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1 Introduction

1.1 Forcing, circulation, and freshwater content of the Beaufort Gyre

The Beaufort Gyre is a large wind-driven circulation in the Canada Basin of the Western
Arctic Ocean between approximately 120◦ − 180◦ W and 70◦ − 85◦ N. Figure 1 shows the
bathymetry and spatial pattern of salinity at 200 m in the Beaufort Gyre. The gyre is a
persistent feature in the upper ∼300 m of the ocean, driven primarily by the climatological
anticyclonic winds associated with the wintertime Beaufort High sea level pressure system.
The winds cause Ekman downwelling, which pumps low-salinity surface water into the gyre
interior, deepens the halocline, and sets up the resulting anticyclonic circulation. Although
the climatological mean winds are anticyclonic, there is considerable seasonal variability; the
winds are strongly anticyclonic during the winter and weakest (potentially even cyclonic)
during the summer. Nevertheless, the upper-ocean circulation is persistently anticyclonic
due to the bowl-shaped deformation of the isopycnals associated with the freshwater storage
[9]. The surface waters of the Arctic are relatively fresh due to the excess of precipitation
over evaporation in the basin and due to its drainage of numerous large river systems and
low-salinity Pacific inflow.

The freshwater content (m) is defined as

FWC =

∫ η

D

Sref − S
Sref

dz (1)

where S is measured in practical salinity units, Sref is a reference salinity (typically 34.80),
η is the sea surface (m), and D (m) is the depth of the isohaline of the reference salinity
[4]. Sref is chosen to be near the mean salinity, and therefore FWC represents the amount
of freshwater that would need to be introduced in order to obtain the observed salinity
(beginning from Sref ). Equation 1 can be integrated over an area of interest to obtain the
volumetric fresh water content [4]. The total Arctic freshwater content has been estimated
to be 93,000 km3 over 1980–2000, with 18,500 km3 being stored in the Beaufort Gyre; over
2000–2010, the Arctic freshwater content increased to 101,000 km3 and the Beaufort Gyre
freshwater content increased to 23,500 km3 [9]. In addition, the freshwater content of the
Beaufort Gyre has been estimated to have increased by 8000 ± 2000 km3 from 1995–2010
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Figure 1: Salinity at 200 m (colormap)
from the PHC climatology (winter mean) and
bathymetry (black contours). Note the pro-
nounced salinity minimum within the Beau-
fort Gyre, which is a major freshwater reser-
voir in the Arctic Ocean.

Figure 2: Schematic diagram of the halo-
cline model in [7]. The halocline is repre-
sented as an interface that is deepened by Ek-
man pumping. Mesoscale eddies (baroclinic
instability) form along the interface to coun-
teract the deepening. The halocline is mod-
eled to be at a fixed depth at the gyre bound-
aries. Figure from [7].

due predominantly to the spin-up of the gyre by the increasing trend of the anticyclonic
wind stress curl [3].

Wind stress variability over the Beaufort Gyre modulates the storage and release of
freshwater, which has implications for freshwater and ice exchanges with the North Atlantic
Ocean and the Atlantic Meridional Overturning Circulation (AMOC). It has been proposed
that when high sea level pressure and anticyclonic wind anomalies prevail in the Arctic,
freshwater accumulates through various mechanisms [9]. River runoff into the Arctic Ocean
is enhanced due to shifts in storm tracks. Arctic sea ice also grows during anticyclonic wind
regimes due to the cooler temperatures that tend to predominate. Convergence of Ekman
transport pumps freshwater into the gyre, which also causes convergence and ridging of sea
ice. Finally, export of freshwater through Fram Strait declines, which increases the surface
salinity in the Greenland Sea, destabilizes the stratification of the water column and favors
deep water formation. As freshwater storage in the Beaufort Gyre is associated with doming
of the sea surface, eventually, an anomalous dynamic height gradient between the Beaufort
Gyre and the North Atlantic develops, which induces anomalous flow through Fram Strait
and the Canadian Arctic Archipelago and sets the stage for a transition to the cyclonic
circulation regime. During cyclonic circulation regimes, these processes are reversed.

The halocline in the Canada Basin is subdivided into a “warm halocline” centered
around 50 m depth with salinity from ∼30–32 and temperature ∼0 ◦C, and a “cold halo-
cline” centered around 150 m depth with salinity from ∼32–33 and temperature ∼ −1.5 ◦C
[10]. There is considerable interannual temperature variability and no significant seasonal
variability in the warm halocline. The warm halocline is a persistent year-round feature and
is sustained by summertime subduction of Chukchi Shelf Waters. The salinity minimum in



the central Beaufort Gyre that is set up by the Ekman pumping prevents strong wintertime
mixing that would expose the overlying sea ice to the warm halocline; entrainment of this
heat could cause approximately 1 m of sea ice melt [10].

The storage and release of freshwater in the Beaufort Gyre thus has a broad range of
implications for the global climate. However, the dynamics of the Beaufort Gyre and the
processes that determine the halocline structure are uncertain.

1.2 Beaufort Gyre dynamics and simple model

The Beaufort Gyre is a persistent feature in the Canada Basin [9]. However, until recently
the basic dynamical balance of the mean circulation has been unclear. Specifically, what
processes oppose the deepening of the halocline due to Ekman pumping, allowing a steady-
state circulation to develop?

It has been proposed that mesoscale eddy fluxes are capable of balancing the Ekman
pumping in steady state [6]. The bowl-shaped deformation of the isopycnals in the halocline
is associated with the buildup of gravitational potential energy, which is a baroclinically
unstable configuration that leads to the formation of mesoscale eddies. These eddies act
to oppose the steepening of the halocline slope. Experiments with the MITgcm as well as
simple scaling arguments [6] suggest that the timescale of adjustment of the gyre to changes
in wind forcing (i.e., the time required for the halocline to reach its equilibrium depth) is

T ∼ R2

K
(2)

where R represents the radius of the gyre and K represents the eddy diffusivity. Therefore,
for a significant release of freshwater from the Beaufort Gyre to occur, it is necessary for wind
forcing anomalies to persist longer than the equilibration timescale, which was estimated
to be ∼6 years.

The following theory is developed in [7]. In this framework, the halocline is represented
as an isopycnal interface that is deepened by Ekman pumping; the deepening of the halocline
is opposed by the activity of mesoscale eddies (Figure 2). Assume that

Db

Dt
= S

where b represents buoyancy and S is a source term. Here we model the gyre in cylindrical
coordinates. Expanding and taking the Reynolds average of both sides yields

bt + vbr + wbz + v′b′r + w′b′z = S. (3)

Here v represents a velocity in the r-direction, w represents a velocity in the z-direction,
and v′b′r and w′b′z are interpreted as eddy fluxes of buoyancy. It is desirable to re-write the
eddy fluxes in Equation 3 as advection of mean buoyancy gradients by eddy velocities v∗

and w∗, i.e.,



bt + (v + v∗)br + (w + w∗)bz = S. (4)

This condition requires that

v′b′r + w′b′z = v∗br + w∗bz. (5)

Using the Transformed Eulerian Mean framework [1], there exists a mean streamfunction
Ψ such that

v = −Ψz, w =
1

r
(rΨ)r (6)

which satisfies

Ψ =
τ

ρ0f
(7)

where τ(r, t) represents the (known) azimuthal surface wind forcing of the gyre, ρ0 is a ref-
erence density, and f is the coriolis parameter. In addition, there is an eddy streamfunction
Ψ∗ with associated eddy velocities

v∗ = −Ψ∗z, w
∗ =

1

r
(rΨ∗)r (8)

which is given by

Ψ∗ = −w
′b′

br
=
v′b′

bz
. (9)

This represents the so-called “adiabatic limit” in which eddy fluxes are assumed to be
along-isopycnal, i.e., perpendicular to gradients of buoyancy. In this formulation, eddies
“re-arrange” existing water masses but do not create “new” water masses (new density
classes). This condition can be observed by defining the eddy buoyancy flux as

Fb =

 v′b′

0

w′b′

 (10)

and noting that

Fb · ∇b = v′b′ · br + w′b′ · bz

= brbz

(
v′b′

bz
+
w′b′

br

)
= 0



by Equation 9. Using the condition ∇ · (v∗, 0, w∗) = 0, which follows from Equation 8,
Equation 5 is satisfied. A mesoscale eddy parameterization is needed for the eddy fluxes in
Equation 9 and the Gent-McWilliams parameterization [2],

v′b′ = −Kbr, (11)

is used. Here K (m2 s−1) represents the eddy diffusivity and

Ψ∗ = Ks (12)

by Equation 9, where s = |br/bz|. (For the bowl-shaped deformation of the halocline, it
follows that br/bz < 0.)

It is the residual circulation, Ψ̃ = Ψ + Ψ∗, that drives changes in the halocline depth.
Substituting Equations 6 and 8 into Equation 4, it follows that

bt +
1

r

(
rΨ̃
)
r
bz − Ψ̃zbr = S. (13)

In ocean models (e.g., [12]), it is typical for the eddy diffusivity K to be parameterized to
be proportional to the isopycnal slope, i.e.,

K = ksn−1

where k represents the eddy efficiency and n is a small positive integer. This parameteriza-
tion is used in [7] with n = 2. Along with Equations 7 and 12, this implies that

Ψ̃ =
τ

ρ0f
+ k

(
−br
bz

)2

. (14)

Equations 13 and 14 are accompanied by the boundary conditions

b|r=R = bR(z), br|r=0 = 0, bz|z=0,H = 0, b|t=0 = b0(r, z). (15)

(From now on, the overbar over Reynolds averaged quantities will be dropped.) Linearizing
Equations 13 - 14 about the long-term time mean yields

bt +
1

r
(Ψ̃r)rb0z − Ψ̃zb0r = S

Ψ̃ =
τ

ρ0f
− n τ0

ρ0f

s

s0
s

s0
=

(
br
b0r
− bz
b0z

)
.



Here subscripts “0” indicate the basic state and other variables indicate perturbations about
the basic state. Defining h = b/b0z, where h represents the isopycnal depth perturbation,
these equations imply

ht =
1

r
(nK0rhr)r +

1

r

(
r
−τ
ρ0f

)
r

(16)

where

K0 = ksn−10 = k

(
−τ0
ρ0fk

)(n−1)/n
, (17)

and n = 2 is, again, a reasonable choice. The boundary conditions for the linearized depth
perturbation equation are given by

h|r=R = 0, hr|r=0 = 0. (18)

Equations 16 - 18 are derived in the appendix of [7]. A gyre adjustment timescale is also
derived in [7] and is obtained by decomposing the (nondimensionalized) eddy diffusion
operator

L :=
1

r
(K0rhr)r

into orthogonal eigenmodes h∗i and expressing

h =
∞∑
i=1

ai(t)h
∗
i

where ai(t) is an amplitude function that is exponentially decaying on a timescale Ti. The
equilibration timescale of the gyre is set by the slowest timescale

T0 =
1

nλ

R2

K0(R)

where the eigenvectors hi and eigenvalues λ are shown in Figure 6 of [7].

2 Extension of the Simple Model

2.1 Rationale for a modified model

The boundary conditions of the existing model assume that the isopycnal interface repre-
senting the halocline is at a fixed depth at the boundary of the gyre (see Figure 2). However,



observations suggest that there is considerable seasonal variability in isopycnal outcropping
location [10].

The Polar Science Center Hydrographic Climatology (PHC) provides gridded (1◦ × 1◦)
means of summer (July, August, September) and winter (March, April, May) temperature
and salinity at a sequence of depths between 0 and 5500 m (Figure 3, left and central
columns). We use the Thermodynamic Equation of SeaWater 2010 (TEOS-10) equations
[5] to estimate the winter and summer climatological density and potential density (Figure
3, right column).

Figure 3 reveals considerable seasonal variability of buoyancy, particularly within the
upper ∼50 m of the gyre. This variability is predominantly associated with the seasonal
variability of salinity rather than temperature, and there is seasonal outcropping of isopyc-
nals (compare the top and bottom rows of Figure 3). Since this variability in the isopycnal
outcropping location cannot be captured by the existing model, we modify the model to
accommodate it.

Specifically, we consider Equation 16 with the modified boundary conditions

hr|r=0,R = 0 (19)

i.e., no flux is permitted through the gyre boundary.

2.2 Solution of linearized equations in an idealized case

We first consider a simplified case of Equation 16 with boundary conditions given by Equa-
tion 19 in which K0 is constant with respect to r and τ = 0. In this case Equation 16
simplifies to

ht =
nK0

r
(hr + rhrr).

Suppose that there is a solution of the form

h = a(t)b(r).

Then

a′(t)b(r) = nK0

(
1

r
a(t)b′(r) + a(t)b′′(r)

)
.

Separating variables,

a′(t)

a(t)
= nK0

(
1

r

b′(r)

b(r)
+
b′′(r)

b(r)

)
.

Then the LHS implies

7



Figure 3: Longitude-depth transect of winter (March, April, May) and summer (June, July, Au-
gust) mean temperature and salinity from the PHC climatology in the upper 400 m of the Beaufort
Gyre at 75.5◦ N (left and central columns). Potential density is estimated from the TEOS-10 equa-
tions using the temperature and salinity profiles (right column).



a′(t)

a(t)
= −λ

for some λ ≥ 0, and therefore

a(t) = c0e
−λt

for any constant c0. The RHS implies

nK0b
′′(r) +

nK0

r
b′(r) + λb(r) = 0

or equivalently

r2b′′(r) + rb′(r) +
λ

nK0
r2b(r) = 0.

With the substitution

c2 =
λ

nK0

the equation is seen to have solutions J0(cr) (Bessel function of the first kind) and Y0(cr)
(Bessel function of the second kind). The general solution to the separable PDE is then

h(r, t) = c0e
−λt

(
c1J0

(√
λ

nK0
r

)
+ c2Y0

(√
λ

nK0
r

))

for λ ≥ 0. The values of λ for which nontrivial solutions exist are constrained by the bound-
ary conditions. In the case of the simple halocline model in [7] with boundary conditions
given by Equation 19, the condition hr|r=0 = 0 requires c2 = 0. The condition hr|r=R = 0
requires

λm =
nK0

R2
α2
1m, m = 0, 1, ...

where α1m is the m-th zero of the Bessel function J1. In that case

h(r, t) =

∞∑
m=0

cme
−λmtJ0

(√
λm
nK0

r

)
.
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Figure 4: Diagram of the basic state wind forc-
ing given by Equation 20.
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Figure 5: Eigenfunctions of Equation 24 cor-
responding to the first three eigenvalues λ̂ =
0, 3, 8. (The eigenfunctions are not normalized
to be orthonormal.)

2.3 Eigenanalysis of linearized equation in the absence of wind forcing
perturbation

In reality, K0 varies spatially, in balance with the basic state wind forcing τ0 (Equation 17).
Therefore, Equation 16 does not lend itself to a simple analytical solution.

2.3.1 Basic state wind forcing

The wind forcing τ is assumed to be a known function. We assume that it has the form

τ0(r) = −30τM

( r
R

(
1− r

R

))2
(20)

where τM represents the magnitude of the mean value of τ0 over the gyre. That is,

τM =

∣∣∣∣ 1

A

∫ 2π

0

∫ R

0
τ0(r, θ) r drdθ

∣∣∣∣
where A = πR2 is the area of the gyre. Here we take τM = 0.015 N m−2, which is chosen
to facilitate comparison with [7]. Figure 4 shows the basic state wind forcing.

2.3.2 Eigenanalysis

Suppose that L[h] is a self-adjoint linear operator on a space of real-valued functions F
defined on [0, R] which are integrable with respect to an r-weighted inner product



〈f, g〉 =

∫ R

0
rf(r)g(r) dr. (21)

Then the eigenfunctions of L form a complete orthonormal basis h∗i such that for any
function h in F ,

h =
∞∑
i=0

ci(t)h
∗
i

where ci = 〈h, h∗i 〉. We examine the eigenfunctions of the linear operator

L[h] =
1

r
(K0(r)rhr)r, hr(0) = 0, hr(R) = 0. (22)

Lemma 2.1 The linear operator defined by Equation 22 is self-adjoint with respect to the
inner product given by Equation 21.

Proof

〈L[f ], g〉 =

∫ R

0
(K0rfr)rg dr

=

∫ R

0
(K0rfrg)r dr −

∫ R

0
(K0rgr)fr dr

= (K0rfrg|R0 −
∫ R

0
(K0rgrf)r dr +

∫ R

0
(K0rgr)rf dr

= (K0rgrf |R0 + 〈f,L[g]〉
= 〈f,L[g]〉 .

Although we cannot solve Equation 16 analytically, as in [7] the solution h can be de-
composed into spatially-varying orthogonal modes (eigenvectors) hi with amplitudes ci(t)
which are exponentially decaying on a timescale Ti (inversely proportional to eigenvalues
λi). Therefore, we consider the eigenvalue problem

n

r
[rK0(r)hr]r = −λh (23)

subject to the boundary conditions (Equation 19). It is considerably more convenient to
solve the nondimensionalized problem that results from choosing

r̂ = r/R, ĥ = h/R, K̂0 = K0(r)/K0(R/2), T̂ = (nTK0(R/2))/R2.

The resulting problem is given by



[r̂K̂0ĥr̂]r̂ = − r̂ĥ
T̂

= −λ̂r̂ĥ (24)

where λ := 1/T and K̂0 = 4r̂(1− r̂) by Equation 17 and Equation 20. The nondimension-
alized boundary conditions become

ĥr̂|r̂=0,1 = 0. (25)

Then the timescale of equilibration of the gyre is given by

T0 =
1

λ0
=

R2T̂0
nK0(R/2)

=
R2

nλ̂0K0(R/2)

where the eigenfunctions are assumed to be sorted such that λ0 is smallest, i.e., T0 is longest.
Thus the equilibration is controlled by the slowest eigenfunction.

We solve Equation 24 numerically. The first three eigenvalues are λ̂ = 0, 12, 32 and the
eigenfunctions are shown in Figure 5.

2.4 The nonlinear problem

2.4.1 Steady state solution

In steady state, the residual circulation vanishes, i.e., Ψ̃ = 0. It follows from Equation 14
that

h(r) = −
∫ r

0

(
−τ(r′)

ρ0fk

) 1
2

dr′ + h(0). (26)

Assume that the surface wind stress is given by Equation 20. Then Equation 26 implies

h(r) = −
(

30τM
ρ0fk

) 1
2
(
r2

2R
− r3

3R2

)
+ h(0). (27)

There is no particular reason that h(r), as given by Equation 27, must be positive. Given
that

−
(

30τM
ρ0fk

) 1
2
(
r2

2R
− r3

3R2

)
= −

(
30τM
ρ0fk

) 1
2 r2

R

(
1

2
− r

3R

)
< 0

for 0 ≤ r ≤ R, the sign of h(r) depends upon the choice of h(0). If h(0) is sufficiently
large, then h(r) > 0 for all r, i.e., the isopycnal does not “outcrop.” There is a relationship
between the location at which the steady state solution outcrops and the volume V that is
bounded between the isopycnal and the surface. If the isopycnal does not outcrop, then



V = 2π

∫ R

0
rh(r) dr = −70πCR3

60
+ h(0)πR2 (28)

where

C =

(
30τM
ρ0fk

) 1
2

. (29)

Otherwise,

V = 2π

∫ y0

0
rh(r) dr = −πCy

4
0

4R
+

2πCy50
15R2

+ πy20h(0) (30)

where r = y0 is the outcropping location (i.e., the location at which h(y0) = 0). Substituting
h(0) from Equation 27 into Equation 30 (with h(y0) = 0), it follows that

V

2πC
= − 1

10R2
y50 +

1

8R
y40.

Let

q(y0) := − 1

10R2
y50 +

1

8R
y40 −

V

2πC
. (31)

Suppose that 0 ≤ y0 ≤ R. Then

q′(y0) = − 1

2R2
y40 +

1

2R
y30 =

y30
2R

(
1− y0

R

)
≥ 0

while

q(0) = − V

2πC
< 0.

Therefore, for the existence of a single root 0 ≤ y0 ≤ R of Equation 31, it is necessary and
sufficient that

q(R) =
R3

40
− V

2πC
≥ 0,

or equivalently

V ≤ CπR3

20
.



Define

Vc =
CπR3

20
=

(
30τM
ρ0fk

) 1
2 πR3

20
. (32)

Then Vc represents the “critical volume” such that if V < Vc, then the isopycnal will outcrop;
if V > Vc, then the isopycnal will not outcrop. If V = Vc, then outcropping will occur at
y0 = R. A contour plot of Vc as a function of the wind stress τM and eddy efficiency k is
given in Figure 6.

Figure 6: Plot of the critical volume Vc defined in Equation 32 as a function of the mean surface
wind stress τM and the eddy efficiency k. Reference values for the model are τM = 0.015 N m−2

and k = 3 · 106 m2 s−1.

2.5 Numerical solution of the nonlinear problem

Consider the nonlinear problem

ht =
1

r
(rKhr)r +

1

r

(
r
−τ
ρ0f

)
r

(33)

with



K = ks = k|hr| (34)

and

hr|r=0,R = 0. (35)

We assume that τ is a known function given by Equation 20. As previously noted, we
wish to relax the assumption of a fixed isopycnal depth at the gyre boundary in [7]. Using
these boundary conditions and the choice of τ according to Equation 20 (specifically, τ(0) =
τ(R) = 0), it follows from Equation 33 that

Vt = 2π

∫ R

0
rht dr = 0

i.e., the gyre volume is conserved. However, if h(r, t) changes sign on 0 ≤ r ≤ R, then
the positive volume bounded between the isopycnal and the surface is not conserved. In
addition, a constraint is needed to prevent h < 0, which is physically unrealistic. Thus, a
modification of Equation 33 is needed and we introduce a regularization factor F given by

F (h) = 100 exp(−10h) + 1. (36)

The modified halocline depth evolution equation is given by

ht =
1

r
(rKFhr)r +

1

r

(
r
−τ
ρ0f

)
r

. (37)

Now if h ≤ 0, then F (h) is very large, i.e., the diffusion term is strong. However, if h ≥ 0,
then F (h) ≈ 1, so that F (h) does not modify the solution. An added benefit is that if h ≥ 0
for all r and t, then the positive volume bounded between the isopycnal and the surface
will be conserved.

We implement a numerical scheme using the “pdepe” package in Matlab to solve Equa-
tion 37 to steady state (∼3 years) for three initial volumes (0.5Vc, Vc, and 1.5Vc). The results
are compared in Figure 7 with the theoretical steady state solution given by Equation 26
and reveal that the model closely approaches the theoretical steady state with minimal
volume “loss” (i.e., negative signed volume).

In addition, we explore the steady state solution as a function of the wind stress and
initial volume of the gyre (Figures 8 and 9). Strong mean surface wind stress deepens the
halocline near the gyre interior and shoals it near the boundary (Figure 8). Figure 9 shows
the steady state solution for the critical volume with τM = 0.015 N m−2 (yellow curve)
and for various fractions of the critical volume. For τM = 0.015 N m−2, it turns out that
Vc ≈ 34, 600 km3.
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r (km)
0 200 400 600

h 
(m

)

0

20

40

60

80

100

120

Solution

0.005 N m-2

0.01 N m-2

0.015 N m-2

0.02 N m-2

0.025 N m-2

0.03 N m-2

Figure 8: Steady state solutions of Equation 37
for varying choices of τM . Each equation is ini-
tialized from a constant state h0(r) = Vc/πR

2,
where Vc is the critical volume for τM = 0.015 N
m−2. (Thus, Vc is the volume bounded between
the yellow curve and the surface.)

r (km)
0 200 400 600

h
(m

)

0

20

40

60

80

100

120

Solution

2.08e+04 km3

2.77e+04 km3

3.46e+04 km3

4.15e+04 km3

4.85e+04 km3

5.54e+04 km3

Figure 9: Steady state solutions of Equation 37
for varying initial volume V . Each equation is
initialized from a constant state h0(r) = V/πR2.
The yellow curve shows the solution for the crit-
ical volume Vc with τM = 0.015 N m−2.



3 Multi-layer Model

Integrating Equation 33 with ht = 0 reveals that in steady state,

hr =
τ

ρ0fK
(38)

or with the assumption K = k|hr|,

hr = −
(
− τ

ρ0fk

) 1
2

.

In any case, in steady state, the slope hr is directly proportional to the surface wind stress
and inversely proportional to the eddy diffusivity/eddy efficiency. However, Figure 3 reveals
considerable vertical variation of the winter and summer mean halocline slope. Specifically,
between about ∼50-200 m, the isopycnal slope rapidly increases with depth. Evidently, the
single-layer halocline model cannot capture this vertical variation.

In addition, estimates of the along-isopycnal eddy diffusivity have recently been derived
from observations at four moorings in the Beaufort Gyre using the scaling law

K ∼ (EKE)
1
2 · l

where EKE represents the eddy kinetic energy and l represents a mixing length scale [8].
Figure 11 reveals that the eddy diffusivity decreases with depth, which is not immediately
consistent with the parameterization of the eddy diffusivity K as directly proportional to
the isopycnal slope hr.

3.1 Multi-layer uncoupled model with observed eddy diffusivity

In order to attempt to capture the observed vertical variation of the halocline slope, we
consider a multi-layer model in which each isopycnal has a depth evolution equation given
by

hit =
1

r
(rFKihir)r +

1

r

(
r
−τ
ρ0f

)
r

(39)

for 1 ≤ i ≤ N , where N represents the number of interfaces. The boundary conditions for
each interface are given by Equation 35 and the surface wind stress τ is given by Equation
20. Here Ki is a constant with respect to r and t. Note that in this model, the isopycnal
depths evolve independently of each other (i.e., the interfaces are uncoupled).

As for the nonlinear single-layer halocline model, we solve Equation 39 numerically to
steady state (∼10 years), initializing each equation from a state of constant depth zi (Figure
10). Here Ki is estimated from the mean diffusivity observed in the Beaufort Gyre at a
sequence of depths zi = {30, 80, 130, 180, 230, 280} m (see Figure 11, red line). Since the
observed diffusivity is noisy, we fit a cubic interpolant to a series of points from the observed
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data and use it to estimate Ki for each depth zi. The applied diffusivities and steady state
layer depths are shown in Figure 10.

Thus, this simple model is able to capture the observed mean vertical structure of
the halocline, and in particular, the increase of isopycnal slope with depth beneath the
mixed layer (Figure 3, right column). However, the model does not explain what processes
determine the observed vertical profile of the eddy diffusivity in the first place.

3.2 Multi-layer coupled model

By Equation 38, which was derived in the absence of boundary fluxes, it follows that a
necessary condition for vertical variation of the isopycnal slope is vertical variation of the
eddy diffusivity. Specifically, in steady state the ratio of the interface slopes satisfies

H1r

H2r
=
K2

K1
.

(From now on, h will denote a layer thickness and H will denote the depth of a particular
isopycnal interface, a distinction that will become relevant in the following derivation.)

A multi-layer coupled model should be capable of capturing the observed variation of
the halocline slope and eddy diffusivity with depth. As has been demonstrated, the existing
model with a given interface-dependent eddy diffusivity can capture the observed halocline
slope in steady state. However, it cannot explain how the gyre equilibrated to the observed
state with the observed vertical variation of eddy diffusivity. Baroclinic instability, and thus
the eddy diffusivity at any point in time, should depend not only upon the local interface
slope Hir, but upon the stability characteristics of the entire water column. Therefore, we
construct a multi-layer coupled model in which each interface depth Hi evolves according
to

Hit =
1

r
(rFKiHir)r +

1

r

(
r
−τ
ρ0f

)
r

(40)

for i = {1, 2}. This equation is accompanied by the boundary condition

Hir|r=0,R = 0, (41)

i.e., there is no flux of height (equivalently, volume) through the boundary. We consider a
three-layer model, which represents a compromise between the need to accurately capture
instability that arises from interactions between layers and the desire for simplicity and to
keep computational demands low.

Equation 40 is solved through the iterative process illustrated in Figure 12. First,
the time interval t0, . . . tN on which the solution is desired is subdivided into a number
of equally-spaced segments tj , . . . , tj+M . Beginning at time t0, the initial layer slopes and
densities are used to calculate the geostrophic velocities in the θ-direction in each layer from
the multi-layer shallow water equations. The resulting profile of the water column can be
baroclinically unstable, i.e., the tilt of the isopycnals relative to the isobars can represent a



Figure 12: Process model of the solution
method of the three-layer coupled model.

Figure 13: Schematic diagram of the layer
thicknesses hi and layer geostrophic velocities
Vi in the three-layer model.

source of potential energy that is converted into kinetic energy as the baroclinic instability
(eddy) grows. Therefore, a stability analysis is performed in the setting of the multi-layer
shallow water quasi-geostrophic potential vorticity equations and the eddy diffusivity Ki for
each layer interface is estimated. Crucially, the eddy diffusivity depends upon the vertical
profile of the isopycnal slope and geostrophic current such that Equation 40 represents a
multi-layer coupled model in which the interfaces interact through the depth-varying eddy
diffusivity Ki. The eddy diffusivities Ki are then used to integrate Equation 40 forward
to time tM , and the process of obtaining the geostrophic velocities and eddy diffusivities is
repeated for the next segment beginning with the model state at time tM . Equation 40 is
thus integrated forward until the solution is obtained on the entire interval t0, . . . tN . Due to
the computational demands of this algorithm, we currently calculate Ki at a single spatial
location and update the eddy diffusivity every M timesteps. More detailed derivations of
these calculations follow.

3.2.1 Geostrophic velocities

The geostrophic velocities are obtained from the interface slopes and densities in the setting
of the multi-layer shallow water approximation via the geostrophic relations. Using the
hydrostatic relation and the simplified geometry in Figure 13, it follows that the pressure
Pi in the ith layer is given by



P1 = ρ1g(η − z)
P2 = ρ1gη + ρ1gh1 − ρ2g(z + h1)

P3 = ρ1gη + ρ1gh1 + ρ2gh2 − ρ3g(z + h1 + h2),

where η represents the sea surface height perturbation. Differentiating with respect to r
yields

∂P1

∂r
= ρ1g

∂η

∂r
∂P2

∂r
= (ρ2 − ρ1)g

∂h1
∂r

+ ρ1g
∂η

∂r
∂P3

∂r
= (ρ3 − ρ1)g

∂h1
∂r

+ (ρ3 − ρ2)g
∂h2
∂r

+ ρ1g
∂η

∂r
.

The system can be closed by imposing V3 = 0, i.e., the assumption of no motion in the deep
bottom layer. This then implies that

V1 =
g

ρ0f

[
(ρ3 − ρ1)

∂h1
∂r

+ (ρ3 − ρ2)
∂h2
∂r

]
V2 =

g

ρ0f

[
(ρ3 − ρ2)

∂h1
∂r

+ (ρ3 − ρ2)
∂h2
∂r

]
.

Now letting ρ0 = ρ1 and defining the reduced gravity g′i as

g′i =
ρi+1 − ρi

ρ1
g (42)

it follows that

V1 =
1

f

[
(g′2 + g′1)

∂h1
∂r

+ g′2
∂h2
∂r

]
(43)

V2 =
1

f

[
g′2
∂h1
∂r

+ g′2
∂h2
∂r

]
.

3.3 Stability analysis

The following theory is developed in [11]. Given the geostrophic velocities, we perform 
a stability analysis on the linearized multi-layer shallow water quasi-geostrophic potential 
vorticity equations. Given the shallow water approximation, in each layer the potential 
vorticity Qi satisfies

DQi
Dt

= 0, Qi =
ζi + f

hi



where ζi is the relative vorticity of the fluid, f is the planetary vorticity, and hi is the layer
thickness. In other words, the potential vorticity is a conserved quantity. Assuming that
1) variations in layer thickness are small relative to the total layer thickness; 2) the Rossby
number is small; and 3) variations in the Coriolis parameter are small, then this equation
can be linearized to give the so-called quasi-geostrophic potential vorticity in each layer,

qi =

(
βy + ζi − f0

h′i
Hi

)
,

which is also conserved. Here Hi represents the basic state layer thickness and h′i represents
a layer thickness perturbation. For simplicity, we assume that β = 0.

The N -layer multi-layer shallow water equations may be obtained by introducing a
streamfunction ψi for each layer. Then the potential vorticity qi in each layer 1 ≤ i ≤ N
can be expressed as

q1 = ∇2ψ1 +
f20
H1

(
ψ2 − ψ1

g′1
− f20
gH1

ψ1

)
(44)

qi = ∇2ψi +
f20
Hi

(
ψi−1 − ψi
g′i−1

− ψi − ψi+1

g′i

)
(45)

qN = ∇2ψN +
f20
HN

(
ψN−1 − ψN

g′N−1
+

f0
Hn

ηb

)
, (46)

and evolves according to

∂qi
∂t

+ J(ψi, qi) = 0. (47)

Here we assume that the bottom topography ηb = 0. We now investigate this system for
the presence of baroclinic instability by linearizing Equations 44-46 and 47 (with N = 3)
about a basic state layer potential vorticity Qi, velocity Vi and streamfunction Ψi. Here
Vi is constant in each layer and represents the velocity in the y-direction (see Figure 13).
Then Equations 44-46 reduce to

q′1q′2
q′3

 =

∇2ψ′1
∇2ψ′2
∇2ψ′3

+ f20

−
1

gH1
− 1

g′1H1

1
g′1H1

0
1

g′1H2
− 1
g′1H2

− 1
g′2H2

1
g′2H2

0 1
g′2H3

− 1
g′2H3


ψ′1ψ′2
ψ′3

 (48)

Separating the terms in Equation 47 into sums of basic state variable and perturbations
(indicated by primes) yields

∂q′i
∂t

+
∂Qi
∂t

+
∂ψ′i
∂x

∂q′i
∂y

+
∂ψ′i
∂x

∂Qi
∂y

+
∂Ψi

∂x

∂q′i
∂y

+
∂Ψi

∂x

∂Qi
∂y

− ∂ψ′i
∂y

∂Qi
∂x
− ∂ψ′i

∂y

∂q′i
∂x
− ∂Ψi

∂y

∂Qi
∂x
− ∂Ψi

∂y

∂q′i
∂x

= 0.



Subtracting the equation satisfied by the basic state variables and assuming that products
of perturbations are small, the linearized potential vorticity evolution equation reduces to

∂q′i
∂t

+
∂ψ′i
∂x

∂Qi
∂y

+
∂Ψi

∂x

∂q′i
∂y
− ∂ψ′i

∂y

∂Qi
∂x
− ∂Ψi

∂y

∂q′i
∂x

= 0.

Now by assumption, there are no gradients of basic state variables in the y-direction, so
this equation further reduces to

∂q′i
∂t

+ Vi
∂q′i
∂y

+ u′i
∂Qi
∂x

= 0 (49)

after making use of the streamfunction relations. Here

∂Q1

∂x
∂Q2

∂x
∂Q3

∂x

 = f20

−
1

gH1
− 1

g′1H1

1
g′1H1

0
1

g′1H2
− 1
g′1H2

− 1
g′2H2

1
g′2H2

0 1
g′2H3

− 1
g′2H3


V1V2
V3

 . (50)

Now define

Lz := f20

−
1

gH1
− 1

g′1H1

1
g′1H1

0
1

g′1H2
− 1
g′1H2

− 1
g′2H2

1
g′2H2

0 1
g′2H3

− 1
g′2H3

 .
We search for potential vorticity perturbations with a wave-like structure in the y-direction
that are growing in time. Specifically, assuming the ansatz

q′i = <
[
q̃ie

ik(y−ct)
]
, ′

i = <
[
ψ̃ie

ik(y−ct)
]
, (51)

and substituting Equations 50 and 51 into Equation 49 yields

Viq̃i − ψ̃i
∂Qi
∂x

= cq̃i, (52)

where, by Equation 48,

q̃i = (Lz − k2I)ψ̃i.

Therefore, Equation 52 is equivalent to a matrix eigenvalue problem that can be solved
numerically for c and q̃i. For every wavenumber k, there are three eigenvalues c1, c2, c3 and
corresponding eigenvectors q̃i1, q̃i2, q̃i3 that solve the system. By Equation 51, the fastest-
growing perturbation is represented by the eigenvector whose corresponding eigenvalue has



maximum imaginary part. Therefore, we search numerically over a range of wavenumbers
spanning the baroclinic deformation radii for the maximum baroclinic instability growth
rate given by

λ = max
k

k=[c], (53)

and therefore

q′i = eλt(<[q̃i] cos(ky) + i=[q̃i] sin(ky))

u′i = eλt(<[ũi] cos(ky) + i=[ũi] sin(ky))

and

q′iu
′
i = e2λt(<[q̃i]<[ũi] cos2(ky) + =[q̃i]=[ũi] sin2(ky)

−<[q̃i]=[ũi] sin(ky) cos(ky)−=[q̃i]<[ũi] sin(ky) cos(ky)).

Averaging meridionally,

q′iu
′
i ∼ (<[q̃i]<[ũi] + =[q̃i]=[ũi]).

Now the layer eddy diffusivity κi that we seek is given by

κi = −
q′iu
′
i

Qix
. (54)

However, q′iu
′
i is known only up to a constant factor. Therefore, we choose the parameteri-

zation

κ̂i = −<[q̃i]<[ũi] + =[q̃i]=[ũi]

Qix
, κi = kcλ

κ̂i
maxi κ̂i

where kc = 109 is chosen such that ki has the observed order of magnitude for eddy diffu-
sivity in the Beaufort Gyre halocline (i.e., 100-1000 m2 s−1). Thus, κi is proportional to
the baroclinic instability growth rate λ and comparing κ̂i/κ̂j for i 6= j reflects the ratio of
the eddy diffusivities between the layers.

Notably, κi represents the eddy diffusivity of the i-th layer, rather than the i-th interface.
However, the geometry of the three-layer model (Figure 13) suggests that K1 = κ1 and
K2 = κ3, where Ki represents the eddy diffusivity coefficient for the i-th interface.



3.4 Results

Using this algorithm, we investigate the solution of Equation 40 in steady state. Specifically,
we initialize the model from numerous configurations of initial isopycnal slopes (Figure 15,
red dots) and integrate forward until the model reaches steady state (typically ∼5 years).
In all cases, the model evolves to a steady state in which the isopycnals are approximately
parallel (Figure 15, black dots), i.e., S1 ≈ S2 and K1 ≈ K2. Figure 14 illustrates the
evolution to steady state for a representative case.

Figure 15 reveals that there are two configurations for the vertical profile of the eddy
diffusivity; these configurations correspond to the two baroclinic modes in the three-layer
problem (Figure 16). A sign change of the basic state potential vorticity gradient between
layers is a necessary condition for baroclinic instability. If this sign change occurs between
the second and third layers, then the baroclinic instability can be dominated by the first
baroclinic mode and K1 ≈ K2. On the other hand, if the sign change occurs between the
first and second layers, then the instability can be dominated by the second baroclinic mode
and K2 << K1.

Regardless of the initial conditions, the model evolves to a steady state in which S1 ≈ S2,
i.e., the line S1 = S2 is an attractor (Figure 15). The magnitude of the final slopes is
determined by the wind stress τ .

However, the observed winter and summer mean isopycnal slopes in the Beaufort Gyre
are depth-dependent (Figure 3, right column). In order to obtain depth-dependent isopycnal
slopes in steady state, it is necessary to introduce fluxes of potential vorticity (equivalently,
volume) at the gyre boundary. The following is a simplified proof-of-concept that is solved
analytically.

Suppose that a flux of volume Q enters the second layer only, and that no flux enters
the first layer, through the gyre boundary. Specifically, the boundary conditions for the
second layer thickness are

h2r|r=0 = 0, Kh2r|r=R =
Q

2πR
.

In order to preserve the gyre volume, it is necessary to remove an equivalent volume from
the gyre interior, distributed across the entire gyre. Specifically, the thickness evolution
equation is given by

h2t =
1

r
(rKh2r)r −

Q

πR2
.

(Here we are assuming that K = K1 = K2.) This equation satisfies

2π

∫ R

0
rh2t = 0,

i.e., the volume bounded between the first and second interfaces is constant with respect to
time. The steady-state solution of this equation is given by
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Figure 14: Example of the evolution of the halocline depth in the multi-layer model to steady state
(red curves; ∼5 years) from the indicated initial state (black curves). The model state after ∼2.5
years is also indicated (blue curves).



Figure 15: Ratio of diffusivities K2 and K1 as a function of the isopycnal slopes S1 and S2

(colormap). Slope trajectories from the three-layer coupled model (colored lines) for various choices
of the initial slopes (red dots), and resulting steady-state slopes (black dots). The gyre attracts to
a steady state of parallel slopes (i.e., S1 = S2; dashed white line). The wind stress τM determines
the magnitude of the final slopes.



Figure 16: (Center) Example of maximum growth rate kc for various wavenumbers k and wavenum-
ber corresponding to the maximum growth rate (red circle). In this case the instability is dominated
by the second baroclinic mode. Sign change of PV gradient Qix is a necessary condition for baro-
clinic instability. (Left) Schematic diagram of water column profile and eddy diffusivities when the
instability is dominated by the first baroclinic mode. (Right) Schematic diagram of water column
profile and eddy diffusivities when the instability is dominated by the second baroclinic mode.

Figure 17: Solution of Equations 55 and 56 with h1(0) = 150 m, h2(0) = 100 m, and Q = −15, 000
km3 yr−1.



h2(r) = h2(0) +
Qr2

4πR2K
. (55)

As before, the evolution equation for the first layer depth is given by

h1t =
1

r
(rKh1r)r +

1

r

(
r
−τ
ρ0f

)
r

with boundary conditions

h1r|r=0,R = 0.

In steady state, the solution of this equation is given by

h1(r) = h1(0)− 30τM
ρ0fK

(
r3

3R2
− r4

2R3
+

r5

5R4

)
. (56)

The solution of Equations 55 and 56 is shown in Figure 17 with some representative choices
of the unspecified parameters (h1(0) = 150 m, h2(0) = 100 m, Q = −15, 000 km3 yr−1.
Here the boundary flux is exaggerated to show effect.) It can be seen that the isopycnal
slope increases with depth.

4 Conclusions

Current adiabatic models of the Beaufort Gyre halocline represent it as a buoyant interface
with a depth that is that is increased by Ekman pumping; the deepening is opposed by
mesoscale eddy transport. In steady state, the isopycnal slope is predicted to be propor-
tional to the strength of the surface wind stress and inversely proportional to the eddy
diffusivity. Eddy diffusivity is often parameterized to be proportional to isopycnal slope,
yet observations from the PHC climatology suggest that the isopycnal slope increases with
depth, while mooring-derived along-isopycnal eddy diffusivity decreases with depth. This
suggests that the current theory should be reconsidered.

First, we have improved the single-layer halocline model from [7]. Specifically, seasonal
outcropping of isopycnals is observed in the Beaufort Gyre, a phenomenon that the modified
single-layer model can now capture. In this setting, we have also derived an expression for
a so-called “critical volume” Vc that depends upon the wind stress and eddy diffusivity.
The volume of the gyre in relation to the critical volume determines whether the halocline
outcrops.

In addition, we have developed a multi-layer model in which the isopycnal interfaces are
coupled with each other through the depth-dependent eddy diffusivity. The strength and
vertical profile of the eddy diffusivity is determined from the baroclinic instability charac-
teristics of the geostrophic currents, which are derived from the isopycnal slope via thermal
wind balance. Using this simple model of eddy-mean flow interactions, we have identified



the critical processes that determine the vertical structure of the halocline. Specifically, we
have shown that potential vorticity sources at the gyre boundary (over continental slopes)
are key to setting up a realistic depth-varying distribution of the isopycnal slope in steady
state. In the absence of the boundary fluxes, the gyre attracts to a steady state with depth-
independent isopycnal slope, regardless of the initial conditions. These findings further
justify the need for observational constraints on boundary fluxes and eddy diffusivity.
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