
1.  Introduction
Europa, one of the four Galilean moons of Jupiter, is considered a prime candidate for extra-terrestrial life (Chyba 
& Phillips, 2001; Hand et al., 2009; Pappalardo et al., 2013) due to its deep (∼100 km) ocean (Carr et al., 1998; 
Cassen et al., 1979; Kivelson et al., 2000) that underlies a thick ice shell (several to tens of km) (Billings & 
Kattenhorn, 2005; Carr et al., 1998; Cassen et al., 1979; Hussmann et al., 2002; Tobie et al., 2003). The exist-
ence of an ocean under the ice shell is indicated by the observed induced magnetic field (Khurana et al., 1998), 
observations of ice tectonics (Pappalardo et al., 1999) and perhaps also by water vapor plumes over Europa's 
mid-southern latitudes (Roth et al., 2014; Sparks et al., 2016).

Europa is tidally locked to Jupiter such that its spin rate (Europa's day is equal to about 3.5 Earth days) is approx-
imately equal to the orbital rotation rate around Jupiter. The maximum possible non-synchronous rotation (NSR) 
rate was estimated to be ∼1 km yr −1 (Hoppa et al., 1999) based on a comparison between Voyager 2 and Galileo 
spacecraft images that are 17 years apart. There are several hints that Europa rotates non-synchronously. First, 
the distribution of craters on Europa does not seem to reflect the asymmetry one would expect under complete 
synchronization, as the leading hemisphere should host more craters in comparison to the trailing hemisphere 
(Chapman et al., 1998; Shoemaker & Wolfe, 1982). Second, mapping the fine-scale fractures and patterns of 
Europa's surface has been used to argue for NSR (Geissler et al., 1998; Greenberg et al., 1998; Helfenstein & 
Parmentier, 1985; McEwen, 1986).
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Plain Language Summary  Some icy moons in the solar system, like Jupiter's moon Europa and 
Saturn's moon Enceladus, are believed to have deep oceans below their ice shell. Such moons, Europa included, 
may also be tidally locked to their corresponding planet such that the same side of the moon always faces its 
planet. State-of-the-art oceanic simulations of Europa's ocean exhibit strong upper ocean jets. We propose that 
these jets can drive its overlying ice shell, to drift slowly from its tidally locked, synchronized rotation state. 
We develop a mathematical model to study the effects of ocean currents on the overlying ice shell. We show 
that the ocean currents may cause the ice shell to drift and that future measurements of the drift may be used to 
estimate key unknown parameters of the ice shell such as its effective viscosity.
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NSR can occur either for the entire moon or for the ice shell separate from the interior (Greenberg & 
Weidenschilling, 1984; Hoppa et al., 1999). It can be driven by tidal torques associated with the eccentric orbit 
of Europa that can slightly increase its rotation rate (Hoppa et al., 1999), perhaps combined with slow thermal 
adjustment of the ice shell (Ojakangas & Stevenson, 1989). However, a sufficiently large mass or shape asymme-
try, possibly together with an elastic resistance of its ice shell, can lead to complete phase locking (synchronous 
rotation) (Goldreich & Mitchell,  2010; Greenberg & Weidenschilling, 1984; Hoppa et  al.,  1999). If Europa's 
ocean decouples the rocky core from the ice shell, the shell can display NSR even when the rocky core of Europa 
is phase locked (Hoppa et al., 1999). Below we focus on the possibility of NSR of the ice shell driven by ocean 
currents, which has not been investigated in a quantitative fashion hitherto.

Europa's ocean dynamics have been studied using a variety of models and mechanisms (Gissinger & 
Petitdemange, 2019; Goodman, 2012; Goodman & Lenferink, 2012; Goodman et al., 2004; Melosh et al., 2004; 
Soderlund et al., 2014; Thomson & Delaney, 2001; Tyler, 2008; Vance & Goodman, 2009), and scaling arguments 
were used to suggest the existence of alternating zonal jets (Vance & Goodman, 2009). Tides can also excite inter-
nal waves (Rovira-Navarro et al., 2019) and libration-driven elliptical instability can also drives ocean motions 
(Lemasquerier et  al.,  2017). Recent studies of Europa's ocean (Ashkenazy & Tziperman,  2021; Kang,  2022; 
Kang et al., 2022; Soderlund, 2019; Soderlund et al., 2014; Zeng & Jansen, 2021) used global models, taking 
into account elements such as non-hydrostatic effects and the full Coriolis force, to study the ocean dynamics, 
and reported a wide low-latitude eastward jet, high-latitude westward jets, and a highly turbulent ocean. Negative 
(westward), upper ocean, low latitude zonal flows have been reported by some previous studies (Ashkenazy & 
Tziperman, 2021; Kang, 2022; Soderlund et al., 2014) and can be attributed to the thermal-wind relation in which 
the zonal velocity decreases with height if the density decreases poleward; see Ashkenazy and Tziperman (2021).

The zonal jets at the top of the ocean exert stress on the bottom of the ice shell, which can cause a slow drift 
of the shell relative to the rocky core. In the present study, we develop a model of ice shell drift that takes into 
account the influence of oceanic stress on the dynamics of the ice shell, as well as the viscoelastic adjustment of 
the ice shell itself. We ignore internal ice flow within the shell as this is very slow in comparison to the ice shell 
drift discussed here (Ashkenazy et al., 2018). By comparing the model predictions to observational constraints, 
we estimate and constrain parameters of the elastic and viscous responses of the ice shell that are currently very 
poorly known.

To understand the interaction of the non-synchronous ice shell drift and the viscoelastic response of the shell, we 
need to consider both the location of the tidal bulge (the direction of the long axis of its ellipsoidal shape) and of 
some feature (e.g., a crater) on the ice shell surface assumed to initially face Jupiter. First, we consider two limit 
cases of possible movement of the ice shell in response to an ocean torque: (a) The ice shell is rotated as a rigid 
body without any deformation of the ice. In that case (the rigid shell case), tidal torques will act to restore the 
ice shell bulge to face Jupiter, and no elastic restoring force will be active. (b) The ice shell tidal bulge remains 
facing Jupiter, yet the ice shell itself rotates and deforms such that the location of a crater propagates away from 
the line connecting the centers of Europa and Jupiter (the flexible shell case). In this case, the net torque due to 
the tidal forces on the ice shell vanishes (because it acts on the bulge which still faces Jupiter), and only the force 
due to the ice shell elasticity (Goldreich & Mitchell, 2010) will act to restore the crater to its original location. In 
reality, both forces (tidal and elastic) act on the ice shell. Since the tidal force is much larger than the elastic force 
(Goldreich & Mitchell, 2010), the tidal bulge of the ice shell remains facing Jupiter. However, as long as the shell 
is sufficiently flexible, it can rotate under the influence of ocean torques while conforming its shape to the tidal 
bulge that remains facing Jupiter. We thus assume below that the tidal bulge faces Jupiter and ignore the  tidal 
force in our subsequent calculations.

In the above, we did not consider the viscous effects of the ice, which may affect the NSR of the ice shell as 
follows. In the absence of viscous effects, if the ice shell is initially rotated by an ocean torque, elastic torques 
will attempt to return the crater to its original position, and the shape will be restored such that the tidal bulge 
is back at the crater's position. However, viscous ice adjustment means that the bulge relaxes to its new position 
relative to the crater (Greenberg & Weidenschilling,  1984), which weakens the elastic force with time, such 
that the deformed ice will not return to its original shape. The ocean torque can now lead to a further motion 
of the crater and again to a viscous adjustment to the new position. This amounts to a slow drift of the crater 
location in response to a continuous torque due to ocean currents. The speed of the drift depends on the viscous 
adjustment/relaxation time scale of the ice (Greenberg & Weidenschilling, 1984)—faster drift when the viscous 
time scale is short.
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2.  Methods and Model
2.1.  Ocean Simulations and the Calculation of the Ocean Torque

The ocean simulations are two-dimensional (latitude-depth) and were performed using the MITgcm, a state-of-the-
art oceanic general circulation model (Marshall et al., 1997; MITgcm Group, 2021). We use no-slip boundary 
conditions at the bottom and at the ocean-ice interface, with and without a linear drag term applied at the ocean 
top and bottom levels. The meridional resolution is 1/24 of a degree latitude (1.1 km) spanning a meridional 
range from 70°S to 70°N. There are 100 vertical levels with thicknesses from 25 m near the top to 1,150 m at the 
bottom where the overall depth of the ocean is 100 km. We use the shelf ice package of MITgcm (Losch, 2008) 
to represent a 10 km thick ice shell. The surface temperature is prescribed following Ashkenazy (2018). The 
eddy coefficients follow the choices of Ashkenazy and Tziperman (2021) where the horizontal eddy diffusion for 
temperature and salinity is 30 m 2 s −1, the horizontal viscosity is 300 m 2 s −1, the vertical diffusion is 10 −4 m 2 s −1, 
and the vertical viscosity is 10 −3 m 2 s −1. The ocean linear friction coefficient 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 is set to 2 × 10 −4 m s −1, a typical 
value used in Earth's ocean modeling (Marshall et al., 1997; MITgcm Group, 2021); we also used a three times 
higher linear friction coefficient of 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 = 6 × 10−4 m s −1 to verify the sensitivity of the results to this parameter.

Using the output of the ocean model, we calculate the zonal stress on the ice shell as follows,
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where the second line uses the finite difference approximation of the vertical shear, taking the difference between 
the surface ocean velocity which is equal to that of the ice shell (no-slip condition), and the ocean velocity in the 
middle of the uppermost ocean level, Δz/2. Also, λ is the longitude, ϕ is the latitude, ρo = 1,046 kg m −3 is  the 
ocean water density, νz is the oceanic vertical viscosity coefficient, ω the angular velocity of the ice shell, and 
R = 1,561 km is the radius of Europa. The stress τλ is used to calculate the torque in the z direction (parallel to 
the rotation axis) using an integral of the zonal stress τλ times the distance from the axis of rotation (R cos ϕ), 
integrated over the surface area within the model domain,
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Then the torque is multiplied by an appropriate constant—24 × 360 = 8,640 in our case as the model's resolu-
tion is 1/24 of a degree—to represent the torque applied by a 360° longitude ocean. We calculate the moment of 
inertia of the ice shell as I = 8πρiR 5(1 − α 5)/15 = 4.5 × 10 32 kg m 2, where α = (R − Hice)/R, the ice shell density 
is ρi = 917 kg m −3, and Hice = 10 km. The uncertainty of the latter value is comparable to the ice thickness itself. 
Following Equation 3, in the absence of linear drag in the ocean, ro ∼ 9.2 × 10 −9 s −1 while the value is higher 
when the oceanic drag coefficient is taken into account; that is, ro ∼ 3.2 × 10 −8 s −1 when using a standard ocean 
linear drag of 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 = 2 × 10−4  m s −1 and ro ∼ 7.9 × 10 −8 s −1 when using a three times larger ocean linear drag of 

𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 = 6 × 10−4  m s −1. We note that different linear drag coefficients 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 result in different surface currents and thus 
different forcing; thus the friction coefficient ro cannot be altered without altering the ocean forcing ωo. However, 
our results show that all simulations with and without oceanic drag 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 yield similar constraints on τ. We note 
that we performed only three, 2D, oceanic simulations to estimate the torque due to ocean currents, and found 
that all resulted in similar retrograde drift; by retrograde drift, we are referring to the ice shell spinning slightly 
slower than the synchronous angular rate that would have kept the same point of the ice shell facing Jupiter. This 
retrograde flow is consistent with previous studies (Ashkenazy & Tziperman,  2021; Kang,  2022; Soderlund 
et al., 2014) that reported westward flow at the upper ocean of the low latitudes.
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Given the two-dimensional geometry of the model, the torque due to the 
meridional flow τϕ vanishes due to symmetry. That is, meridional stress (say 
due to a poleward surface flow in the northern hemisphere) implicitly exists 
at all longitudes. When this stress is integrated over the ocean surface, the net 
poleward torque therefore vanishes (the poleward stress at any longitude is 
canceled by an equal contribution at a longitude 180° away). Thus the ocean 
model used here cannot represent meridional ocean torques on the ice shell.

2.2.  Model for the Ice Shell Drift Rate

In the model proposed here, the position of the ice shell is represented by 
an angle θ between a fixed location on the equatorial plane of Europa's 
ice shell (e.g., the location of a crater) and the axis connecting the centers 
of Jupiter and Europa, see Figure  1. We assume, based on Goldreich and 

Mitchell (2010), that the tidal torque is much larger than the elastic torque such that the tidal bulge raised by Jupi-
ter is facing Jupiter with no offset, that is, λ = 0 in Figure 1. In that case, the momentum equation that describes 
the motion of the ice shell is,
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where Mz [Equation 2], ro [Equation 3], and ωo [Equation 4] are defined in the previous subsection. The ocean 
torque is written as the friction coefficient times the difference between the shell rotation rate and the effective 
ocean angular velocity. A viscoelastic force due to the ice shell drift is denoted Fe and involves a characteristic 
viscous time scale τ over which the ice loses its elasticity; this form is similar to the integral form of the Maxwell 
model (Morrison, 2001). When the ice viscous adjustment time τ is very long, the ice remains elastic and Fe = kiθ, 
where ki describes the elastic response of the ice shell and is independent of shell thickness [Equation 10]. When 
τ is very small, the ice loses its elasticity very quickly, such that in practice, there is no elastic force and Fe = 0.

Equation 5 can be converted into the second-order ordinary differential Equation 6 for the ice drift rate ω = dθ/
dt, which is more convenient to analyze and has the mathematical form of that for a forced and damped harmonic 
oscillator (except that it is written for the angular velocity rather than for the angle, see Section 2.3). The model's 
parameters and forcing can be estimated using the current knowledge of Europa's ice shell and results from the 
ocean simulations (Sections 2.1 and 2.4).

2.3.  Solution for the Ice Shell Drift Rate

It is easier to solve and analyze the integrodifferential model Equation 5 after converting it to an ordinary differ-
ential equation. This is achieved by taking the time derivative of the second equation of Equation 5, using inte-
gration by parts and the Leibniz rule. This leads to a single 2nd-order ordinary differential equation where for the 
angular velocity of the ice shell (ω = dθ/dt),
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The general solution of the above equation is a sum of a particular solution and the general solution of the homo-
geneous part. The solution of the homogeneous part of the equation is that of the damped harmonic oscillator 
(although, again, this equation is for the angular velocity rather than angle as is the case in the standard damped 
harmonic oscillator), for which ω decays exponentially in time from its initial conditions. The particular solution 
of the equation for time-independent forcing, dωo/dt = 0 is,

𝜔𝜔 =
𝑟𝑟𝑜𝑜 𝜔𝜔𝑜𝑜

𝑘𝑘𝑖𝑖𝜏𝜏 + 𝑟𝑟𝑜𝑜
,� (7)

where this is also the steady state solution of the model [Equation 6], that is, dω/dt = 0. Thus, the rate of the ice 
drift is reduced by the elastic and viscosity parameters kiτ. Given the decay of the homogeneous solution, the 

Figure 1.  A schematic showing the Europa ice shell on the left and Jupiter on 
the right, with the angle θ appearing in the model Equation 5. We assume that 
λ = 0.

Jupiter
Europa

θ
λ
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system's initial conditions do not matter beyond the decay time of the homogeneous equation. We note that the 
time derivative of the forcing dωo/dt in the RHS of Equation 6 has a very minor role in the solution.

The frequency spectrum of the ice shell movement for the case of general forcing, ωo(t), ignoring the transient 
decay, can be derived by taking the Fourier transform of Equation 6 and multiplying by its complex conjugate,

|𝜔̂𝜔(𝜈𝜈)|
2
=

|𝑓𝑓 (𝜈𝜈)|2

(𝑘𝑘𝑖𝑖 + 𝑟𝑟𝑜𝑜∕𝜏𝜏)
2
+
(

𝑟𝑟
2
𝑜𝑜 + 𝜏𝜏−2 − 2𝑘𝑘𝑖𝑖

)

𝜈𝜈2 + 𝜈𝜈4
,� (8)

where 𝐴𝐴 |𝑓𝑓 (𝜈𝜈)|2 is the power spectrum of the forcing 𝐴𝐴 𝐴𝐴𝑜𝑜(𝜔𝜔𝑜𝑜∕𝜏𝜏 + 𝑑𝑑𝑑𝑑𝑜𝑜∕𝑑𝑑𝑑𝑑) and ν is the frequency. When the forcing 

is a Gaussian white noise f(t) = Aξt, 𝐴𝐴 |𝑓𝑓 (𝜈𝜈)|2 = (2𝜋𝜋𝜋𝜋)
2
(

1∕𝜏𝜏2 + 𝜈𝜈
2
)

 and the power spectrum can be found using 
Equation 8. In this case, the extrema points of the power spectrum can be found where one extremum point is at 
the zero frequency and the other at,
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When the argument of the square root is positive, the maximum of the power spectrum (resonance) is at non-zero 
frequency; otherwise, the maximum of the power spectrum is at zero, and there is no resonance.

2.4.  Estimating the Elastic and Viscous Parameters of the Ice Shell

It is possible to estimate the elastic constant of the ice, ki appearing in our ice shell model (5), based on Equation 
9 of Goldreich and Mitchell (2010),

𝑘𝑘𝑖𝑖 =
24(1 + 𝜈𝜈)(1 + 𝑘𝑘𝑓𝑓 )

2
𝑞𝑞
2
𝜇𝜇

5(5 + 𝜈𝜈)𝜌𝜌𝑖𝑖𝑅𝑅
2

.� (10)

The definitions and details on the parameters (explanation and estimated value) can be found in Goldreich and 
Mitchell (2010) and the estimated value is ki ≈ 2.5 × 10 −12 s −2. Note that in the thin shell limit, ki does not depend 
on the shell thickness, because both the elastic torque and the mass of the shell depend linearly on this quantity. 
If the ice shell is convecting, ki will be reduced by a factor of the elastic thickness divided by the total shell 
thickness. This will tend to increase the NSR rate [Equation 7]. The uncertainties on other parameters in this 
expression are small, except for the rigidity μ. Here we follow (Goldreich & Mitchell, 2010) and assume that the 
relevant rigidity is that of intact ice.

The viscous relaxation (Maxwell) time scale τ can be estimated by dividing typical ice dynamical viscosity η by 
μ, the ice shell rigidity. The estimated uncertainty range for τ is quite large. In the case of convecting ice η can 
be estimated as the melting viscosity, which ranges between 10 13–10 15 Pa s (Goldsby & Kohlstedt, 2001). When 
the ice is not convecting, the viscosity varies with depth and is much larger near the surface of the ice, due to the 
lower temperature there.

Calculation of the viscous relaxation timescale, in this case, is not straightforward. In this pilot study, we simply 
choose an effective upper limit shell viscosity of 10 17 Pa s to represent the logarithmic mean of the viscosity 
(near-surface ice is sufficiently cold and brittle that it will not contribute to viscoelastic processes). Less simplis-
tic calculations of the relaxation timescale for realistic ice shell structures should certainly be attempted in the 
future. For now, we take the overall range of η to be 10 13 − 10 17 Pa s and accordingly

𝜏𝜏 =
𝜂𝜂

𝜇𝜇
∼ 2.5 × 10

3
s − 2.5 × 10

7
s.�

3.  Results
We consider several scenarios of oceanic forcing on the ice shell: (a) a constant torque, (b) a periodic torque due 
to the equatorward propagation of Taylor columns outside the tangent cylinder (Ashkenazy & Tziperman, 2021) 
that lead to periodic changes in surface ocean currents, (c) a stochastic torque due to the transient nature of the 
oceanic flow, and (d) an ocean-model-derived forcing. The actual ocean torque (d) is a combination of the first 
three cases.
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3.1.  Constant Ocean Forcing

Assume first that the effective ocean angular velocity is constant in time (ocean currents are in a steady state). 
The steady-state solution for the angular velocity of the ice-shell drift, ω, under constant ocean torque forcing 
(i.e., ωo = const) is given in Equation 7. The ice shell rate of drift is proportional to the ocean forcing ωo. An 
increase in ki or τ leads to a smaller drift rate; in particular, a longer relaxation timescale (larger τ) would reduce 
the drift rate. Note that ki is proportional to ice rigidity μ while η is proportional to 1/μ such that kiτ appearing 
in the denominator of Equation 7 should be independent of μ. When starting from arbitrary initial conditions, 
the adjustment to the constant drift solution (Figure 2) involves either an exponential decay to the steady state 
or oscillations whose amplitude decays exponentially. Oscillations occur (Figures 2b, 2d, and 2f) when the time 

scale τ is large, with a frequency 𝐴𝐴

√

𝑘𝑘𝑖𝑖 − (𝑟𝑟𝑜𝑜 + 1∕𝜏𝜏)
2
∕4 ; when the argument under the square root is negative (for 

small τ), exponential decay occurs (Figures 2a, 2c, and 2e). This damped internal oscillatory behavior plays an 
important role when the ocean forcing is periodic or stochastic, as discussed next.

The shell relaxation time scale, τ, can drastically affect the ice-drift velocity, as its uncertainty spans at least four 
orders of magnitude (from 1 hr to hundreds of days). The resulting ice shell drift velocity ranges from a few tens 
of meters per year to almost one hundred km per year (Figure 3a). Observational constraints (Hoppa et al., 1999) 
indicate that the ice-shell velocity is smaller than 1  km  yr −1 (dashed line in Figure  3a) and this upper limit 
constrains the shell relaxation time scale to be larger than about 10 days, for all simulations of different oceanic 
linear drag. Conversely, unless the effective ice shell viscosity exceeds 10 17 Pa s, which would only occur for a 
non-convecting shell (McKinnon, 1999), we expect a NSR period of ≲3 × 10 5 yrs (Figure 3a) or a drift velocity 
larger than about 30 m yr −1. Such a drift period would be readily detectable with a future mission to Europa.

Figure 2.  Time series of the ice drift velocity versus time for the case of a constant ocean torque, showing the adjustment starting from zero initial conditions. (a) 
Exponential decay parameter regime for short ice relaxation time scale of 0.3 days, (b) oscillatory regime for long ice relaxation time scale of ≈30 days. Panels a and 
b depict the time series when the linear drag is included in the ocean model (the corresponding ice friction coefficient is ro = 3.2 × 10 −8 s −1), panels c and d depict the 
time series for the case of ocean simulation without the linear drag (for which the ice friction coefficient is ro = 9.2 × 10 −9 s −1), and panels e and f depict the time series 
for the case of ocean simulation with large linear drag (for which the ice friction coefficient is ro = 7.9 × 10 −8 s −1). The observational upper bound on the drift velocity 
is 1 km yr −1 (Hoppa et al., 1999).
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In Figure 3b, we present the period of the internal oscillations of the ice shell 𝐴𝐴

(

i.e., 2𝜋𝜋∕

√

𝑘𝑘𝑖𝑖 − (𝑟𝑟𝑜𝑜 + 1∕𝜏𝜏)
2
∕4

)

 

as a function of the shell relaxation time scale, τ, and ocean friction parameter, ro. We show that ro hardly affects 
the period for realistic values of ro while the relaxation time scale, τ, can have a much larger effect on the period. 
Given the constraint that τ ≳ 10 days, the oscillation period (Figure 3b) is nearly independent of the actual value 
of τ and converges to 𝐴𝐴 𝐴𝐴 ∼ 2𝜋𝜋∕

√

𝑘𝑘𝑖𝑖 ≈ 45 days; the oscillation period depends mainly on the shell rigidity, while 
the mean drift rate depends on τ.

3.2.  Periodic Forcing

We assume, for simplicity, that ωo(t) is a pure cosine function. The solution of Equation  6 is peri-
odic with the same period as the forcing, and resonance is obtained when the forcing frequency equals 

𝐴𝐴 (𝜈𝜈
∗
)
2
= −1∕𝜏𝜏2 + 𝑘𝑘𝑖𝑖

√

1 + (2𝑟𝑟𝑜𝑜)∕(𝑘𝑘𝑖𝑖𝜏𝜏) + 2∕(𝑘𝑘𝑖𝑖𝜏𝜏
2) . For large enough τ, 𝐴𝐴 𝐴𝐴

∗ =

√

𝑘𝑘𝑖𝑖 . Note that the resonance frequency 
is related to, but not identically equal to, the frequency of the damped internal oscillations given above.

3.3.  Stochastic Forcing

The power spectrum of the drift can be evaluated for a general forcing [Equation 8]. There are two types of 
responses to a white noise forcing, one with a spectral peak at the resonance frequency ν* (on the right side 
of Figure  3c), and another with a monotonically decreasing Lorentzian-like power spectrum with increasing 
frequency, showing a transition from a plateau at low frequencies to a power-law decay for higher frequencies. 
The transition (crossover) point (∼1,000 days) indicates the expected time scale of the forced stochastic variabil-
ity of the ice shell drift. As before, the numerical value of the ocean friction coefficient, ro, does not significantly 
affect the spectra within its range of uncertainty, for realistic values of τ. Variations of the ice relaxation time scale 
τ within its own range of uncertainty results in the above two different types of spectra. In Figure 3d we plot the 

Figure 3.  Parameter sensitivity. (a) Steady-state solution for drift velocity as a function of τ for a constant ocean torque for 
three cases, with (blue) standard oceanic drag (𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 = 2 × 10−4  m s −1, r = 3.2 × 10 −8 1 s −1), without (orange) oceanic linear 
drag (𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 = 0 , r = 9.2 × 10 −9 1 s −1), and with large (green) ocean linear drag (𝐴𝐴 𝐴𝐴𝐴𝑜𝑜 = 6 × 10−4  m s −1, r = 7.9 × 10 −8 s −1). The 
corresponding oceanic torque roωo is indicated in the figure legend. The dashed line shows the observationally constrained 
upper limit of the ice shell drift velocity of 1 km yr −1 (Hoppa et al., 1999), indicating that τ should be larger than ∼10 days, 
for all cases; the vertical dotted lines indicate the minimal τ of the different cases. (b) Oscillation period (T, see Figure 2b) 
as a function of τ for a constant ocean torque and five friction coefficient, ro, values. The oscillation period converges 
to ∼45 days for realistic τ that is larger than ∼10 days. (c) Power spectra of the drift velocity as a function of frequency 
for different model parameters for the stochastic forcing case, corresponding to the cases shown in panel a. (d) Period 
corresponding to the spectral peak under stochastic forcing as a function of τ. Also here, the period converges to ∼45 days, as 
for the constant forcing case shown in panel b.
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period at the resonance frequency for the uncertainty range of τ and ro. Different values of τ can result in very 
different periods of the spectral peak, from about 50 to 1,000 days. Since τ should be larger than about 10 days to 
satisfy the ice drift constraint of Hoppa et al. (1999), one expects the spectral peak of the ice shell drift rate oscil-
lations due to white noise stochastic forcing to be around 45 days. The expected magnitude of these oscillations 
depends on the magnitude of the stochastic forcing; as discussed below in the context of the solution driven by 
the ocean model solution, the oscillations are expected to be small.

3.4.  The Ocean-Model-Derived Forcing Case

Figure 4c shows the ice-shell drift velocity for the ocean torque forcing derived from our ocean model, shown in 
Figure 4b; linear oceanic drag was included in this simulation (corresponding to an ice model friction coefficient 
of ro = 3.2 × 10 −8 s −1). The results for the oceanic simulation in the absence of linear oceanic drag (corresponding 
to an ice model friction coefficient of ro = 9.2 × 10 −9 s −1) and with a large linear oceanic drag (corresponding 
to an ice model friction coefficient of ro = 7.9 × 10 −8 s −1) are presented in Supporting Information S1 (Figures 
S1 and S2). This solution combines features from the above-mentioned constant, periodic, and stochastic forcing 
scenarios. The power spectrum of the forcing (Figure S3 in Supporting Information S1) shows a strong peak at 
about 10 years resulting from the speed of propagation of the Taylor columns, indicating that the forcing is nearly 
periodic. This ∼10 yr period is much larger than the resonance period of ∼45 days discussed above (Figure 3d), 
and we, therefore, do not expect a resonant response or a peak in the NSR drift spectrum due to the ocean current 
forcing. Moreover, the noisy fluctuations superimposed on the nearly periodic ocean torque forcing are relatively 
small (as seen by the tails of the 10-year peak of the power spectrum). As a result, a resonance due to this noisy 
part of the forcing is likely to be negligible relative to the response to the oscillatory part of the forcing. As τ 
increases, the standard deviation of the ice shell drift fluctuations driven by the deviations of the ocean model 
torque from its long-term mean decreases like 1/τ (dashed line in Figure 4d). Given the observational constraint 
of τ > 10 days, Figure 4d shows that the ice shell movements due to this time-variable ocean forcing are expected 
to be very small (standard deviation <10 m yr −1). Since the drift rate, ω [Equation 7] is proportional to 1/τ (i.e., 
ω ≈ roωo/(kiτ) for kiτ ≫ ro), the ratio between the standard deviation and the mean of the drift rate ω is expected to 
remain constant for large τ. We conclude that the time-averaged ocean torque is expected to dominate the ice-shell 
drift rate, resulting in steady drift. Since τ ≳ 10 days (∼10 6 s) is required by the observations (Figure 3a), the 

Figure 4.  Ice shell drift forcing and response: (a) The ocean zonal velocity (cm/s) as a function of time (in years) and 
latitude. Note the difference between the equatorward propagating Taylor columns outside the tangent cylinder (20°S–20°N) 
and the periodic pattern within the tangent cylinder (Ashkenazy & Tziperman, 2021). Note also the westward flow of the 
equatorial current. (b) The global average of the zonal torque due to ocean currents, roωo, as a function of time. (c) Blue line: 
drift velocity of a point on the equator of Europa (km/year). Orange line: the ice-shell drift velocity when forcing the model 
by the constant temporal mean ocean torque. Here τ = 29 days. (d) The standard deviation of the ice-shell drift velocity as a 
function of the relaxation time scale τ. The std decreases like 1/τ (dashed line) for large τ.
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effective ice shell viscosity must exceed about 3 × 10 15 Pa s. Although this effective viscosity will only roughly 
correspond to the interior viscosity of a convecting ice shell, a value of 3 × 10 15 Pa s may imply that at best slug-
gish convection is occurring (McKinnon, 1999).

4.  Discussions
A surprising result of our model is that the torque calculated by the ocean model is negative and thus decreases 
the ice shell rotation rate relative to the synchronous rotation case. This is in contrast to the effect of tidal forcing 
which tends to increase the rotation rate (Hoppa et al., 1999). It has been shown that tectonic crack orientations 
can equally well be explained by retrograde NSR as by prograde NSR (Sarid et al., 2004), so either possibility is 
currently viable based on existing observations.

One way of detecting NSR is to look for offsets between the predicted and observed location of the terminator 
(the line separating the daylight and night side) (Hoppa et al., 1999). Some of the best Galileo images of the 
terminator have a resolution of 0.4 km (Hoppa et al., 1999). Future spacecraft observations are likely to have 
resolutions significantly better than this. Assuming a time interval of 30 years between the Galileo observations 
and future imaging campaigns, a terminator location with a precision of 0.4 km implies that an NSR period of 
about 7 × 10 5 years (drift rate of 15 m yr −1) would be marginally detectable, larger than our estimate for the 
slowest ice-shell drift of ∼30 m yr −1.

The model we developed for the ice shell drift is highly simplified. Moreover, it relies on the oceanic general 
circulation model we use, whose parameters are partially based on Earth's ocean parameters (like the vertical 
viscosity and linear drag coefficient) and hence uncertain in the context of Europa. While we have demonstrated 
that the general conclusion of retrograde drift is insensitive to some of the main model parameters (like the linear 
drag), one cannot rule out the possibility that sensitivity to the ocean model setup and other parameters (such as 
the distribution of bottom heating) won't cause an opposite drift, implying a non-negligible uncertainty in the 
magnitude and sign of our estimated drift velocity.

Another effect that was not included in the proposed model is the effect of a tidal phase lag on the drift of the ice 
shell. Such a lag would impose an additional torque tending to spin the satellite up (Goldreich & Mitchell, 2010). 
However, the size of the lag for Europa is expected to be small, <0.3° for a shell thickness <30 km (Moore & 
Schubert, 2000), and as a result, we estimate this torque to be smaller than the ocean torque, although certainly 
not negligible. See the Supporting Information S1 for an estimate of this torque and additional discussion.

Further work is needed to understand whether tidal or ocean torques will dominate. 3D simulations of Europa 
without linear drag are highly turbulent (Ashkenazy & Tziperman, 2021) and result in super-rotation (eastward 
flow) at the upper, low latitude, ocean; yet, our preliminary 3D simulation with linear drag indicates that the flow 
is negative (westward). Moreover, this preliminary simulation exhibits a periodicity of ∼50 days (most probably 
due to eddy and convection dynamics) which may resonate with the internal ice dynamics reported here. The 
ocean eddies are expected to add to the amplitude and change the spectral characteristics of the stochastic forcing 
experienced by the ice shell. The computational cost of 3D eddy-resolving simulations prohibits obtaining a suffi-
ciently long time series of ocean torques to be used to drive the ice shell model drift equation used here. Apart 
from our use of a 2D ocean model, other significant assumptions include a single viscoelastic adjustment time 
scale and neglect of tidal forcing. Our drift rate predictions, which depend primarily on the viscoelastic relaxation 
timescale τ (Figure 3a) are necessarily uncertain because of uncertainty in τ. Yet the constraint of τ ≳ 10 days 
indicates that the effective ice shell viscosity should be η ≳ 3 × 10 15 Pa s.

5.  Conclusions
The model suggested here demonstrates how the combination of ocean torques due to zonal surface currents 
and viscous adjustment of the ice shell may lead to a potentially observable, retrograde non-synchronous drift 
(Figure 3a). Oscillatory or stochastic rotation rate variations are expected to be minor, ruling out potential confu-
sion with long-period librations (Rambaux et al., 2011). Future missions and observations are expected to lead to 
an improved constraint on the ice shell drift velocity. The expected precision is about 15 m yr −1 or better, smaller 
than our anticipated slowest drift rate of 30 m yr −1. Using the model developed here, such closer bounds can lead 
to a tighter constraint on the viscous response time of the ice shell, which plays a dominant role here. Conversely, 
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a tighter constraint on this ice shell viscous response due to a better understanding of the physics affecting this 
time scale (ice crystal size, brittle failure, the temperature distribution within the ice, etc.) would permit infer-
ences of Europa's ocean currents.
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