal
times the number of crystals per unit volume:

C = πR̄2HN. (10)

The evolution of mixed layer temperature T and salinity S are governed by diffusion
of heat and salt across the interface and the addition of salt and latent heat due to
the growth of ice crystals:

∂T

∂t
=

Lρi
cwρw

G0[Tf (S)− T ]NR̄2πH − κT
[
T − Tres
Dδ

]
, (11)

∂S

∂t
=

ρi
ρw
G0[Tf (S)− T ]NR̄2πHS − κS

[
S − Sres

Dδ

]
, (12)

with diffusivities of heat and salt κS and κT reservoir temperature Tres and salinity
Sres.

It is useful to define supercooling θ as

θ = T − Tf (S), (13)

choosing a sign convention where negative θ indicates supercooling (i.e. the mixed
layer temperature is below the freezing point determined by its current salinity). We
can directly compute the evolution of θ as

∂θ

∂t
=
∂T

∂t
− Γ

∂S

∂t
, (14)

as we do in our definition of the dimensionless system below, or it can be computed
post hoc given the evolution of T and S.



2.3 Dimensionless parameters

We nondimensionalize the variables as

θ̂ =
T − Tf (S)

∆T
, Ŝ =

S

S0

, R̂ =
R̄

R0

, N̂ =
DG0∆T

γR2
0N0

N, t̂ =
κT
Dδ

t, (15)

with ∆T defined as
∆T = Tf (S0)− Tres. (16)

The timescale we have chosen is the adjustment timescale for cooling of the whole
mixed layer depth D by diffusion of heat across the boundary layer δ.

The resulting nondimensional governing equations corresponding to (14), (12), (7),
and (8), respectively, can be written as

∂θ̂

∂t̂
= −2PeC0N̂R̂θ̂

[
St− L ρi

ρw
Ŝ
]
−
[
θ̂ + L(Ŝ − 1) + 1

]
+ Lτ

[
Ŝ − Ŝres], (17a)

∂Ŝ

∂t̂
= −2PeC0

ρi
ρw
N̂R̂θ̂Ŝ − τ(Ŝ − Ŝres), (17b)

∂N̂

∂t̂
= −PeR̂N̂ + Gr, (17c)

∂(R̂N̂)

∂t̂
= GrN̂ θ̂ − PeR̂2N̂ + Gr, (17d)

where the six dimensionless parameters are defined as follows:

τ ≡ κS
κT
, (18a)

Pe ≡ γR0δ

κT
, (18b)

St ≡ ρiL

ρwcw∆T
, (18c)

Gr ≡ G0∆TδD

κTR0

, (18d)

L ≡ ΓS0

∆T
, (18e)

Ŝres ≡
Sres

S0

. (18f)



It is worth briefly explaining the significance of these parameters and their approxi-
mate values for the parameter ranges that will be explored in section 3. It is critical 
to this problem that τ (18a), the ratio of salt diffusivity to heat diffusivity, have a 
value much less than 1, because that is the origin of the supercooling. The Péclet 
number Pe (18b) is defined as a ratio of crystal rise velocity to heat diffusion across 
the basal boundary layer, which has a value on the order of 50, indicating that heat 
diffuses slowly relative to the timescale on which crystals remain in the suspension. 
The Stefan number St (18c) describes the ratio of latent to sensible heat, an indicator 
of the efficiency of ice production, and is on the order of 103. The growth parameter 
Gr (18d) increases as St decreases, and describes the relative change in size by crystal 
growth over the cooling timescale, compared to the initial radius. It is on the order of 
104, indicating that the timescale of crystal growth is much faster than the timescale 
of heat diffusion, and crystals will grow substantially. The liquidus number L (18e) 
is the ratio of the initial mixed layer freezing temperature to temperature gradient, 
and is on the order of 20. The scaled reservoir salinity Ŝres is order 1.

3 Results

3.1 Timescales of system evolution

The system of equations (17) is solved numerically to simulate the evolution of the 
system over 30 days, providing some insight into the basic behavior and important 
timescales of this system (figure 5). Henceforth, dimensional quantities will be used in 
the figures and discussion. The initial conditions and parameter values used for this 
simulation are initial mixed layer salinity S0 = 28 g/kg, reservoir salinity Sres = 29 
g/kg, temperature gradient ∆T = 0.06oC, initial concentration C0 = 10−7, initial 
radius R0 = 0.2mm, and mixed layer depth D = 10m. Consistent with previous 
laboratory and modeling experiments of supercooling and frazil ice formation, the 
system first cools rapidly, which is accompanied by an explosion in ice concentration 
(e.g. [9, 10]).

After the time of peak supercooling, which scales as the cooling adjustment timescale 
discussed earlier,

t ∼ Dδ

κT
, (19)

the magnitude of supercooling shows a small and gradual decrease, along with the
ice concentration and mean radius. This change coincides with the salinity increasing
approximately linearly with time.

By running the simulation over 500 days (which is unrealistic physically because of the
relative ephemerality of these conditions), we can see the full theoretical evolution of
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Figure 5: 30-day evolution of mixed layer (a) supercooling θ, (b) salinity S, (c) ice
concentration C (10), and (d) mean crystal radius R̄. The red line indicates the
timescale of peak supercooling (19). The initial conditions used for this simulation
are S0 = 28 g/kg, Sres = 29 g/kg, ∆T = 0.06oC, C0 = 10−7, R0 = 0.2mm, and
D = 10m.
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Figure 6: 500-day simulation of mixed layer (a) temperature and (b) salinity. The
magenta lines indicate the time of peak supercooling. (c) Points on the T-S plot are
colored by day and indicate the mixed layer conditions. The red circle in the T-S plot
indicates the initial temperature and salinity of the mixed layer; magenta indicates
the magnitude of peak supercooling; blue is the reservoir temperature and salinity.
The dashed grey line is the freezing line. Parameter values as in figure 5.



this system in temperature-salinity space (figure 6c). The magnitude of supercooling 
decreases monotonically after the peak, qualitatively following the salinity (figure 6a-
b), although the T-S plot shows that the temperature of the mixed layer continues to 
decrease, indicating that the slow evolution of the system is driven by the increasing 
salinity lowering the freezing temperature. The steady decrease in temperature and 
increase in salinity are qualitatively consistent with the changing temperature and 
salinity profiles in figure 1.

3.2 Fast evolution

Plotting the time evolution of each variable’s time derivative gives some more insight 
into the initial transient period (figure 7e-h). Prior to the peak supercooling, the 
supercooling is dominated by the heat flux out of the mixed layer. However, as the 
ice concentration increases, more latent heat is released into the mixed layer as those 
crystals grow, and the peak supercooling is reached when those tendencies balance 
(figure 7e):

Lρi
cpρw

G0(Tf − T )NR̄2πH ∼ κT

[
T − Tres
Dδ

]
. (20a)

The crystal number density N and mean radius R̄ also peak at this point, with the
crystals settling out at the top balancing the influx of crystals, and radial crystal
growth balancing reduction of the mean radius by precipitation of larger crystals
(figure 7g-h), respectively:

γR̄N ∼ γR0N0 (20b)

G0(Tf − T )DN ∼ γR̄N (20c)

These balances lead to scalings for the peak supercooling,

θpeak
∆T

∼ β

2

κT
DδG0

ρwcp∆T

ρiL

1

N0R0πH
, (21a)

mean ice crystal radius,

R̄2
peak

R2
0

∼ β

2

κT
γδ

cpρw∆T

ρiL

1

N0R0πH
, (21b)

and ice concentration,

Cpeak ∼
C0

R0

R̄peak, (21c)
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Figure 7: (a-d) Evolution for the first 10 days of the simulation with parameter values
as in figure 5 are plotted with the time of peak supercooling indicated by the grey
dashed line. (e-h) The associated tendencies are plotted (blue) along with their major
constituents (red and yellow). The top legend applies to θ and S; the bottom legend
applies to C and R̄.



Figure 8: (a) The squared maximum radius R̄2 calculated using (21b) is plotted
against the simulated value for a range of values of initial heat flux Q0 and mixed
layer depth D. (b) As in (a), but for peak supercooling θ (21a).

with dimensionless factor β arising from the assumption that Tf (S)−Tres ≈ ∆T :

β ≡ 1

1 + κT
2πR0HN0G0Dδ

cwρw
Lρi

=
1

1 + 1
StGr C0

. (22)

These can also be written in terms of the dimensionless parameters (18):

θpeak
∆T

∼ β

2C0GrSt
, (23a)

R̄2
peak

R2
0

∼ β

2PeStC0

(23b)

The scaling R̄2
peak slightly underestimates the peak radius relative to the simulation

(figure 8a), while the θpeak scaling slightly overestimates the magnitude of supercooling
(figure 8b), but both are linear with respect to initial heat flux Q0 and mixed layer
depth D.



3.3 Slow evolution

The slow evolution of the system after the time of peak supercooling is driven by 
increasing salinity due to salt rejection as the ice crystals grow (figure 7f). This 
depresses the freezing point, reducing the magnitude of supercooling. As a result, the 
mean ice crystal radius and concentration also decline very gradually.

To get some more insight into this timescale, we can arrive at a scaling estimate using 
a few simplifications. First, a balance between latent heat release due to ice freezing 
and cooling due to the heat flux across the boundary is assumed (20a). Second, mean 
radius and number density are approximated to be constant, with

R̄N ≈ R0N0. (24)

We also require τ � 1.

This gives us a leading order balance for ∂S
∂t

:

∂S

∂t
∼ ρi
ρw
G0

[
Tf (S)− T

]
NR̄2πHS. (25)

Defining Tm = 0oC and

Tf (S) = Tm + ΓS, (26)

we can substitute for Tf − T in (25) to get

∂S

∂t
≈
(

λΓ

Tres − Tm

)
S

[
S +

Tm − Tres
Γ

]
. (27)

Here we have defined a parameter λ, which has units s−1:

λ ≡ (Tres − Tm)
cp
L

κT
Dδ

[
1

1− 1
N0R02πH

κT cp
DδG0L

]
. (28)

The solution of (27) yields a scaling for the slow evolution of salinity S(t):

S(t) ∼ −Tres
Γ

(
1 +

∆T

ΓS0

e−λt
)−1

, (29)

and 1
λ

is an approximate timescale for relaxation of the mixed layer salinity S to the
reservoir salinity Sres (i.e. the timescale on which supercooling would be depleted if
the appropriate conditions persisted).



Figure 9: (a) The simulated slow evolution of S(t) over 500 days (blue) is plotted 
with the scaling estimate from (29) (red) for the baseline initial conditions. (b) The 
scaling value of the salinity is plotted against the simulation value of the salinity over 
the 500-day run for a range of values of initial heat flux Q0. (c) As in (b), but for a 
range of values of mixed layer depth D.

For the parameter values used in these simulations (see section 3.1), this scaling qual-
itatively captures the timing and magnitude of mixed layer salinity evolution on long 
timescales (figure 9a). However, it doesn’t apply to all parameter ranges, overesti-
mating salinity for very small heat fluxes and deep mixed layers, and underestimating 
salinity for large heat fluxes and shallow mixed layers (figure 9b-c).

3.4 Quantifying ice accumulation

We are interested in quantifying the potential contribution to ice thickness resulting 
from this mechanism. We can define accumulation at each timestep as
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∂h

∂t
= (γR̄)πR̄2HN − (γR0)πR

2
0N0, (30)

where the first term represents settling of ice crystals at the mean radius and the
second term removes the contribution of the crystals seeded at the bottom of the
mixed layer in the model. We see that for about 100 days of the simulation, the
contribution of the second term is negligible (figure 10c). In theory, the system would
saturate where these terms were equal, i.e.

R̄3N

R3
0N0

∼ 1, (31)

which is where the red curve levels out in figure 10c. However, as discussed previously,
these conditions are unlikely to persist for more than a few weeks. On more realistic
timescales, we can approximate that N and R are equal to their peak values Npeak

and Rpeak, leading us to the scaling

∂h

∂t
∼ 1

2

κT
δ

1

St
, (32a)

with St, defined in (18c), representing the efficiency of ice production relative to cool-
ing at the mixed layer boundary. This is easily solved (and the constants rearranged)
to find

h(t) ∼ 1

2

Q0

Lρi
t, (32b)

We find that this is one half of the theoretical upper bound, assuming perfect con-
version of cooling to ice production:

hmax(t) =
Q

Lρi
t. (33)

We test this scaling using a model simulation over 30 days (figure 11a). We find that
for small values of Q0 up to about 10W/m2 and large mixed layer depths of 10-20m, or
relatively slow adjustment timescales (19), the scaling estimate (dashed line) agrees
qualitatively with the simulated ice production. In general, larger heat fluxes generate
more ice production, which is captured by the scaling, but it does not account for the
impact of mixed layer depth D. The colors overlaid on the curve for each mixed layer
depth show the mean radius R̄ at the end of the simulation. Deeper mixed layers
have larger R̄, indicating that one explanation for the dependence on depth is that ice



crystals in deep layers remain in the supercooled mixed layer longer before settling
at the top, facilitating more radial growth and thus greater total accumulation.

The depth dependence is further explained in figure 11b, which shows the peak and
final supercooling θ of the mixed layer at various values of D. The greatest magni-
tude of supercooling is much greater for the 1m mixed layer than for the 20m mixed
layer. However, the final magnitude of θ is substantially smaller than the peak for
the shallower layer, because the latent heat and salt released by ice freezing in the
shallow mixed layer are relatively concentrated and erode the supercooling rapidly.
In contrast, the final value of θ in the 20m layer is very close to its peak, and nearly
indistinguishable for lower values of Q0. This is supported by the depletion timescale
1
λ

(28), which is directly related to D and inversely related to κT
δ

. Finally, ice accumu-
lation is also well-correlated with maximum ice concentration C (figure 11c).

In order to compare the values of ice accumulation to frazil ice layer thickness in 
observational studies, it is necessary to estimate an ice volume fraction. Based on a 
combination of observational and modeling estimates, this factor is approximated as 
T = 0.25 ± 0.09 [4], resulting in a layer thickness around 4 times greater than the 
accumulation values shown in figures 10c and 11a, or between 1cm and 15cm over 30 
days as calculated using (32b) and Q0 between 1 and 10 W/m2.

4 Conclusions and Future Work

Our model reaffirms that differing rates of heat and salt diffusion can generate su-
percooling at the interface between water masses. We have described the evolution 
of the mixed layer as a result of this process and derived scalings to quantify the ef-
fects of system parameters on key quantities, including the peak supercooling, which 
defines the overall phase-space trajectory of mixed layer properties, and ice crystal 
radius. We have shown that under realistic Arctic conditions, this mechanism could 
contribute non-negligible secondary sea ice growth, and identified key parameters that 
may determine the quantity of ice production.

In order to rigorously quantify the uncertainties, more observations are necessary to 
constrain appropriate parameter ranges and evaluate the model predictions. We will 
continue to improve the model, notably by adding depth variation. We also intend 
to evaluate the potential for convective mixing by the rising ice crystals.
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Figure 11: (a) Ice accumulation after 30 days is plotted against initial heat flux
Q0 for different values of the mixed layer depth D (labeled). The color of the dots
indicates the mean ice crystal radius R̄ after 30 days. The growth scaling law given
in (32b) (dashed) and theoretical upper bound for ice accumulation (33) (dotted)
are also plotted. (b) Peak supercooling is plotted against initial heat flux Q0 for
different values of the mixed layer depth D (solid lines). The remaining supercooling
after 30 days is plotted for the 1m and 20m mixed layer (dashed lines). (c) Maximum
concentration C is plotted against initial heat flux Q0 for different values of the mixed
layer depth D.
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