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In this lecture, we detail the structures of the ice-ocean boundary layers and of the water 
motion beneath an ice shelf. These flows strongly depend on the thermodynamic properties 
of water (e.g. latent heat, phase diagram, equation of state) and we therefore first review 
these properties of fresh and salty water before turning to fluid mechanics.

1  The Ice-ocean Interface and the Boundary Layer

1.1 Impact of the melting of ice on the ocean

1.1.1  Phase diagram of water

For a mixture of ice and fresh water to be at equilibrium, the temperature has to be equal to 
the freezing temperature Tf , which only depends on the pressure. At one atmosphere, this 
temperature is very close to 0◦C, and (unlike most other pure substances) it decreases as the 
pressure increases, approximately as −1 × 106 Pa · K−1.

Because seawater contains ions, its thermodynamic properties also depend on the salinity. 
Once the pressure is fixed, the dependence of the freezing point on salinity can be seen on 
the phase diagram Fig. 1. For simplicity, we describe in the following a mixture of pure 
water and salt (NaCl).

In this figure, the grey zones are delimited by the liquidus (boundary with the liquid 
solution) and the solidus (boundary with the solid solution). If the temperature and salinity 
are set such that the system falls into one of these two grey zones, the equilibrium state is 
a coexistence between a liquid solution and a pure solid (either ice or salt). The point E is 
called an eutectic point, and corresponds, at one atmosphere, to a temperature of −21.2◦C 
and a salinity per mass of 23.3%.

These coexistence zones are of importance for ice-ocean interfaces: the melting of pure 
ice in seawater tends to drive the liquid toward the liquidus. For instance, consider the total 
melting of a mass of ice ΔM (temperature Ti, salinity Si = 0) into a mass of seawater M 
(temperature Tw, salinity Sw). The final properties of the liquid (Tmix, Smix) follow from the 
conservation of energy and mass. The first principle of thermodynamics reads

Mcw(Tmix − Tw) + ΔM [cw(Tmix − Tf) + �+ ci(Tf − Ti)] = 0, (1)



Figure 1: Phase diagram of a mixture of water and salt, at a fixed pressure.

where cw and ci are the specific heat capacities of water and ice, and � is the specific latent
heat at the freezing temperature Tf . The conservation of salt mass prescribes

M (Smix − Sw) + ΔM (Smix − Si) = 0. (2)

The changes in the seawater properties result from (1) and (2),

Tmix = Tw −
(

ΔM

M +ΔM

)[
(Tw − Tf) +

�

cw
+

ci
cw

(Tf − Ti)

]
< Tw, (3)

Smix = Sw −
(

ΔM

M +ΔM

)
Sw < Sw. (4)

As can be seen in Fig. 1, a decrease of the temperature and salinity of a liquid solution
favors the coexistence of pure ice and liquid in a liquidus state. Moreover, until two phases
coexist at equilibrium, the liquid properties evolve according to

(Tmix − Tw) =

(
ΔM

M +ΔM

)
(Teff − Tw) , (Smix − Sw) =

(
ΔM

M +ΔM

)
(Seff − Sw) , (5)

with Seff = 0 and Teff = Tf − �/cw − (ci/cw)(Tf − Ti), that ranges between −85◦C to −100◦C
depending on the ice temperature. Equation (5) has a graphical interpretation on the phase
diagram, and shows that during the melting, the liquid evolves along a straight line toward
the point (Seff , Teff).

1.1.2 A closer look at the low salinity zone

Since the salinity of the eutectic points is by far larger than the actual salinity observed in
the ocean, the actual zone of the phase diagram that is being used for the study of ice-ocean
interaction is reduced. In the following, we focus on the framed zone of Fig. 1.

The phase diagram in this zone is sketched in Fig. 2. As previously explained, the evo-
lution of seawater during the melting of ice corresponds on the phase diagram to evolutions



Figure 2: Phase diagram of a mixture of water and salt, at a fixed pressure and low salinities.
Salinity is expressed in PSU (practical salinity unit).

along straight lines, that are plotted in green. The lines of constant density are isopycnals
(in light blue) and the curve of maximal density is in dark blue).

From this information, we deduce that the melting of ice may either increase or decrease
the liquid density, that is either cause downwelling or upwelling. The boundary between
these two regimes is plotted in red in Fig. 2 and can be deduced from the other curves. Note
that all these phase diagrams evolve with the pressure, i.e. with the depth.

1.1.3 Application: the “ice pump” effect

As an application of these thermodynamics properties, we describe the “ice pump” effect,
sketched in Fig. 3.

Figure 3: Sketch of the ice pump effect.

(a) We consider an insulated tank filled with water of uniform salinity and temperature,
the latter being the freezing temperature at room pressure.



(b) We introduce a vertical slab of ice. Although the water at the surface is at the freezing
temperature, the water at depth is not, because of the pressure dependence of the
freezing temperature. This causes the ice at depth to melt, freshen, and cool the
adjacent water.

(c) As seen in Fig. 2, the melting creates less dense water because of the freshening,
leading to the cooled water rising. When close to the surface, the reduced freezing
temperature leads the cooled water to freeze and form ice.

(d) At equilibrium, all the ice is at the surface.

1.2 The ice-ocean boundary layer

Considering the conditions required for an equilibrium between ice and seawater, we discuss 
the boundary layers in the ocean, in particular the ones below ice shelves. We first disregard 
the flow motion, then take it into account in turbulent boundary layer models.

1.2.1 Laminar boundary layers

If the water in the ocean is at rest, the situation below ice shelves could be represented by one 
of the sketches of Fig. 4. To connect the ocean temperature and salinity to the ones at the ice-
ocean interface, where they are prescribed by the phase equilibrium, a boundary layer 
develops. As heat and molecular diffusion take place, this boundary layer thickens. This 
process may lead to convective instabilities.

Figure 4: Temperature and salinity close to the interface.

(a) If the temperature in the ocean is larger than the one at the interface, heat is transfered
to the ice shelf, that causes melting . That ablation process is unstable because of the
dynamics of double diffusion: whereas the salt diffusion stabilizes the stratification,
the faster heat diffusion triggers a convective instability1. This leads to thermohaline
staircases, that are well-mixed layers separated by sharp interfaces [1]. Note that in the
presence of enough shear, this differential diffusive pattern vanishes, which stabilizes
the boundary (melting causes upwelling, see Fig. 2).

1As can be seen in Fig. 2, for ocean salinity of ∼ 34.5 psu, the density evolution of water with temperature
no longer presents an anomaly at low temperatures.



(b) If the temperature in the ocean is smaller than that at the interface, heat is transfered
from the ice shelf to the ocean, which causes freezing. This process is unstable, because
in this range of parameters freezing causes downwelling (see Fig. 2).

1.2.2 Turbulent boundary layers

Even though laminar boundary layers can be observed where the currents are weak, turbulent
boundary layers are more common. They occur when there is enough shear to observe mixing
in the boundary layers. They can be modeled as shown in Fig. 5, where we identify

• A surface layer, where turbulent mixing is influenced by the boundary, and an outer
layer, where is it not.

• An interfacial sublayer, where the turbulence is greatly damped by viscosity. Its width,
of the order of a millimeter or less, is determined by the turbulence in the outer layer.
The rapid evolution of the temperature and salinity needed to match the bulk flow
ones to the surface ones occur within this thin layer.

Figure 5: Turbulent boundary layer.

Whereas heat and salt fluxes, crucial to predict the dynamics of the ice shelf, can be
easily worked out for a laminar boundary layer, they are much more difficult to predict in
the case of a turbulent boundary layer. We present one model that describes the ice shelf
evolution from these fluxes. We start by making the assumption that the freezing point at
the ice-ocean interface Tb can be expressed as a linear function of salinity Sb and pressure
(i.e. depth zb) at this same place which we call the liquidus relationship:

Tb = aSb + b+ czb. (6)

We then write the energy flux balance at the ice-ocean interface,

ρiab�i = ρiciκi

(
∂Ti

∂z

)
b

− qTb , (7)

where:



• ρiab�i is the heat flux resulting from ice melting (ab is the ablation rate, and �i is the
specific latent heat).

• ρiciκi

(
∂Ti

∂z

)
b
is the heat flux from the ice shelf (ρi is the ice shelf reference density, ci

its specific heat capacity, and κi its thermal diffusivity).

• qTb is the heat flux from the turbulent boundary layer that we wish to model.

We also balance the salt flux at the ice-ocean interface qSb with the height variation of
seawater,

ρiabSb = −qSb , (8)

where Sb is the salinity at the ice-ocean interface. For given heat and salt fluxes, we can
therefore predict the evolution of the ice shelf from this set of equations.

Theoretical predictions for these fluxes in turbulent layers can be carried out by matching
solutions for an inner laminar and a turbulent logarithmic layer. The roughness of the surface
can also be modeled (see, e.g., [2]). In situ experiments suggest that simple laws apply [3],
that read for the heat flux,

qTb = ρwcw

(√
Cd

0.006

)
U(Tf − T ), (9)

where w refers to the seawater, Cd is the momentum exchange coefficient, U is the velocity of
the mixed layer, T is the temperature of the far-field water and Tf the freezing temperature.

1.2.3 Observations and open questions

Ice-shelf evolution As mentioned, in situ measurements of the heat and salt fluxes can
be done based on oceanic observations of correlations between vertical velocities and tem-
perature/salinity. In this section, we describe how direct observations of the melt rate can
be performed.

Figure 6: Power spectrum of a radar signal.

To investigate the dynamics of the basal melting, high precision radars can be used. The
echo is recorded at the same place and at different times. For a given acquisition, a typical



power spectra is reported in Fig. 6; it consists of a dominant component at approximately
800m (the bottom of the ice shelf), and a multitude of other peaks, resulting from internal
reflectors. The precise positions of these reflectors, randomly distributed among the ice,
evolve between each acquisition because the ice shelf thickens. By looking at the displacement
of the peaks in the power spectrum, it is therefore possible to track these reflectors, i.e. to
acquire the vertical deformation field in the ice shelf, see Fig. 7.

Figure 7: Evolutions of the reflectors positions.

Another possibility is to record the temperature, salinity and current below the ice shelf.
This provides the information necessary to calculate the ice-ocean heat flux and the melting
rate. The comparison of these two experimental methods can be used, for instance, to
constrain the ice-shelf evolution models.

Vertical natural convection boundary layers The flow generated by a heated wall has
been theoretically studied by Wells and Worster [4], who discuss three regimes:

1. At the smallest scales, molecular diffusion controls the heat transfer.

2. A turbulent flow develops, but initially heat transfer is controlled by the buoyancy
generated at the wall.

3. As the turbulent flow grows, heat transfer is eventually controlled by the shear gener-
ated by the flow.

This problem shares similar features as the one met in the ice-ocean interactions, and may
provide a model for the melting rate of vertical ice surfaces. The first regime has been
sampled by early lab experiments (see, e.g., [5]), the second one has been recently described
[6], but the third regime has so far not been fully characterized. It remains also unclear how
the processes and scales change when the ice-ocean interface becomes near-horizontal (the
bottom of the ice shelf). Finally, the effect of the roughness of the interface would also need
to be taken into account.



2 Buoyancy-driven Flow on Geophysical Scales

In this section, we study buoyancy-driven flows outside the boundary layer.

2.1 Scales of motion beneath an ice shelf

In the earth-fixed reference frame, the motion of seawater beneath an ice shelf obeys the 
Navier-Stokes equation,

ρ

(
d�v

dt

)
+ 2ρ�Ω× �v = �∇ ·

↔
T + ρ�g, (10)

where �Ω stands for the rotation of the earth, and
↔
T is the stress tensor (the centrifugal force

has been incorporated in the pressure field). For water, the stress tensor is given by

Ti,j = −Pδi,j + ρν (∂ivj + ∂jvi) . (11)

Compared to the dynamics of ice described in Lecture 1, we have retained the left-hand side
of (10) and assumed water to be a Newtonian fluid.

As we shall see, depending on the part of the flow described (boundary layer, large scales,
. . . ), some of the terms in (10) can be neglected. Typical values of the parameters for an ice
shelf are given in Tab. 1.

Horizontal length Depth Horizontal velocity Rotation

L ∼ 105 m H ∼ 102 m U ∼ 10−1 m · s−1 Ω ∼ 10−4 s−1

Table 1: Scales of motion beneath an ice shelf.

Horizontal flow beneath an ice shelf For the horizontal large scales, the Rossby number
(ratio of the inertial force to the Coriolis force) scales as

RoL ∼ U

LΩ
∼ 10−2 � 1, (12)

and the inertial term can therefore be dropped. Similarly, the Reynolds number scales as

Re ∼ LU

ν
∼ 102 � 1, (13)

and viscous terms remain small. Therefore, the dynamics of these large scales results from a
balance between the pressure gradient and Coriolis force, which is called geostrophic balance.
This approximation may not always be valid, for instance if the velocity is high and/or the
relevant length scale is small (for instance, in or close to the boundary layer).



Structure of the Ekman layers Velocity must vanish at the solid boundaries (ice shelf
base or seabed), which leads to Ekman layers. Their thickness δ can be evaluated by bal-
ancing the Coriolis force with the viscous term,

ρΩU ∼ ρν

(
U

δ2

)
⇒ δ ∼ ν

Ω
(14)

For a typical eddy viscosity of 10−2, the depth scale is δ ∼ 10 m. Within the Ekman layer,
the velocity reduces (vanishes at the solid boundary) and its direction changes (becomes
perpendicular to the geostrophic current close to the solid boundary).

Vertical motion beneath an ice shelf Since the ratio H/L is small, the flow can be
described in hydrostatic balance. It turns out that gravity is balanced by the vertical pressure
gradient, i.e. that

∂P � −ρg. (15)
∂z

Therefore, we can diagnose the pressure within the ocean directly from the density distribu-
tion, as if the water were at rest.

2.2        Buoyancy-driven flow on a slope

2.2.1 Frame of reference and driving pressure gradient

We apply these approximations to the description of a flow generated by the buoyancy 
forcing associated with melting ice. The ice-ocean interface is assumed to be planar, but not 
horizontal: we note the angle α with the horizontal. This tilt allows light water to upwell 
along the ice shelf base.

Figure 8: Coordinate system used to model the problem.

To use the same shallow water approximation as before, we consider the reference frame
aligned with the boundary, see Fig. 8. We then write the Navier-Stokes equation with the



Boussinesq approximation,

(
d�v

dt

)
+ 2�Ω× �v = − 1

ρ0
�∇P − ρ

ρ0
g�k + �∇ · ν �∇ · �v , (16)

where �k is a unit vector in the local vertical direction (z′ in Fig. 8) and ρ0 is the reference
density. Similarly to (15), we can apply the hydrostatic approximation along the transformed
z coordinate axis, that is

(
∂P

∂z

)
+ ρg cosα = 0 =⇒ P (x, y, z, t) = P (x, y, η, t) + g cosα

∫ η

z

ρdz, (17)

where η(x, y, t) is the instantaneous deviation of the ice-ocean interface from its equilibrium
position. We wish to compute the horizontal pressure gradient, that as mentioned before is
essential for the dynamics of the large scales. For this use, we define the gradient parallel to
the ice-ocean interface �∇H, and apply it to (17):

�∇HP (x, y, z, t) = �∇HP (x, y, η, t) + g cosα

(
ρ�∇Hη +

∫ η

z

�∇Hρdz

)
. (18)

We further remove the pressure field associated with a stationary state of the ambient fluid,
and assume that the ice sheet float in equilibrium with this fluid (P (x, y, η, t) = 0): this
leads to the following expression for the reduced pressure gradient in the x and y direction,

�∇HP
′ = g cosα

(
ρ0�∇Hη +

∫ η

z

�∇Hρ
′dz

)
. (19)

2.2.2 Evolution for the layer thickness

If we consider a single active layer, depth-averaged equations sufficiently describe its dynam-
ics. For instance, the incompressibility condition depth-averaged becomes an equation for
the layer thickness D(x, y, t):

∫ 0

−D

�∇ · �v dz =

∫ 0

−D

∂

∂x
vxdz +

∫ 0

−D

∂

∂y
vydz + vz(z = 0)− vz(z = −D) = 0. (20)

The vertical velocity vz(0) describes how the layer develops upward, i.e. is related to the
melt rate ṁ (ṁ > 0 if ice melts),

vz(z = 0) = ṁ. (21)

Moreover, the kinematic evolution of the layer thickness is, with ė the rate at which ambient
water is entrained into the active layer,2

(
∂D

∂t

)
+ �v(z = −D) · �∇H D = vz(−D) + ė. (22)

2This kinematic condition is similar to the one describing the evolution of surface elevation in the surface
wave theory, where ė = 0.



Combining equations (20), (21) and (22), we obtain(
∂D

∂t

)
+ �∇H · D�U = ṁ+ ė, (23)

where �U is the depth-averaged velocity, defined as

�U =
1

D

∫ 0

−D

�v dz = U�ex + V �ey. (24)

2.2.3 Depth integration of the momentum equation

The equations of motion can also be projected on the frame of reference, then depth-
integrated. Note that the subscript a represents the ambient fluid and b represents the
fluid at the ice-plume interface. This gives (see [7] for some details):(

∂(DU)

∂t

)
+ �∇H · Dvx�U − ėvx,a − ṁvx,b − φDV = (25)

− Dρ̄

ρ
g sinα + g cosα

[
D

∂

∂x
(η +Dρ̄)

]
+ �∇H · (Dvy �∇HU) +

[(
ν
∂vx
∂z

)
0

−
(
ν
∂vx
∂z

)
−D

]
,

and(
∂(DV )

∂t

)
+�∇H · Dvy �U − ėvy,a − ṁvy,b + φDU = (26)

g cosα

[
D

∂

∂y
(η +Dρ̄)

]
+ �∇H · (Dvx�∇HV ) +

[(
ν
∂vy
∂z

)
0

−
(
ν
∂vy
∂z

)
−D

]
,

where ρ̄ is the depth-averaged density, subscript a refers to the ambient fluid, subscript b to
the base of the ice shelf, and φ is the Coriolis parameter, defined as

φ = 2Ω(cos θ sin β sinα + sin θ cosα). (27)

The surface stress term can be modeled by a quadratic drag law:(
ν
∂vx
∂z

)
0

= −Cd|�U |U,
(
ν
∂vy
∂z

)
0

= −Cd|�U |V. (28)

2.2.4 Depth integration of conservation equations

Similarly, conservation equations of temperature and salinity can be derived and integrated
over the depth. We get for the temperature

∂(DT̄ )

∂t
+ �∇H · D�UT̄ −ṁTb− ėTa = �∇H · DκT

�∇HT̄ +

[(
κT

∂T

∂z

)
0

−
(
κT

∂T

∂z

)
−D

]
, (29)

where κT is the thermal diffusivity, and for the salinity

∂(DS̄)

∂t
+ �∇H · D�US̄ −ṁSb− ėSa = �∇H · DκS

�∇HS̄ +

[(
κS

∂S

∂z

)
0

−
(
κS

∂S

∂z

)
−D

]
, (30)



where κS is the diffusion coefficient. Models can also be used to describe the fluxes at the
ice-ocean interface, for instance

(
κT

∂T

∂z

)
0

= CdΓTU(Tb − T ),

(
κS

∂S

∂z

)
0

= CdΓSU(Sb − S), (31)

where ΓT and ΓS are thermal and salinity transfer parameters.

2.2.5 Simplifications

Although restricted to a single layer, this model is relatively complete and complex to solve.
Some assumptions are needed to obtain an equation that describes, at a first approximation,
the flow of an inclined plume. We make the following assumptions:

• the flow is in steady state

• the gradients in the cross-slope direction are negligible

• the layer is thin

• the flow is primarily baroclinic and the barotropic forcing term is unimportant

• the flow is supercritical (i.e. sufficiently fast compared to the speed of waves)

This leads to a simple differential equation for momentum conservation,

∂(DU2)

∂x
= −DΔρ

ρ0
g sinα− CdU

2. (32)

2.3 A simple plume model of ice-ocean interaction

We use these simplifications to consider an even simpler problem of a buoyant plume driven 
by melting ice but with no outflow from underneath the glacier. In this model, ambient 
water melts the ice shelf at depth. It then refreezes as the plume travels upwards, like the 
“ice pump” example (Fig. 9). Entrainment of ambient water supplies the heat that drives 
melting, which modifies the buoyancy through cooling and freshening. These plumes are 
turbulent and entrain fluid from the surroundings, so they grow in volume as they rise. The 
entrainment rate is also a function of the plume velocity. Since the flow is driven by the 
component of gravity along the ice base, circulation and melting are sensitive to the interface 
slope. This process is just like a dense overflow turned upside-down.

The geometry of this problem is now simplified into one dimension where D is the depth 
of the plume layer, X is the along slope direction, U is the velocity of the plume in the 
along-slope direction, α is the angle of the slope, and T and S are the temperatures and 
salinities in the plume, Ti,Si are in the ice, Tb, Sb are at the ice-ocean boundary layer, Ta, Sa 
are the ambient properties of the reservoir of the ocean (Fig. 10). We consider the reservoir 
of the ocean to be infinite in depth and to have no flow.



Figure 9: A schematic of a simple plume model of ice-ocean interaction. Dense water inflows
at depth and melts the ice shelf, it then refreezes as the plume travels upwards.

2.3.1 Equations

We simplify the across-slope integrated equations from the previous section into 1 dimension
as discussed in the previous section [8]. Conservation of mass becomes:

d

dX
(DU) = ė+ ṁ (33)

where ė is the entrainment rate and ṁ is the melt rate. This tells us that the mass flux
upward is equal to the entrainment rate plus the melt rate, because we have no other sources
of mass in the system. Conservation of momentum is as derived above (Eq. 32)

d

dX
(DU2) = D

Δρ

ρ0
g sin(α)− CdU

2 (34)

where Cd is the drag coefficient. This tells us that the momentum imparted by the buoyancy
of the plume is balanced by the drag. Conservation of heat is then written as:

d

dX
(DUT ) = ėTa + ṁTb − C

1/2
d ΓTU(T − Tb) (35)

where ΓT is the turbulent transfer coefficient for heat. The equation tells us that the con-
vergence of the heat flux is equal to the amount of heat fluxed in by entrainment of ambient
seawater at temperature Ta and the heat fluxed by the entrainment of boundary water, mi-
nus the turbulent transfer of heat out of the boundary layer into the plume. Conservation
of salinity gives a very similar equation:

d

dX
(DUS) = ėSa + ṁSb − C

1/2
d ΓSU(S − Sb) (36)

where ΓS is the turbulent transfer coefficient for salt. We take

ė = E0U sin(α) (37)
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Figure 10: Geometry of the 1-dimensional problem.

where E0 is a constant. This parameterization is related to the Richardson number of the
flow, i.e. when α = 0, then the flow cannot entrain any fluid nor travel up the slope. The
equation of state is given by

Δρ

ρ0
= βS(Sa − S)− βT (Ta − T ) (38)

The boundary conditions on the interface are given by:

C
1/2
d ΓTU(T − Tb) = ṁ

[
L

c
+

ci
c
(Tb − Ti)

]
(39)

This states that the turbulent transfer of heat at the boundary is equal to the amount of
heat required to bring up the ice to its melting point and melt the ice with melting flux ṁ.
The boundary condition for the salinity at the interface is:

C
1/2
d ΓSU(S − Sb) = ṁ(Sb − Si) (40)

which says that the turbulent flux of salt through the boundary is balanced by a flux of salt
generated by the entrainment of melt water. The final equation in our set is the liquidus
relationship Eq. (6). These equations are a complete set that can be solved to understand
the system.

2.3.2 Results from simplified model

First we show that the slope of the ice shelf determines how effective the buoyancy forcing
is at driving the plume. Figure 11 shows the dependence of the buoyancy and velocities on
the slope of the ice shelf. The plume buoyancy changes down the length of the ice shelf.
The buoyancy initially increases because of the input of meltwater from the ice shelf, then
decreases as freezing transfers freshwater back to the ice shelf. The steeper slopes experience



Figure 11: A figure showing the properties of plumes with different slopes. Red describes
the steepest slope, green moderate, and blue shallowest. The top left panel shows the slope
of the shelf, the top middle panel shows the plume buoyancy, and the plume velocity in the
top right panel versus distance along the shelf (should be in m/s). The bottom left shows
the entrainment rate, the bottom middle shows the temperature of the plume (solid) and
the freezing temperature (dashed) and the melt rate is shown in the bottom right panel.

the maximum buoyancy at shorter distances along the shelf. The other thing to notice is
that with a steeper shelf, the plume velocity is larger. The velocity also has a maximum
corresponding to the location of maximum buoyancy in the plume. The plume grows in
thickness as it entrains ambient seawater, which supplies the heat for melting. The buoyancy
imparted by the melting drives the plume up the sloping ice shelf base. The entrainment
rate is larger for a steeper slope, both because the velocity is larger, but also because α is
larger (Eq. 37). We also see that the temperature begins above the freezing temperature,
but depth decreases along the slope (raising the freezing temperature) and ice is melted
(lowering the plume temperature), so the temperature in the plume falls below the freezing
point, which leads to freezing. For a steeper slope, the melt rate is large but it quickly
transitions to freezing as we move along the slope. For a shallower slope, the melt rate is
lower and freezing starts much further along the slope. The heat supplied by entrainment and



Figure 12: Entrainment rate (left), temperature (middle) and melt rate (right) for different
ambient ocean temperatures. The warmest ambient ocean temperature is given in red and
the coolest is blue. The dashed line gives the freezing temperature in the middle panel and
the solid line gives the plume temperature.

heat lost to the ice shelf in the production of melt water are both proportional to velocity.
Melting is also proportional to the temperature difference across the ice-ocean boundary
layer. Entrainment warms the plume towards the ambient temperature but melting cools
it towards the freezing point. As the plume grows in volume and rises towards the surface,
warming by entrainment becomes less effective, leading to freezing.

Warming the ambient ocean increases the effectiveness of entrainment, so the temperature
difference across the boundary layer also increases. More rapid melting implies greater
buoyancy and a faster plume. Entrainment and melting both rise in response. Eventually,
the zone of freezing is eliminated. In Fig. 12 we see that it takes longer for the entrainment
rate to decrease in a warmer ocean and it takes longer for the freezing to begin. This begins
to quantify how changing ambient ocean temperatures will affect plumes and the melting of
ice shelves.

2.3.3 Melt rate scaling

In this section we will derive the temperature dependence of the melt rate. The melt rate has
a non-linear dependence on the thermal driving, the difference between the ambient ocean
temperature and the freezing point or Ta − Tb. From the thermal boundary condition in the
boundary layer (Eq. 39), since the latent heat of fusion is generally much larger than the
heat required to bring ice up to the melting point, this equation scales like

C
1/2
d ΓTU(T − Tb) ∼ ṁ

L

c

or that
ṁ ∼ U(T − Tb)

where T is the temperature of the plume.



Figure 13: Mixing of the water masses.

The plume is ambient water that is modified by the addition of meltwater. Right at the
ice shelf base, the water is at the freezing point. The properties of the plume water lie in
between the properties of the boundary and the ambient (Fig. 13). This is evident when
considering the case in steady state, where the heat entrained by mixing is equal to the heat
used to melt, or

UE0 sin θ(Ta − T ) ≈ UC
1/2
d ΓT (T − Tb)

so that
(T − Tb)

(Ta − T )
≈ constant

or a function of slope. Thus,
(T − Tb) ∼ (Ta − Tb)

or this temperature difference scales linearly with the thermal driving. Our scaling then
becomes

ṁ ∼ U(Ta − Tb)

Now we consider the scaling for the velocity. From the momentum equation, assuming
along slope changes are small, we have the scaling that

U2 ∼ Δρ ∼ (Ta − T )

Using the linear relationship with temperature again, we write that

U ∼
√
Ta − Tb

Finally this gives us the melt rate dependence on the temperature difference,

ṁ ∼ (Ta − Tb)
3/2 (41)

That scaling is confirmed by solving the entire set of equations where we see that that the
melt rate depends on (Ta − Tb)

3/2 (Fig. 14). While the relationship is always of the form
given in (41), the proportionality depends on the slope of the ice-ocean interface. Steeper
slopes increase the sensitivity to temperature change.



Figure 14: A figure showing the relationship between melt rate and the driving temperature.
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