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Abstract

On icy worlds, the ice shell and subsurface ocean form a coupled system—heat and salinity flux from the ice shell
induced by the ice-thickness gradient drives circulation in the ocean, and in turn, the heat transport by ocean
circulation shapes the ice shell. Therefore, understanding the dependence of the efficiency of ocean heat transport
(OHT) on orbital parameters may allow us to predict the ice-shell geometry before direct observation is possible,
providing useful information for mission design. Inspired by previous works on baroclinic eddies, I first derive
scaling laws for the OHT on icy moons, driven by ice topography, and then verify them against high-resolution 3D
numerical simulations. Using the scaling laws, I am then able to make predictions for the equilibrium ice-thickness
variation knowing that the ice shell should be close to heat balance. The ice shell on small icy moons (e.g.,
Enceladus) may develop strong thickness variations between the equator and pole driven by the polar-amplified
tidal dissipation in the ice; in contrast, the ice shell on large icy moons (e.g., Europa, Ganymede, Callisto, etc.)
tends to be flat due to the smoothing effects of the efficient OHT. These predictions are manifested by the different
ice-evolution pathways simulated for Enceladus and Europa, considering the ice freezing/melting induced by ice
dissipation, conductive heat loss, and OHT as well as the mass redistribution by ice flow.

Unified Astronomy Thesaurus concepts: Saturnian satellites (1427); Galilean satellites (627); Europa (2189)

1. Introduction

Many of the icy satellites in the outer solar system are likely
to contain a subsurface ocean underneath their ice shell due to
tidal dissipation (Scharf 2006), which may lead to a suitable
environment for life to thrive. Enceladus (a satellite of Saturn)
and Europa (a satellite of Jupiter), in particular, have been
confirmed to have a global subsurface ocean by data brought
back by the Galileo and Cassini missions (Carr et al. 1998;
Kivelson et al. 2000; Hand & Chyba 2007; Postberg et al.
2009; Thomas et al. 2016). As two of the most enigmatic
targets to search for extraterrestrial life (Des Marais et al. 2008;
Hendrix et al. 2019), Enceladus and Europa are to be further
explored in the future (e.g., Europa Clipper and JUICE). Thus
far, measurements and detection have been carried out above
the ice shell for the most part and are likely to remain that way
in the near future. Therefore, it becomes crucial to infer the
subsurface condition using the information collected above the
surface and to put better constraints on the ice-shell geometry
so we know where to send our landing or drill missions.

These motivate us to study the interaction between the
subsurface ocean and the ice shell so that we can more easily
take measurements. As illustrated by Kang et al. (2021) and
Kang & Jansen (2022), the interaction happens in a mutual
way: The variation of ice thickness on Enceladus can drive
ocean circulation by inducing salinity flux through freezing/
melting and by changing the local freezing point; in turn, ocean
circulation can converge heat to regions covered by relatively
thick ice, flattening the ice shell (sketched in Figure 1(d)). Such
interaction makes it possible to infer the subsurface ocean
properties from the information about the ice-shell geometry or

to infer the ice-shell geometry based on our understanding of
ocean dynamics (Kang & Jansen 2022).
Thus far, based on the surface measurements (libration,

shape, gravity, etc.) done by Cassini, Enceladus’ ice shell has
been revealed to be around 20 km thick on global average and
to become significantly thinner toward the poles (Iess et al.
2014; Beuthe et al. 2016; Tajeddine et al. 2017; Čadek et al.
2019; Hemingway & Mittal 2019). While the equatorial ice
shell is 30 km thick, the ice-shell thickness over the south pole
is only 6 km (Hemingway & Mittal 2019); all geysers gather
around this area, opening up periodically under tidal stress
(Hurford et al. 2007; Hedman et al. 2013; Nimmo et al. 2014;
Ingersoll et al. 2020) and ejecting samples of the ocean to outer
space (Hansen et al. 2006; Porco et al. 2006; Howett et al.
2011; Spencer 2013). In order to sustain the strong ice
topography, the ocean heat transport (OHT) that flattens the ice
shell through the ice pump mechanism (Lewis & Perkin 1986)
cannot be arbitrarily strong, which in turn puts constraints on
the ocean salinity and the partition of heat production between
the silicate core and the ice shell (Kang et al. 2021).
Europaʼs ice-shell geometry is not as well constrained, but

evidence has been found in favor of a relatively thin (<15 km
Hand & Chyba 2007) and flat (Nimmo et al. 2007) ice shell, in
line with the evidence that Europa geysers are not as
concentrated (Roth et al. 2014; Jia et al. 2018; Arnold et al.
2019; Huybrighs et al. 2020). As a separate line of evidence,
Kang & Jansen (2022) found that the OHT-induced per-area
heat flux scales with the satelliteʼs radius to the power of 0.5 or
1 (depending on whether the magnitude of vertical diffusivity is
sufficient to communicate the entire ocean column from the ice
to the seafloor), which also supports a rather flat ice shell on
Europa given its large size.
However, what has been missing in the framework proposed by

Kang et al. (2021) and Kang & Jansen (2022) are eddy dynamics.
We know from Earth’s ocean that oceans can be filled by eddies
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of various scales and that they play an important role in
transporting heat, momentum, and tracers (Thompson 2008;
Volkov et al. 2008; Thompson et al. 2014). Scaling laws that
govern the eddy diffusivity, tracer transports, and equilibrium
stratification have been found under forcings that are relevant to
Earth’s ocean or atmosphere (Held & Larichev 1996; Karsten
et al. 2002; Jansen & Ferrari 2013). In the context of icy satellites,
recent works by Ashkenazy & Tziperman (2021) and Ashkenazy
& Tziperman (2016) demonstrate that eddies also exist in the
subsurface ocean of snowball Earth and Europa, and a set of
sensitivity tests run under 3D configuration in Kang et al. (2021)
also shows strong baroclinic eddies. Finding scaling laws for the
eddy heat transport in icy-moon oceans and making predictions
about the equilibrium ice-shell geometry are the main goals of
this work.

The works on the eddy transports across the antarctic
circumpolar current (ACC) on Earth provide useful insights for
the OHT scaling on icy moons. However, a few differences
between icy-moon oceans and the terrestrial ocean should be
noted. The overturning circulation near the ACC is largely

driven by surface wind stress especially: The curl of the wind
stress forces meridional overturning flows, maintaining an
isopycnal slope so that eddies can grow on it (McWilliams
et al. 1978; Marshall & Radko 2003; Plumb & Ferrari 2005).
On the contrary, the ocean on an icy satellite is sandwiched
between an ice shell and a silicate core and thus experiences no
wind stress. Density gradients created by the ocean–ice heat
and salinity exchange, instead, drive the overturning circulation
there. Because both the top and bottom boundaries are frictious
on icy satellites, they can provide the drag required to balance
the Coriolis acceleration associated with the overturning flows
along the boundaries (Kang & Jansen 2022). The equilibrium
temperature and salinity profiles adjusted only by the zonally
symmetric overturning circulation may undergo baroclinic
instability (Charney 1947), which further boosts the OHT.

2. The Coupled Ocean–Ice System

The system considered by this study is sketched in Figure 1
—a 56 km deep ocean covered by an ice shell that is about

Figure 1. Panel (a) sketches the primary sources of heat and heat fluxes, which include heating due to tidal dissipation in the ice ice , the heat flux from the ocean to
the ice ocn , and the conductive heat loss to space cond . OHT is shown by the horizontal arrow. Panel (b) shows the default ice-shell-thickness profile considered
here a black solid curve, which is thinner over the poles because ice dissipation amplifies going poleward (Beuthe 2019). The gray dashed curve shows the freezing
(positive) and melting rate (negative) required to maintain a steady state based on an upside-down shallow ice-flow model (see Appendix A for details). In this
calculation, the default 2500 km radius is considered. Panel (c) shows the profiles of ice , cond , and latent given the information in panel (b). Panel (d) sketches the
key physical processes in an ocean covered by an ice shell of varying thickness (see the main text for description). Panel (e) shows how the thermal expansion
coefficient under the ice shell varies with the satelliteʼs size (gravity), at 10 psu (blue) and 60 psu (brown) ocean salinities. Panel (f) shows the salinity forcing
(equatorial minus polar salinity flux, dots) and the temperature forcing (the freezing point difference under the equatorial and polar ice shell, crosses) as a function of
the moonʼs radius.
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20 km thick. A poleward-thinning ice shell is assumed, given
the fact that the tidal dissipation in the ice shell amplifies over
the poles (Beuthe 2019):

f f= + DH H HP sin , 10 2( ) ( ) ( )

where H0= 20 km is the mean ice thickness, P2 is the second-
order Legendre polynomials, and f denotes latitude. Here, the
ice-thickness variation is assumed to follow the P2 profile for
simplification, and unless otherwise mentioned, the equator-to-
pole thickness difference ΔH is set to 3 km. This default ice-
thickness profile is shown by the solid curve in Figure 1(b).
One would expect the ice shell to be thinner over the poles as
can be seen in Figure 1(b) because the tidal dissipation
produced in the ice is stronger there (Beuthe 2018, 2019; Kang
& Flierl 2020). In a situation where the ice shell is thinner over
the equator (ΔH< 0), the results here can still apply after
reversing the sign of the circulation and heat transport. Also,
we expect the qualitative results obtained in this work to hold
when the ice-thickness variation follows a profile other than P2,
as long as the ice thickness is relatively simple (poleward
thinning or poleward thickening) and is symmetric about the
equator.

With ice flowing from thick-ice regions to thin-ice regions,1

this equator-to-pole ice-thickness gradient will not last, unless
freezing/melting can constantly enhance the poleward-thinning
ice topography. The ice freezing/melting, in turn, is governed
by the ice-shell heat budget. Driven by the hundreds of degree
temperature difference between the water–ice interface and the
ice surface, the ice constantly loses heat in form of heat
conduction. On Enceladus and Europa, where the ice shell is
likely around 20 km thick, the heat-loss rate cond is around
40 mW m−2 on global average and is faster over regions where
the ice is thin and over the poles where the ice surface
temperature is low, as shown by the green curve in Figure 1(c).
To balance the heat loss, the ice shell and the silicate core need
to produce heat; however, the core–shell heat partition is poorly
understood (Choblet et al. 2017; Beuthe 2019). In this work, I
will focus on the shell-heating scenario and discuss the
potential impacts of bottom heating only toward the end. The
ice heat production due to tidal flexing (denoted by ice )
amplifies over the polar regions even if the ice is completely
flat (Beuthe 2018), and this polar-amplifying pattern is further
enhanced by the poleward-thinning ice geometry through the
ice-rheology feedback, which concentrates heat production
toward regions with thinner ice shell and hence weaker
mechanical strength (Beuthe 2019). Shown by a red curve in
Figure 1(c) is ice with the default ice-thickness profile
(Equation (1)). Besides, the equatorial freezing and polar
melting required to maintain the prescribed ice thickness give
rise to almost negligible latent heat release latent , shown by a
gray curve in Figure 1(c). At the bottom of the ice, there may
also be heat exchange with the ocean (denoted by ocn ),
manifested by ocean circulation and heat transport. In an
equilibrium state, the ice-shell heat budget needs to be in
balance, which means the sum of all the heating terms should
vanish.

From the oceanʼs perspective, however, it is not the heat
budget of the ice shell that matters, but the heat and salinity

fluxes from the ice. These fluxes can be derived, as long as the
ice geometry is given. In direct contact with ice, the ocean
temperature at the water–ice interface will be relaxed toward
the local freezing point, which is lower under a thick ice shell
because of the high pressure (see Equation (A2) in
Appendix A). Also, assuming the ice shell is in mass
equilibrium, equatorial freezing and polar melting are required
to prevent the ice shell from being flattened by the pressure-
driven ice flow (see the dashed gray curve in Figure 1(b)). The
freezing/melting will then induce salinity exchange with the
subsurface ocean. Under these forcings, water over the poles
becomes warmer and fresher than the water at low latitudes.
The resultant density variations drive ocean circulation and
eddies, transporting heat down-gradient from the poles to the
equator, which in turn affects the heat budget of the ice shell,
leading to changes in the ice geometry. Therefore, the critical
task for predicting the ice-shell geometry is to determine the
dependency of the OHT on the ice-shell geometry via their heat
and salinity fluxes under various satellite parameters (such as
ocean salinity, gravity, size, etc.).
In Section 4 and Section 5, I will derive scaling laws for the

dependency of OHT on the ice-shell geometry under various
satellite parameters and test them against numerical simula-
tions. Because we already know how the other heating terms
(conductive heat loss, ice dissipation, and latent heating)
depend on ΔH, this generic formula for OHT as a function of
ΔH and the satellite parameters (such as ocean salinity, gravity,
size, etc.) allows one to solve for the equilibrium ΔH for a
specific icy satellite under the condition that the ice-shell heat
terms should balance one another. This is done in Section 6. It
should be noted that, throughout this work, the heating
produced in the silicate core is assumed to be zero, and all
heat is assumed to be generated in the ice shell. The impacts of
core heating are discussed in the conclusion.
More details about the ocean circulation model, ice-flow

model, and tidal dissipation model can be found in
Appendix A.

3. Why Does Size Matter?

Using parameters relevant for Enceladus, Kang et al. (2021)
show that the circulation that arises from the surface heat and
freshwater forcing can go either direction depending on the
ocean salinity: In the low-salinity limit, temperature-induced
density variation dominates, and the warm polar water would
sink as sketched by the blue arrow in Figure 1(d) because
freshwater contracts upon warming (anomalous expansion),
while in the high-salinity limit, the anomalous expansion is
suppressed, and both salinity- and temperature-induced density
gradients contribute to downwelling at low latitudes, as
sketched by the orange arrow in Figure 1(d).
When considering icy satellites larger than Enceladus (most

of the icy satellites of interest are), the following changes are
expected:

1. The thermal expansion coefficient will become more
positive, and eventually, anomalous expansion will be
completely suppressed even if the ocean is relatively
fresh. Shown in Figure 1(e) is the dependence of thermal
expansion coefficient under the ice-shell on the icy
moonʼs radius, a, for two different salinities, 10 psu and
60 psu. Anomalous expansion does not occur in an ocean
with 60 psu salinity regardless of the size of the satellite,

1 Ice convection is not considered here. The ice-flow model used here
assumes a purely conductive ice shell, and if the ice shell is instead convective,
the results may change.
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yet it does occur in a 10 psu ocean, but only when
a< 1500 km,2 approximately the size of Europa. There-
fore, with a large-enough planetary size, downwelling
will only occur over the equator regardless of the ocean
salinity.

2. The temperature difference under the ice shell between
the equator and the pole ΔT will increase, as shown by
the crosses in Figure 1(f). The ocean temperature adjacent
to the ice shell should be close to the local freezing point
(denoted by Tf), and Tf decreases with pressure linearly,

rD = D = D = DT T b P b g H, 2f i0 0 0 ( )

where ΔH is the prescribed ice-thickness difference
between the equator and the poles, g0 is the moonʼs
surface gravity, b0=−7.61× 10−4 K/dbar, and ρi is the
ice density. With ΔH fixed, ΔT∝ g∝ a.

3. Salinity forcing will weaken. The blue and brown dots in
Figure 1(f) show the salinity flux (mean salinity S0 times
the freezing rate q) difference between the equator and
the poles for an ocean with a mean salinity of 10 psu and
60 psu, respectively. The freezing rate q is set to balance
the divergence of ice flow. As derived in Appendix A, ice
flow behaves like diffusion, and the flow divergence/
convergence is proportional to ΔP divided by the
distance square a2, so

µ D µ -q P a a . 32 1 ( )
4. The same density gradient will drive a stronger ocean

circulation and heat transport as a result of the stronger
gravity—fixing the bulk density of the satellite, surface
gravity g0∝ a. The stronger heat transport will then
flatten the ice shell more efficiently.

Given the above reasoning, one can see that, on larger icy
moons, the OHT is likely to be (1) more efficient in flattening
the ice shell and (2) dominantly controlled by temperature
variations. Assuming the ice thickness varies by 30%
meridionally and the melting-point ice viscosity is 1014 Pa·s,
a back-of-the-envelope calculation will show that the salinity-
induced density anomaly is only comparable to the temper-
ature-induced one if the moonʼs size is smaller than or
comparable to that of Enceladus. In Kang & Jansen (2022), the
authors have demonstrated these points in a zonally symmetric
framework, ignoring eddy transports. Their results show that
the meridional OHT should scale with the moonʼs radius a, the
equator-to-pole ice-thickness difference ΔH and the Coriolis
coefficient f as follows,

µ D -a H f , 4ocn
3 3 2 1 ( )

when the circulation depth is limited by vertical diffusion, or

µ D -a H f , 5ocn
3 2 2 ( )

when the circulation reaches the seafloor.

4. Scaling Laws for Ocean Heat Transport Considering
Eddies

Given that salinity forcing tends to be dominated by
temperature forcing unless the size of the icy moon is
comparable to or smaller than Enceladus (see the previous
section), only the temperature-induced density anomalies are

considered here, following Kang & Jansen (2022). For smaller
icy satellites, the salinity-driven circulation may add to or
cancel out the temperature-driven circulation depending on the
ocean salinity, and as a result, the OHT could be off by one
order of magnitude (Kang et al. 2021).
The eddy heat transport e can be represented by an

equivalent diffusive process,

r k p p r k= ¶ ~ DC T ad C Td2 2 , 6e p e y p e0 0 · ( ) ( )

where κe is the equivalent diffusivity of baroclinic eddies and d
denotes the depth that the density anomaly penetrates down-
ward from the surface. The corresponding residual circulation
can be written as

p r k pr kY ~ ~ D Da
T

T
d T T2 2 , 7e

y

z
e v0 0( ) ( ) ( )†

where ΔvT is the vertical temperature contrast across the
depth d.
According to Held & Larichev (1996), κe can be estimated

by

k = bkVL , 8e ( )

where k= 0.25 is a constant, V is the rms eddy velocity, and Lβ
denotes the wavelength of the energy-containing eddies, which
follows the Rhines scale:

b~bL V . 9( )

This energy-containing wavelength is typically larger than the
deformation radius Ld, the scale at which baroclinic instability
happens:

a
~ ~

D
L

Nd

f

g Td

f
, 10d

v ( )

f denotes the Coriolis coefficient, and r r=N g z 0 denotes
the Brunt–Väisälä frequency. Here, the vertical density gradient
ρz is estimated by ρ0αΔvT divided by d.
According to the scaling proposed by Held & Larichev

(1996), the ratio Lβ/Ld and V/U (U denotes the zonal jet speed)
is governed by the supercriticality ξ,

x
r b

r
~ ~ º ~

D
D

bL

L

V

U

f

d

T

T
, 11

d

y

z v
( )

where β∼ f/a is the meridional gradient of f. In the above
equation, d denotes the depth to which circulation and
dynamics can penetrate.
The thermal-wind balance connects U with d,

a
~

D
U

g Td

fa
. 12( )

A second constraint can be provided by the balance of vertical
heat transport. In an equilibrium state, the horizontally
integrated vertical diffusion of heat ρCpκv(ΔvT/d)(2πa

2)
should be equal to the downward heat transport by residual
circulation CpΨ

†ΔT (Jansen & Ferrari 2013) and that yields

k k x=a d . 13v e
2 2 2 ( )

κv limit—I first consider the κv-limited situation, where,
because of the low vertical diffusivity, the densest isentrope
initiated from the equator bends over and reaches the poles2 A 20 km ice shell is assumed here.
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without intersecting with the bottom. In this scenario, d<D,
ΔvT=ΔT, and ξ∼ 1. As a result, V and U, and Ld and Lβ are
interchangeable3, so κe can be written as

k
b

a a= = D ~ DkUL
k

f
g Td

k

af
g Td . 14e d 3

3 2
2

3 2( ) ( ) ( )

The depth of density variations d is constrained by the
vertical diffusivity κv through Equation (13), leading to

k
a~ D µ D- -d

a f

k
g T f H , 15v

3 2 2 7
3 7 4 7 3 7

⎜ ⎟
⎛
⎝

⎞
⎠

· ( ) ( )

which indicates that the depth of the density variation is
insensitive to the moon size but increases with the rotation rate
and decreases with ice-thickness gradients. To make sure that
the above solution is consistent with the assumptions, one
needs to check whether d is indeed smaller than the ocean
depth D. If this is not satisfied, the system should be in the D
limit instead. If d indeed turns out to be smaller than D, then we
can substitute Equation (15) and Equation (14) into
Equation (6), which gives

pr

a k

~ D

´ D µ D

k

-

C T
k

af

g T a a H f

2

. 16

p

v

2

2 7

3 7 2 5 7 3 10 7 4 7

v ⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )

To obtain the proportionality, the fact that ΔT∝ΔP∝
gΔH∝ aΔH, g∝ a, and β∝ f/a is used. The dependence of
kv on a and ΔH are very similar to that of the κv-limited

overturning circulation in the zonally symmetric case given by
Kang & Jansen (2022) (see Equation (4)).

Scaling laws can also be obtained for Ld and Lβ, which
should characterize the size of eddies and the width of jets,

a k= = D µ Db k k
- -

17
L L g T a k f a H f ,d v, ,

2 7 3 1 7 5 7 2 7 5 7
v v

( )
( ) ( )

and for the jet speed U

b a

k

= ~ D

´ µ D
k b k

- - -

U L g T

k f a a H f . 18v

,
2 4 7

2 7 3 7 1 7 4 7 3 7

v v
( )

( ) ( )

In the above equations, the subscript κv indicates that this is the
κv-limit scaling. Noticeably, the above scaling laws predict the
eddy size and jet width to grow linearly with the moonʼs radius
a, meaning the dominant wavenumber and the number of jets
will be insensitive to the moonʼs radius, but the jets will be
stronger (U∝ a). Besides, slower rotation and stronger ice-
thickness gradient will make the eddies and jet stronger and
larger in size.

D limit—For those scenarios, where isentropes intersect with
the seafloor, d=D, ΔvT<ΔT, and ξ> 1 (supercritical). The
equivalent eddy diffusivity should then be written as

k bx
b

a x= = = DbkVL kU U
k

f
g TD . 19e

3 2
3

3 2 3 2( ) ( )

From the above equation and the vertical heat balance
(Equation (13)), ξ can be solved:

x k
b

a= D - -a
f

k
g T D . 20v

2
3 2 7

3 7 1
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

Substituting Equation (19) and Equation (20) into Equation (6)
yields the eddy heat transport:

pr
b

a k

~ D

´ D µ D -

C D T
k

f

g T a a H f

2

. 21

D p

v

3

4 7

6 7 2 3 7 3 13 7 8 7

 ⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )

The above scaling exhibits a stronger dependence on ΔH and f
than the ξ= 1 scaling, and it becomes dependent on the ocean
depth D because the vertical diffusion now is strong enough to
communicate to the bottom and the ice shell. Again, this
scaling is comparable to the 2D scaling obtained by Kang &
Jansen (2022) (see Equation (5)).
By assumption, the penetration depth of the T/S anomalies is

the entire ocean depth D, i.e.,

=d D. 22( )

Substituting Equation (22) and Equation (20) into the
definitions of the deformation radius and Rhines scale
(Equation (9), Equation (11), and Equation (10)), the following
scalings are obtained:

a k b= D

µ D

- -

-

L g T a k Df

a H f , 23
d D v,

5 7 2 1 7 10 7

9 7 5 7 11 7

( ) ( ( ))
( )

a k b= D µ Db
- -L g T a k f a H f ,

24
D v,

2 7 2 1 7 4 7 2 7 5 7( ) ( ( ))
( )

a b= D µ D- -U g T Df a Hf . 25D
2 1( ) ( )

Just as in the κv-limit scaling, the dominant eddy
wavenumber and jet number should be insensitive to the
radius of the moon because the power of the a factors for Ld,D
and Lβ,D are both equal to 1. Also, slower rotation and a
stronger ice-thickness gradient will enhance the jet speed and
increase the sizes of jets and eddies.
Combining the two scalings together, the final OHT should

be equal to the lower value between the two scalings given by
Equation (16) and Equation (21), i.e.,

~ kmin , , 26Docn v  { } ( )

because both ocean depth and vertical diffusivity constrain how
much heat can be transported by the ocean.

5. Examine the Theory Using Numerical Simulations

Shown in Figures 2(a)–(c) is the predicted ocn as a function
of the icy moonʼs size, rotation rate, and equator-to-pole
thickness difference in highly saturated colors. Bluish colors
denote fresh ocean, and reddish colors denote salty ocean.
Default parameters can be found in Table 1. For comparison,
the corresponding 2D scalings given by Kang & Jansen (2022)
are shown in lighter colors. To verify these scaling laws, I ran
2D and 3D numerical simulations varying the three parameters
(a, f, and ΔH) and diagnose the OHT from the model output.
The 2D and 3D results are marked on Figure 2 using dots and
diamond markers, respectively. They match the prediction
(Equation (26)) up to a factor of 2. The matching seems

3 It is easy to verify that the thermal-wind balance is consistent with V ∼ U,
Ld ∼ Lβ, and ξ = 1.
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particularly good in panel (a), because the range of ocn there is
much wider so that the offset appears smaller in comparison.

The OHT is governed by the oceanʼs dynamic and
thermodynamic states. Presented in Figure 3 are the model
solutions obtained under 2D and 3D configurations. In these
simulations, moonʼs radius a= 2500 km, ocean salinity
S= 60 psu, equator-to-pole ice-thickness difference ΔH= 3
km, and Europaʼs rotation period (3.5 days) are used. Due to
the pressure gradient induced by the poleward-thinning ice
geometry, the freezing point under the ice is higher over the
poles compared to the equator, driving the poleward warming
pattern seen in Figure 3(a). Meanwhile, in order to sustain the
ice geometry against the flattening due to ice flow
(Equation (A6)), equatorial ice needs to freeze and polar ice
shell needs to melt. This in turn drives the meridional salinity
gradient seen in Figure 3(b). High ocean salinity and high
pressure suppress the anomalous expansion behavior (contract
upon warming) near the freezing point, which typically
happens on a small icy moon with a fresh ocean. As a result,
temperature and salinity anomalies both contribute to the high
density in low latitudes, driving sinking motions there (see
Figure 3(e)). The circulation is forced to be mostly aligned with
the direction of rotation in the interior. This is because any
motions moving closer to or away from the rotating axis will
lead to eastward/westward acceleration by virtue of angular
momentum conservation, and the resultant zonal flows will be
too strong to be in thermal-wind balance with the weak density
variation. Flows across the direction of the rotation axis
concentrate near the two rough boundaries at the top and
bottom where friction can prevent radial flows from inducing
strong zonal jets that can by no means be in thermal-wind
balance with the weak density gradients. In an equilibrium
state, the upper part of the ocean flows westward and the lower
part of the ocean flows eastward (Figure 3(d)), in thermal-wind
balance with the density distribution (Figure 3(c)).

The major differences between the 3D and 2D configurations
lie in the zonal flow field (Figure 3(d)): There are jets formed in
3D due to the Reynold stress associated with the baroclinic
eddies, whose structure is presented in Figures 3(f) and (g).
Due to the strong rotation effect, the eddy motions tend to be
aligned with the direction of the rotation axis, forming
convective “rolls” along the equatorial plane and wave-like
structures in higher latitudes, consistent with recent icy-moon
studies by Ashkenazy & Tziperman (2021), Soderlund et al.
(2014), Bire et al. (2022), and Kang et al. (2020). These eddies

facilitate stronger equatorward heat transport than the over-
turning circulation in 2D configuration, as shown by
Figure 3(h). It should be noted that some previous works have
jets and Taylor columns even under 2D configuration
(Ashkenazy & Tziperman 2021). This difference arises from

Figure 2. Numerical verification of OHT scalings. From panel (a) to (c), the bottom shows the dependence on the moonʼs size a, the rotation rate reflected by the
Coriolis coefficient f, and the equator-to-pole ice-thickness difference ΔH. The lines in highly saturated colors present the 3D scaling given by Equation (16) and
Equation (21), and lines in lighter colors present the 2D scaling given by Kang & Jansen (2022). Scattered on top are the diagnosed OHT from 3D numerical
experiments (diamond markers) and 2D numerical experiments (dots). Different colors are used to differentiate different ocean salinities: From bluish to reddish color,
salinity increases. Default parameters used in the scaling and the numerical experiments can be found in Table 1.

Table 1
Model Parameters Used in the Ocean General Circulation Model and the

Conceptual Model

Symbol Name Definition/Value

Physical Constants

Lf Fusion energy of ice 334,000 J kg−1

Cp Heat capacity of water 4000 J kg−1 K−1

Tf(S, P) Freezing point Equation (A2)
ρi Density of ice 917 kg m−3

ρw Density of the ocean “MDJWF” scheme McDougall
et al. (2003)

α Thermal expansion coeff. − ∂(ρ/ρ0)/∂T
β Saline contraction coeff. ∂(ρ/ρ0)/∂S
κ0 Conductivity coeff. of ice 651 W m−1

pα Ice-dissipation amplification factor −1.5
ηm Ice viscosity at freezing point 1014 Ps·s

Default Model Setup

a Radius 2500 km
g0 Surface gravity Equation (A1)
δ Obliquity 3°. 1
H0 Global-mean ice thickness 20 km
H2 Equator-to-pole ice-thickness

variation
3 km

H Ice-shell thickness Equation (A3)
D Global-mean ocean depth 56 km
Ω Rotation rate 2.05 × 10−5 s−1

Ts̄ Mean surface temperature 110 K
S0 Mean ocean salinity 60 psu
P0 Reference pressure ρig0H0

T0 Reference temperature Tf(S0, P0)
νh Horizontal viscosity 0.08 m2 s−1 (3D), (a/150

km) m2 s−1 (2D)
νv Vertical viscosity 0.03 m2 s−1 (3D), 1 m2 s−1

(3D)
νsmag Smagorinsky viscosity (3D only) 3
n n,h v˜ ˜ Biharmonic hyperviscosity

(2D only)
´a

150 km
108 m4 s−1

κh, κv Horizontal/vertical diffusivity 0.001 m2 s−1

(γT, γS, γM) Water–ice exchange coeff. for T, S,
& momentum

(10−5, 10−5, 10−4) m s−1

cond Conductive heat loss through ice Equation (A4)
ice Tidal heating produced in the ice Equation (A9)
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a different model configuration: In their work, the ocean is
heated from below and the no-slip boundary condition is
applied to the top and the bottom, whereas in this work, the
bottom heating is assumed to equal to zero and the boundary
drag is parameterized by a linear drag toward zero.

At different moonʼs sizes, rotation rates, and ice-thickness
variations, the dynamics remain qualitatively the same, as
shown by Figures A1–A6 in Appendix A. On a smaller icy
moon, the meridional temperature gradient weakens due to its
weaker gravity (compare Figure A1(a) and Figure A2(a) with
Figure 3(a)). That in turn weakens the circulation (see panel
(e1)) and eddies (see panels (f) and (g)), leading to a much
weaker heat transport (see panel (h)) as suggested by
Equation (16) and Equation (21). According to Equation (17)
and Equation (24), the number of jets remains more or less
unchanged—this can be seen from the panel (d2) of Figure A1,
Figure A2, and Figure 3.

Fast rotation suppresses the circulation, eddies, and thereby
OHT, as suggested by both 2D scalings (Equation (4) and
Equation (5)) and 3D scalings (Equation (16) and Equation (21)).
This trend is reflected by sensitivity tests shown in Figure A3 and
Figure A4, where a shorter rotation period of 1.37 days

Figure 3. Ocean circulation and thermodynamic state under 2D and 3D configurations. The left column (panels (a1)–(e1)) shows temperature, salinity, density, zonal
flow, and meridional stream function from a zonally symmetric 2D simulation. The second column (panels (a2)–(e2)) shows the same thing for the 3D simulation.
Panel (f) and panel (g) present the temperature and zonal flow anomalies from the zonal mean in a plane view. Panel (h) presents the vertically and zonally integrated
meridional OHT diagnosed from the 2D (dashed) and 3D model (solid). In this default setup: moonʼs radius a = 2500 km, ocean salinity S = 60 psu, equator-to-pole
ice-thickness difference ΔH = 3 km, and Europaʼs rotation period (3.5 days).

Figure 4. Predicted equator-to-pole ice-thickness difference in equilibrium
solved using Equations (29) and (27). Red shading marks the κv-limit regime,
and blue shading marks the D-limit regime. Highly saturated colors represent
3D scalings and lighter colors represent 2D scalings obtained in Kang & Jansen
(2022). When ΔH > H0/2 (H0 is the mean ice thickness), the polar ice-shell
thickness approaches zero, and the small-ΔH assumption required for
Equation (30) no longer holds. Those scenarios are considered to be runaway
poleward-thinning and mask those with gray shadings.
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(Enceladus’ rotation period) and a longer rotation period of
10 days are employed, respectively. Also, when the rotation rate
varies, the width of jets and eddies should change accordingly.
Strong rotation leads to smaller deformation radius Ld= (NH/f )
(governing the eddy size, Equation (10)) and smaller Rhines scale

b=bL U (governing the jet width, Equation (9)), consistent
with panels (d), (f), and (g) of Figure A3, Figure 3, and Figure A4.
The dependence of OHT on the ice-thickness variation ΔH is
quite intuitive. When the ice is flatter, the temperature/salinity
variations, eddy amplitude, eddy size, and heat transport all
decrease, as shown in Figure A5 and Figure A6.

As further verification of the theory, the jet speed is diagnosed
from the simulations by subtracting the averaged U from the
maximum zonal mean zonal flow and is compared against the
predictions given by Equation (18) and Equation (25).
The averaged spacing between jets is identified by “numpy.
find_peaks” and is compared against Equation (17) and
Equation (24). Finally, the prominent eddy size is computed by

averaging different wavelengths by the corresponding power
spectrum of the U field between 40N/S and 60N/S, and the
results are compared against Equation (17) and Equation (24)
because the eddies’ energy-containing scale follows the Rhines
scale (Held & Larichev 1996). All these diagnostics are carried
out in high latitudes inside the tangent cylinder—a cylinder whose
sides are parallel to the moonʼs axis of rotation and are tangential
(hence the name) to the oceanʼs floor at the equator because the
dynamics outside the tangent cylinder are very different (Kang
et al. 2020; Bire et al. 2022). As shown in Figure A7, the theory

also captures the eddy and jet characteristics reasonably well,
indicating that the agreement between the predicted and simulated

ocn may not be a coincidence.

6. The Equilibrium Equator-to-Pole Ice-thickness Gradient

6.1. Scaling Theory

The dependence of ocn on orbital parameters and ΔH can
be used to predict the equilibrium ice-thickness variation using
the fact that the ice-shell heat budget should be closed. This
analysis has been done by Kang & Jansen (2022) but using the
2D scaling for ocn . Here, I repeat the process for 3D scalings.
First, I need to convert ocn to the heat flux anomaly received

by the ice shell. Assuming that the heat transported from the polar
regions to the equatorial regions by the ocean is evenly distributed
over a half hemisphere with a surface area of πa2, the heat flux per
area received by the equatorial ice shell and the heat flux leaving
the polar ice shell equal to

In an equilibrium state, the ice shell needs to be in heat
balance everywhere, which means

+ + = . 28ice latent ocn cond    ( )

ice denotes the ice dissipation, latent denotes the latent heat
release, and cond denotes the conductive heat loss. The latent
heat release r= L qi flatent tends to be small compared to the
other terms, as can be seen from Figure 1(c), except when the
moon size is very small and the ice-thickness variation is very
large. For simplicity, I drop latent . The remaining terms can all

Figure 5. Equilibrium ice-shell geometries on Enceladus (panel a) and Europa (panel b) predicted by an ice-evolution model (Equation (B1)) with parameterized OHT
(Equation (33)). Blue color masks the ocean, and white color masks the ice. Twenty-four scenarios are considered for each moon, to account for the uncertainties
associated with the ice-shell rheology and the efficiency of OHT. The values for the three key parameters, ηm, |α|, and κv are shown on the left and upper sides. The
top two rows have OHT amplified by another factor of 10 to represent the potential effect of eddies and other unforeseeable factors. The bottom row assumes
zero OHT.
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be written as a function of the ice topography H. ice amplifies
over regions with thinner ice due to the rheology feedback
(Beuthe 2019; Kang & Flierl 2020) following f =ice ( )

f f´ H Hice0 0
2 ( ) ( ( )) , where H0 is the mean ice thickness

and fice0 ( ) is the ice-dissipation rate in a flat ice shell as a
function of latitude f. The conductive heat loss cond is
inversely proportional to the local ice thickness f =cond ( )

f´ H Hcond0 0 ( ( )). Because the ice dissipation over the
polar regions is roughly twice as strong as that over the equator
in absence of ice topography (Beuthe 2018), I choose

=pole 1.25ice0 ice0 ( ) for the polar box and =eqice0 ( )
0.75 ice0 for the equatorial box, where (·) denotes the global
mean. To guarantee the global heat budget balance, ice0

should be equal to =
D

cond0 . Now, consider the equator-to-
pole difference of the heat budget terms for an ice shell that has
a mean thickness of H0 and an equator-to-pole thickness
difference of ΔH (the equatorial ice shell is thicker). Keeping
the first-order terms, the heat budget simplifies to
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From Equations (29) and (27), ΔH can be solved numerically.
The results are presented in Figure 4. The entire solution falls
into the κv-limit regime, as denoted by the red shading (blue
shading marks the D-limit regime).

If the ice-thickness variation is small (ΔH/H0= 1), further
simplification can be made to Equation (29). Taylor-expanding
Equation (29) around small ΔH/H0 and dropping high-order
terms give

»2
1

2
. 30ocn  ( )

From Equations (30) and (27), ΔH can be solved analytically:
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( ) ( ) ( ) are constants. To

obtain the above solution, I have substituted g with
4πGρbulka/3, where ρbulk= 2500 kg m−3 is the bulk density.

From Equation (31), it can be seen that, when ΔH=H0, the
equilibrium ice-shell-thickness variation ΔH should decrease
with the moonʼs size and increase with the rotation frequency,
following ΔH∝ f 2/5a−7/10 or f 8/13a−7/13 depending on the
dynamic regime of the ocean. The results here again
qualitatively agree with the 2D scaling results, which follow
D µH f a 2 3( ) or f/a1/2 for the κv limit and D limit,
respectively, as shown by Kang & Jansen (2022), except that
the sensitivity to rotation rate is slightly lower here.

The asymptotic scalings (shown by blue and red dashed lines
in Figure 4) provide a useful approximation to the full solution
of Equation (29) for a relatively small to moderate ΔH. For
larger ΔH, the sensitivity of ΔH on a increases, and
eventually, runaway poleward thinning happens when
a≈ 200 km (masked by dark gray shading), due to the
strengthening of the ice-rheology feedback. Besides the
dependence on a and f, it can be seen from Equation (31)
that a higher ocean salinity (leading to larger α and stronger
salinity-driven circulation), a stronger turbulent diffusivity, and
(provided sufficient turbulent mixing) a deeper ocean can also
reduce ΔH.
Compared to Enceladus, Europa is six times larger in size, is

rotating three times slower, and its ocean is likely saltier (Hand
& Chyba 2007; Zolotov 2007; Zolotov & Postberg 2014;
McKay et al. 2018; Kang et al. 2021) and deeper (Hand &
Chyba 2007)—all of these differences suggest that Europaʼs ice
shell may be much flatter than Enceladus’. Assuming
|α|∼ 10−5

–10−4/K (Figure 1(e)), κv= 10−3 m2 s−1, and
γ= 10−4 m s−1, Equation (29) yields ΔH= 8 km for
Enceladus,4 in line with the strong ice topography in
observations (Iess et al. 2014; Beuthe et al. 2016; Tajeddine
et al. 2017; Čadek et al. 2019; Hemingway & Mittal 2019). In
contrast, using Europa parameters, ΔH is estimated to be only
0.7 km! This roughly matches the constraint based on limb
profile measurements (Nimmo et al. 2007). Finally, it should be
noted that ΔH is sensitive to the vertical diffusivity/viscosity
and is only valid under our assumptions (shell heating,
temperature-dominant density variation, Maxwell ice rheology,
etc.). Better understanding of the dissipative processes in the
ocean driven by tides and libration motions (Rekier et al. 2019)
is required to better constrain the ice-shell geometry.

6.2. Numerical Results for Enceladus and Europa

To demonstrate the potential impacts of the size of the icy
satellite on its equilibrium ice-shell geometry, I integrate an ice-
evolution model forward using Enceladus’ and Europaʼs
parameters, respectively. The model is modified based on
Kang & Flierl (2020). It calculates the melting induced by the
tidal heating ice (given by Equation (A9) in Appendix A), the
down-gradient ice flow  (given by Equation (A7) in
Appendix A), the heat loss to space by conduction cond
(given by Equation (A4) in the appendix), and the heat
transmitted upward by the ocean ocn , and evolves the ice
thickness H over time. The total thickness tendency can be
symbolically expressed as

r

f
f

=
- -

+ ¶f

dH

dt

H H H

L

a
H

1

sin
sin , 32

f i

cond ice ocn  



( ) ( ) ( )

( ( )) ( )

where Lf and ρi are the latent heat of freezing and density for
ice, a is the moonʼs radius, and f denotes latitude. When the
ice shell is thinner than 3 km, I assume that the ice shell will
crack open under the tidal stress, and the resultant geysers will
carry away large amounts of heat, preventing further melting.

4 In reality, ΔH should be smaller if the following factors account for (1) the
salinity-driven circulation, which could be crucial for small icy satellites and
(2) latent in the heat budget (Equation (28)). The sensitivity of ΔH to orbital
and ocean parameters dramatically increases when ΔH becomes comparable to
the mean ice thickness H0.
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In the evolution model, I overwrite the thickness tendency with
zero when H< 3 km to implicitly represent this additional
heat loss.

The ocean–ice heat exchange ocn is a new component that
does not exist in Kang & Flierl (2020). Inspired by the
conceptual model, ocn is parameterized as

r a k
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where ¢H is the deviation from the prescribed global-mean ice
thickness H0= 20 km and MIN{} selects whichever para-
meterization yields a smaller global standard deviation. A
factor of 2 is multiplied to H′ because the analysis before uses
the equator-to-pole thickness difference, which is twice as large
as the equator/poleʼs deviation from the mean. Also, salinity-
driven heat transport is assumed to be roughly comparable with
the temperature-driven one, and that accounts for the other
factor of 2 multiplied to the above formula.

To account for the uncertainties associated with the ice-shell
rheology and the efficiency of OHT, a range of ice viscosities
ηm,

5 |α| , and κv are considered for Enceladus and Europa. The
equilibrium ice-shell geometries are shown in Figure 5. For
both moons, the equilibrium geometry also varies with the ice
and ocean properties. The equilibrium ice shell tends to be
flatter with smaller ηm and higher |α| and κv.

The bottom row assumes no OHT, and significant ice-
thickness variations develop on both Enceladus and Europa.
When the ice viscosity is not too low (ηm> 10−13 Pa·s), ice is
almost completely melted over one or both poles due to the ice-
rheology feedback. However, with OHT, the equilibrium ice
geometry is largely flattened especially for Europa given its
large size and slower rotation rate. The smoothing effect of the
ocean is particularly clearly shown in the right row, where ice
flow is ineffective. If Europaʼs ocean is saltier than 50 psu as
suggested by the strong magnetic induction signal (Hand &
Chyba 2007), α should be closer to the upper bound, leading us
to the conjecture that the ice-thickness variation on Europa is
likely less than 1 km. When Enceladus’ parameters are used
instead, the OHTʼs impact on ice-shell geometry is more
limited. The equilibrium ice-shell geometry obtained under the
influence of OHT is similar to those without, unless the vertical
diffusivity is very high. This sensitivity highlights the
importance of understanding the dissipative processes in the
ocean driven by tides and libration motions (Rekier et al.
2019). It should also be noted that the OHT scaling obtained in
this work may not apply to scenarios with very strong ice-
thickness variation due to the changes in geometry and the
nonlinear behavior of eddies at high amplitude. Among the 28
scenarios considered for Enceladus, 5 develop the hemispheric
asymmetry seen in observation (Iess et al. 2014; Hemingway &
Mittal 2019), suggesting that the symmetry-breaking

mechanism proposed by Kang & Flierl (2020) could work in
the presence of ocean heat redistribution.

7. Concluding Remarks

The two scientific questions addressed here are (1) how the
efficiency of the OHT forced by the ice-thickness variations
varies with the icy moonʼs orbital parameters and (2) how the
OHT in turn affects the equilibrium ice geometry. To do so, I
derive scaling laws for the OHT on icy moons, inspired by
previous theoretical work on the baroclinic eddies in the
context of Earth’s ocean or atmosphere (Held & Larichev 1996;
Karsten et al. 2002; Jansen & Ferrari 2013). These scaling laws
are then verified by 3D general circulation simulations run for
various planetary radii, rotation rates, and associated ice-
thickness variations. It is found that heat convergence toward
the thick-ice regions is more efficient on icy satellites with
greater sizes and slower rotation rates. Therefore, those icy
moons’ ice shells are expected to be flatter.
Enceladus and Europa are two icy satellites in the solar

system that are known to contain a global subsurface ocean
(Carr et al. 1998; Kivelson et al. 2000; Hand & Chyba 2007;
Postberg et al. 2009; Thomas et al. 2016). Despite their similar
global-mean ice thickness and per-area heat production rate,
Europaʼs ice shell is likely to undergo a drastically different
evolution path from that of Enceladus. Due to its larger size and
slower rotation rate, the OHT on Europa is likely to be much
more efficient, and thus, the equilibrium ice-thickness variation
is predicted to be lower than 1 km, in line with the so-far
available observations (Nimmo et al. 2007; Iess et al. 2014;
Beuthe et al. 2016; Tajeddine et al. 2017; Čadek et al. 2019;
Hemingway & Mittal 2019).
To drive the point home, the equilibrium ice geometry for

Enceladus and Europa is solved by integrating an ice-evolution
model, where OHT is parameterized based on the scaling laws.
All Europa scenarios with OHT parameterization form a rather
flat ice shell with thickness variation below 2 km. Most
equilibrium ice geometries obtained using Enceladus para-
meters, to the contrary, exhibit strong thickness variations,
unless the ice sheet is very mobile (low ice viscosity) or the
assumed vertical diffusivity and the thermal expansion
coefficient are both high. Some Enceladus scenarios even form
the significant hemispheric asymmetry seen in observations
(Iess et al. 2014; Beuthe et al. 2016; Tajeddine et al. 2017;
Čadek et al. 2019; Hemingway & Mittal 2019), indicating that
the symmetry-breaking mechanism proposed by Kang & Flierl
(2020) can work in presence of OHT.
It should be noted that other factors, such as ice viscosity,

vertical mixing in the ocean, and thermal expansion coefficient
(determined by ocean salinity), also have significant impacts on
the equilibrium ice geometry for Enceladus. These factors are
thus far poorly constrained. More work along this line will
improve the prediction of equilibrium ice-shell geometry. Also,
in this work, all heat is assumed to be produced in the ice shell.
With heat produced in the silicate core, the oceanʼs stratifica-
tion will change: A fresh ocean on a small moon with negative
α will become more stratified, whereas a salty ocean on a large
moon with positive α will become less stratified and even
globally convective. In the appearance of convection (salty/
high pressure), the heating delivered to the ice shell by
convective Taylor plumes is not going to be evenly distributed
if the heating released from the seafloor is (Soderlund et al.
2014; Soderlund 2019; Bire et al. 2022). This may induce

5 Notice that a smaller ηm means more freezing/melting is needed to
counterbalance the ice flow and thereby more latent heating and stronger
salinity-driven circulation. I ignored these two effects in Section 6.1, which is
why they do not depend on ηm and can be thought of as representing the limit
of large ice viscosity.
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topography in the ice shell as well and needs to be investigated
in the future. However, we expect the effect of bottom heating
to play a less important role as the satellite size increases
because the vertical temperature gradient induced by bottom
heating decreases with gravity,6 whereas the temperature
difference induced by the ice topography will increase with
satellite size; even for an icy moon as small as Enceladus, the
vertical temperature gradient induced by a 40 mW m−2 bottom
heating is likely one order of magnitude smaller than that
induced by the observed ice-thickness variation (Kang et al.
2021).

Despite these uncertainties, the qualitative result that OHT is
more efficient at limiting ice-shell thickness variations on large
satellites is likely to be robust. By connecting the equilibrium
ice-shell geometry with the icy moonʼs orbital parameters and
the ocean properties, this work may bring a bit more constraint
to the poorly constrained icy worlds.

This work is carried out in the Department of Earth,
Atmospheric and Planetary Science (EAPS) in MIT. W.K.
acknowledges support as a Lorenz-Houghton Fellow by
endowed funds in EAPS and helpful comments from Prof.
Malte Jansen

Software: MITgcm (MITgcm-group collaboration 2010)

Appendix A
A Description of the General Circulation Model

Our simulations are carried out using the Massachusetts
Institute of Technology OGCM (MITgcm Marshall et al. 1997;
MITgcm-group collaboration 2010) configured for application
to icy moons.

The model integrates the nonhydrostatic primitive equations
for an incompressible fluid in height coordinates, including a
full treatment of the Coriolis force in a deep fluid, as described
in MITgcm-group collaboration (2010) and Marshall et al.
(1997). Such terms are typically ignored when simulating
Earthʼs ocean because the ratio between the fluid depth and the
horizontal scale is small. Instead, when the moon size is on the
order of hundreds of kilometers like Enceladus, the aspect ratio
is on the order of 0.1 and so not negligibly small. The size of
each grid cell shrinks with depth due to spherical geometry and
is accounted for by switching on the “deepAtmosphere” option
of MITgcm. Also, the gravity will vary with depth as well. This
is accounted for using the following profile of gravity:
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In the above equation, G= 6.67× 10−11 N m−2 kg−2 is the
gravitational constant, r = 2500 kgcore m−3 is the assumed core
density, and ρout= 1000 kg m−3 is the density of the ocean/ice
layer. D0 and H0 are the thickness of ocean and ice on a global
average, respectively. Because it takes several tens of
thousands of years for our solutions to reach equilibrium, all
of our experiments are first run under a zonally symmetric 2D
configuration with a moderate resolution of 2° (8.7 km). Only

30 layers (each 2 km) are used to keep the computational cost
manageable. After equilibrium is reached, I interpolate the
pickup files to generate initial conditions for the corresponding
3D simulation, which has a default horizontal resolution of
0°.25×0°.25 and 70 unevenly distributed vertical layers, whose
thicknesses increase from 500 m to 2 km from top to bottom.
Because the changing rotation rate has a significant impact on
the size of the jets and eddies, I had to adjust the grid width
along the east–west direction by a factor of 1.4 in those cases to
better capture the dynamics. The model parameters are
summarized in Table 1.

A.1. Diffusivity and Viscosity

Vertical diffusivity affects the energetics of the ocean
(Young 2010; Jansen et al. 2022). To account for the mixing
of heat and salinity by unresolved turbulence, in our
calculations, I set the explicit vertical diffusivity to 0.001 m2

s−1 in both 2D and 3D simulations, following Kang et al.
(2021). This is roughly four orders of magnitude greater than
molecular diffusivity, but broadly consistent with the dissipa-
tion rates suggested by Rekier et al. (2019) for Enceladus,
according to the scaling suggested by Wunsch & Ferrari
(2004). In all experiments, horizontal diffusivity is set to be
equal to vertical diffusivity regardless of the resolution and the
size of the icy moon.
Viscosity is necessary to keep the model stable. For the

coarse-resolution 2D simulations, the horizontal viscosity is set
to a

150 km
m2 s−1 (a is the radius of the moon). Additionally, a

biharmonic hyperviscosity of ´ 10a

150 km
8 m4 s−1 is employed

to further damp numerical noise induced by our use of stair-like
ice topography. The same viscosities are used in Kang &
Jansen (2022). For the high-resolution 3D simulations, the
explicit horizontal and vertical viscosity is set to much smaller
values (0.08 m2 s−1 and 0.03 m2 s−1, respectively), and I use
the widely applied Smagorinsky viscosity scheme (Smagor-
insky 1963). Unlike the fixed viscosity scheme, the Smagor-
insky scheme determines the viscosity based on the resolved
dynamics, and as a result, numerical noise will be damped
while dynamics can be kept to a larger extent. The
Smagorinsky viscosity constant is set to 3 by default. As
mentioned before, resolution in the x-direction is increased
(decreased) by a factor of 1.4 under a higher (lower) rotation
rate. In those experiments, horizontal viscosity is adjusted
proportionally to the x-grid width.
In the coarse-resolution model, convection cannot be

resolved, so parameterization is needed. Following Kang
et al. (2021), I set the diffusivity to a much larger value in
convectively unstable regions to represent the vertical mixing
associated with convective overturns. This convective diffu-
sivity κconv is set to increase from 1 to 30 m2 s−1 as gravity and
convection strengthen with the satellite radius. Similar
approaches are widely used to parameterize convection in
coarse-resolution ocean models (see, e.g., Klinger et al. 1996)
and belong to a family of convective adjustment schemes. Our
results turn out to be insensitive to κconv, as long as the
convective timescale D2/κconv< 1 yr is much shorter than the
advective timescale Mhalf/Ψ≈ 102–103 yr (Mhalf is half of the
total mass of the ocean and Ψ is the maximum meridional
stream function in kg/s).

6 According to Gastine et al. (2016), the Nusselt number is proportional to the
Rayleigh number to the power of 1.5. Solving the vertical temperature gradient
ΔT assuming a fixed vertical heat flux yields ΔT ∝ g−3/5.
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A.2. Equation of State and the Freezing Point of Water

To make the dynamics as realistic as possible, the “MDJWF”
equation of state (EOS McDougall et al. 2003) is adopted when
it comes to determining density using temperature, salinity, and
pressure. As demonstrated by Figure 1(e) of the main text, the
thermal expansion coefficient α at the freezing point is negative
at the ice–ocean interface when the moon size is small (low
pressure) and when the ocean is fresh. This anomalous
expansion can suppress the convection driven by bottom
heating (Zeng & Jansen 2021; Kang et al. 2022) and can alter
the direction of ocean circulation (Kang et al. 2021).

The freezing point of water Tf is assumed to depend on local
pressure P and salinity S as follows:

= + +T S P c b P a S, , A2f 0 0 0( ) ( )

where a0=−0.0575 K/psu, b0=−7.61× 10−4 K/dbar, and
c0= 0.0901 °C. The pressure P can be calculated using
hydrostatic balance P= ρigH (ρi= 917 kg m−3 is the density of
the ice and H is the ice thickness).

A.3. Boundary Conditions

The ocean is encased by an ice shell with meridionally
varying thickness, assuming hydrostasy (i.e., ice is floating
freely on the water). The ice thickness is set to be

f f= -H H H P sin , A30 2 2( ) ( ) ( )

where H0 is the mean ice thickness, P2 is the second-order
Legendre polynomial, and H2 is the amplitude of the ice-
thickness variation. f denotes latitude. The thickness profile is
shown by a solid curve in Figure 1(b) of the main text. Partial
cells are switched on to better represent the ice topography:
Water is allowed to occupy a fraction of the height of a whole
cell with an increment of 10%. Interactions between the ice
shell and the ocean are taken care of by a modified version of
MITgcmʼs “shelfice” module (Losch 2008). The ocean is
forced by heat and salinity fluxes from the ice shell at the top.

Diffusion of heat through the ice: Heat loss to space by heat
conduction through the ice cond is represented using a 1D
vertical heat conduction model,

k
=

H

T

T
ln , A4

f

s
cond

0 ⎜ ⎟
⎛
⎝

⎞
⎠

( )

where H is the thickness of ice (solid curve in Figure 1(b) of the
main text), the surface temperature is Ts and the ice temperature
at the water–ice interface is the local freezing point Tf
(Equation (A2)). The surface temperature Ts is set to the
radiative equilibrium temperature, which can be computed
given the incoming solar radiation and obliquity (δ= 3°) and
assuming an albedo of 0.81. Typical heat losses averaged over
the globe are cond = 50 mW m−2, broadly consistent with
observations (Tajeddine et al. 2017).

Ice–ocean fluxes: The interaction between the ocean and ice
is simulated using MITgcmʼs “shelf-ice” package (Holland &
Jenkins 1999; Losch 2008) with some modifications.

At the water–ice interface, we consider the response of the
ocean to a prescribed ice-freezing rate while ignoring the
possible response of the ice to the water–ice heat/salinity
exchange. The freezing/melting induces a salinity/freshwater
flux into the ocean (we assume the ice salinity to be zero);

meanwhile, the ocean temperature at the upper boundary is
relaxed to the local freezing point Tf determined by the local
salinity and pressure (Equation (A2)):

d

d
g

=

= - -

- -

-
-

dS

dt

qS

z
dT

dt z
q T T

1
. A5T f

ocn top ocn top

ocn top
ocn top( )( ) ( )

Here, -Socn top and -Tocn top denote the upper-boundary salinity
and temperature, γT= 10−5 m s−1 is the water–ice exchange
coefficient for temperature and salinity, δz= 2 km is the
thickness of the water–ice “boundary layer,” and q is the
freezing rate in m/s (note that q is orders of magnitude smaller
than γT). The “boundary layer” option is switched on to avoid
possible numerical instabilities induced by an ocean layer that
is too thin.
In addition to the above conditions on temperature and

salinity, the tangential velocity is relaxed back to zero at a rate
of γM= 10−3 m s−1 at the upper and lower boundaries.

A.4. Ice-flow Model

The prescribed freezing rate q is computed using the
divergence of the ice flow, assuming the ice-sheet geometry
is in equilibrium. Here, an upside-down land ice-sheet model is
used following Ashkenazy et al. (2018). The ice flows down its
thickness gradient, driven by the pressure gradient induced by
the spatial variation of the ice-top surface, somewhat like a
second-order diffusive process. At the top, the speed of the ice
flow is negligible because the upper part of the shell is very
cold and hence rigid; at the bottom, the vertical shear of the ice-
flow speed vanishes, as required by the assumption of zero
tangential stress there. This is the opposite to that assumed in
the land ice-sheet model. In rough outline, I calculate the ice
flow using the expression below obtained through repeated
vertical integration of the force-balance equation (the primary
balance is between the vertical flow shear and the pressure
gradient force), using the aforementioned boundary conditions
to arrive at the following formula for ice transport,

f = ¶fH H a , A60
3 ( ) ( ) ( )

where

ò ò
r r

h r r
=

-

´ -
¢
- ¢

¢
¢

g

T T

E

R T

T

T
T

dT

T

dT

T

2

log

exp 1 log . A7

i

m i f s
T

T

T

T z

a

g f

f

0
0

0
3 s

f

s


⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )
( ) ( )

( ) ( )

( )

Here, f denotes latitude, a and g are the radius and surface
gravity of the moon, Ts and Tf are the temperatures at the ice
surface and the water–ice interface (equal to the local freezing
point, Equation (A2)), and ρi= 917 kg m−3 and ρ0 are the ice
density and the reference water density. Ea= 59.4 kJ/mol is
the activation energy for diffusion creep, Rg= 8.31 J/K/mol is
the gas constant, and ηm is the ice viscosity at the freezing
point. The latter has considerable uncertainty (1013–1016 Pa·s
Tobie et al. 2003), and here ηm is set to 1014 Pa·s.
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In steady state, the freezing rate q must equal the divergence
of the ice transport thus:

f f
f= -

¶
¶

q
a

Q
1

cos
cos . A8( ) ( )

As shown by the dashed curve in Figure 1(b) of the main text,
ice melts in high latitudes and forms in low latitudes at a rate of
a few kilometers every million years. A more detailed
description of the ice-flow model can be found in Kang &
Flierl (2020) and Ashkenazy et al. (2018). Freezing and
melting lead to changes in local salinity and thereby a
buoyancy flux.

A.5. Model of Tidal Dissipation in the Ice Shell

An icy moonʼs ice shell is periodically deformed by tidal
forcing and the resulting strains in the ice sheet produce heat. I
follow Beuthe (2019) to calculate the ice-dissipation rate. Instead
of repeating the whole derivation here, I only briefly summarize
the procedure and present the final result. Unless otherwise stated,
parameters are the same as assumed in Kang & Flierl (2020).

Tidal dissipation consists of three components (Beuthe 2019):
a membrane mode ice

mem due to the extension/compression and
tangential shearing of the ice membrane, a mixed mode ice

mix
due to vertical shifting, and a bending mode ice

bend induced by
the vertical variation of compression/stretching. Following
Beuthe (2019), I first assume the ice sheet to be completely
flat. By solving the force-balance equation, I obtain the auxiliary
stress function F, which represents the horizontal displacements,
and the vertical displacement w. The dissipation rate ice

flat,x
(where x= {mem, mix, bend} ) can then be written as a
quadratic form of F and w. In the calculation, the ice properties
are derived assuming a globally uniform surface temperature of
60K and a melting viscosity of 5× 1013 Pa·s.

Ice-thickness variations are accounted for by multiplying the
membrane-mode dissipation ice

flat,mem by a factor that depends
on ice thickness. The membrane mode is the only mode that is
amplified in thin-ice regions (see Beuthe 2019). This results in
the expression

= + +aH H , A9p
ice 0 ice

flat,mem
ice
flat,mix

ice
flat,bend   ( ) ( )

where H is the prescribed thickness of the ice shell as a
function of latitude and H0 is the global mean of H. Because
thin-ice regions deform more easily and produce more heat, pα
is negative. Because more heat is produced in the ice shell, the
overall ice temperature rises, which, in turn, further increases
the mobility of the ice and leads to more heat production (the
rheology feedback).

The tidal heating profile corresponding to pα=−1.5 is the
red solid curve plotted in Figure 1(c) of the main text.

Appendix B
Idealized Ice-evolution Model

Here I provide a brief overview of the idealized model used
to evolve the ice shell of Enceladus and Europa. Interested
readers are referred to Kang & Flierl (2020) and its
supplementary material for more detail.

In this model, the ice-shell thickness H is changed over time
by the melting induced by the tidal heating ice (given by
Equation (A9)), the down-gradient ice flow  (given by
Equation (A6)), the heat loss to space by conduction cond

(given by Equation (A4)), the crack-induced cooling crack in
places where the ice is sufficiently thin, and heat transmitted
upward by the ocean ocn . The ice-thickness tendency can be
symbolically expressed as follows:

r

f
f

=
- -

+ ¶f

dH

dt

H H

L

a
H

1

sin
sin , B1

f i

cond ice ocn  



( ) ( )

( ( )) ( )

where Lf and ρi are the latent heat of freezing and density for
ice, a is the moonʼs radius, and f denotes latitude. Physical
constants and parameters for Enceladus and Europa are stated
in Table 2. ice is polar amplified, and as a result, the polar ice
shell tends to be thinner, which in turn increases the heat
production over the pole (see Equation (A9)). The tendency for
the ice-thickness variation to increase due to the rheology
feedback will be balanced by the rapid heat loss through thin
ice (Equation (A4)) and the transport by ice flow
(Equation (A6)). An additional heat sink is activated only
when the ice thickness is less than Hcrack= 3 km to prevent
further melting and crudely represents the effect of cracks and
geysers that carry the extra heat away. For all time, the global
tidal dissipation ice is scaled to exactly balance the
instantaneous conductive heat loss cond . By so doing, the
rheology feedback and thus the ice-thickness variation is
maximized. Throughout the integration, the global-mean ice
thickness is fixed at H0= 20 km.
The ocean–ice heat exchange is a new process I introduced.

Inspired by the conceptual model, the heat flux coming from
the ocean is parameterized by Equation (19) in the main text.
The initial condition is set as follows

f f= - -H H H P H P0 sin sin , B20 2 2 1 1( ) ( ) ( ) ( )

where H0= 20 km, H2= 3 km, and H1= 1 km. P1 and P2 are
the first and second order of Legendre polynomials.

Table 2
Parameters for Enceladus and Europa

Symbol Name Definition/Value

pα Ice-dissipation amplification factor −1.5

Parameters for Enceladus
a Radius 252 km
g0 Surface gravity 0.113 m s−2

δ Obliquity 27°
H0 Global-mean ice thickness 20 km Hemingway & Mit-

tal (2019)
H2 Initial equator-to-pole ice-thickness

variation
3 km

H1 Initial hemispherical asymmetry 1 km
Ts̄ Mean surface temperature 59 K

Parameters for Europa
a Radius 1561 km
g0 Surface gravity 1.315 m s−2

δ Obliquity 3°. 1
H0 Global-mean ice thickness 20 km
H2 Initial equator-to-pole ice-thickness

variation
3 km

H1 Initial hemispherical asymmetry −1 km
Ts̄ Mean surface temperature 110 K
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Appendix C
Ocean dynamics and heat transport under various

configurations

Figures A1–A6 present 2D and 3D ocean dynamics and
OHT for experiments with different satellite radius, rotation

periods and different equator-to-pole ice thickness gradients.
Figure A7 compares the simulated jet speeds, jet spacings and
eddy sizes with the theoretical prediction.

Figure A1. Same as Figure 3 except for a = 250 km instead of 2500 km.
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Figure A2. Same as Figure 3 except for a = 1000 km instead of 2500 km.
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Figure A3. Same as Figure 3 except the rotation period is set to 1.37 days instead of 3.5 days.
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Figure A4. Same as Figure 3 except rotation period is set to 10 days instead of 3.5 days.
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Figure A5. Same as Figure 3 except the ice-thickness contrast ΔH = 1 km instead of 3 km.

18

The Astrophysical Journal, 934:116 (21pp), 2022 August 1 Kang



Figure A6. Same as Figure 3 except the ice-thickness contrast ΔH = 0.3 km instead of 3 km.
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Figure A7. Similar to Figure 2 except for scalings of eddy and jet properties. The top row shows jet speed, the middle row shows jet spacing, and the bottom row
shows eddy size. Solid lines in the top row show the predicted jet speed given by Equation (18) and Equation (25), and solid lines in the bottom and lower rows show
the Rhine scale given by Equation (17) and Equation (24) multiplied by a factor of 4π. The bluish color to reddish color denotes increasing ocean salinity.
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