
Characterization of Underwater Target Geometry from
Autonomous Underwater Vehicle Sampling of Bistatic

Acoustic Scattered Fields
by

Erin Marie Fischell
Submitted to the Joint Program in Applied Ocean Science & Engineering

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the
WOODS HOLE OCEANOGRAPHIC INSTITUTION

June 2015
c○2015 Erin M. Fischell.

All rights reserved.
The author hereby grants to MIT and WHOI permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document in whole or in
part in any medium now known or hereafter created.

Author .
Joint Program in Applied Ocean Science & Engineering

Massachusetts Institute of Technology
& Woods Hole Oceanographic Institution

March 27, 2015

Certified by. .
Henrik Schmidt

Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology

Thesis Supervisor

Accepted by .
David E. Hardt

Chairman, Committee for Graduate Students
Massachusetts Institute of Technology

Accepted by .
Henrik Schmidt

Chairman, Joint Committee for Applied Ocean Science & Engineering
Massachusetts Institute of Technology
Woods Hole Oceanographic Institution

2

Characterization of Underwater Target Geometry from Autonomous

Underwater Vehicle Sampling of Bistatic Acoustic Scattered Fields

by

Erin Marie Fischell

Submitted to the Joint Program in Applied Ocean Science & Engineering
Massachusetts Institute of Technology

& Woods Hole Oceanographic Institution
on March 27, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

One of the long term goals of Autonomous Underwater Vehicle (AUV) minehunting is to
have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acous-
tic methods for target classification using AUV-based sensing, such as sidescan and synthetic
aperture sonar, require an expensive payload on each outfitted vehicle and expert image
interpretation. This thesis proposes a vehicle payload and machine learning classification
methodology using bistatic angle dependence of target scattering amplitudes between a fixed
acoustic source and target for lower cost-per-vehicle sensing and onboard, fully autonomous
classification. The contributions of this thesis include the collection of novel high-quality
bistatic data sets around spherical and cylindrical targets in situ during the BayEx’14 and
Massachusetts Bay 2014 scattering experiments and the development of a machine learning
methodology for classifying target shape and estimating orientation using bistatic amplitude
data collected by an AUV. To achieve the high quality, densely sampled 3D bistatic scat-
tering data required by this research, vehicle broadside sampling behaviors and an acoustic
payload with precision timed data acquisition were developed. Classification was successfully
demonstrated for spherical versus cylindrical targets using bistatic scattered field data col-
lected by the AUV Unicorn as a part of the BayEx’14 scattering experiment and compared
to simulated scattering models. The same machine learning methodology was applied to the
estimation of orientation of aspect-dependent targets, and was demonstrated by training a
model on data from simulation then successfully estimating the orientations of a steel pipe
in the Massachusetts Bay 2014 experiment. The final models produced from real and sim-
ulated data sets were used for classification and parameter estimation of simulated targets
in real time in the LAMSS MOOS-IvP simulation environment.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology

3

4

Biography

Acknowledgments

5

6

Contents

1 Introduction 13

1.1 Motivations for micro-optimization . 13

1.2 Description of micro-optimization . 14

1.2.1 Post Multiply Normalization . 15

1.2.2 Block Exponent . 15

1.3 Integer optimizations . 16

1.3.1 Conversion to fixed point . 16

1.3.2 Small Constant Multiplications . 16

1.4 Other optimizations . 17

1.4.1 Low-level parallelism . 17

1.4.2 Pipeline optimizations . 18

A Tables 19

B Figures 21

7

8

List of Figures

B-1 Armadillo slaying lawyer. 22

B-2 Armadillo eradicating national debt. 23

9

10

List of Tables

A.1 Armadillos . 19

11

12

Chapter 1

Introduction

Micro-optimization is a technique to reduce the overall operation count of floating point

operations. In a standard floating point unit, floating point operations are fairly high level,

such as “multiply” and “add”; in a micro floating point unit (𝜇FPU), these have been bro-

ken down into their constituent low-level floating point operations on the mantissas and

exponents of the floating point numbers.

Chapter two describes the architecture of the 𝜇FPU unit, and the motivations for the

design decisions made.

Chapter three describes the design of the compiler, as well as how the optimizations

discussed in section 1.2 were implemented.

Chapter four describes the purpose of test code that was compiled, and which statistics

were gathered by running it through the simulator. The purpose is to measure what effect

the micro-optimizations had, compared to unoptimized code. Possible future expansions to

the project are also discussed.

1.1 Motivations for micro-optimization

The idea of micro-optimization is motivated by the recent trends in computer architecture

towards low-level parallelism and small, pipelineable instruction sets [?, ?]. By getting rid

of more complex instructions and concentrating on optimizing frequently used instructions,

substantial increases in performance were realized.

Another important motivation was the trend towards placing more of the burden of

performance on the compiler. Many of the new architectures depend on an intelligent,

13

optimizing compiler in order to realize anywhere near their peak performance [?, ?, ?].

In these cases, the compiler not only is responsible for faithfully generating native code to

match the source language, but also must be aware of instruction latencies, delayed branches,

pipeline stages, and a multitude of other factors in order to generate fast code [?].

Taking these ideas one step further, it seems that the floating point operations that

are normally single, large instructions can be further broken down into smaller, simpler,

faster instructions, with more control in the compiler and less in the hardware. This is the

idea behind a micro-optimizing FPU; break the floating point instructions down into their

basic components and use a small, fast implementation, with a large part of the burden of

hardware allocation and optimization shifted towards compile-time.

Along with the hardware speedups possible by using a 𝜇FPU, there are also optimizations

that the compiler can perform on the code that is generated. In a normal sequence of floating

point operations, there are many hidden redundancies that can be eliminated by allowing

the compiler to control the floating point operations down to their lowest level. These

optimizations are described in detail in section 1.2.

1.2 Description of micro-optimization

In order to perform a sequence of floating point operations, a normal FPU performs many

redundant internal shifts and normalizations in the process of performing a sequence of

operations. However, if a compiler can decompose the floating point operations it needs

down to the lowest level, it then can optimize away many of these redundant operations.

If there is some additional hardware support specifically for micro-optimization, there

are additional optimizations that can be performed. This hardware support entails extra

“guard bits” on the standard floating point formats, to allow several unnormalized operations

to be performed in a row without the loss information1. A discussion of the mathematics

behind unnormalized arithmetic is in appendix ??.

The optimizations that the compiler can perform fall into several categories:

1A description of the floating point format used is shown in figures ?? and ??.

14

1.2.1 Post Multiply Normalization

When more than two multiplications are performed in a row, the intermediate normalization

of the results between multiplications can be eliminated. This is because with each mul-

tiplication, the mantissa can become denormalized by at most one bit. If there are guard

bits on the mantissas to prevent bits from “falling off” the end during multiplications, the

normalization can be postponed until after a sequence of several multiplies2.

As you can see, the intermediate results can be multiplied together, with no need for

intermediate normalizations due to the guard bit. It is only at the end of the operation that

the normalization must be performed, in order to get it into a format suitable for storing in

memory3.

1.2.2 Block Exponent

In a unoptimized sequence of additions, the sequence of operations is as follows for each pair

of numbers (𝑚1,𝑒1) and (𝑚2,𝑒2).

1. Compare 𝑒1 and 𝑒2.

2. Shift the mantissa associated with the smaller exponent |𝑒1 − 𝑒2| places to the right.

3. Add 𝑚1 and 𝑚2.

4. Find the first one in the resulting mantissa.

5. Shift the resulting mantissa so that normalized

6. Adjust the exponent accordingly.

Out of 6 steps, only one is the actual addition, and the rest are involved in aligning

the mantissas prior to the add, and then normalizing the result afterward. In the block

exponent optimization, the largest mantissa is found to start with, and all the mantissa’s

shifted before any additions take place. Once the mantissas have been shifted, the additions

2Using unnormalized numbers for math is not a new idea; a good example of it is the Control Data CDC
6600, designed by Seymour Cray. [?] The CDC 6600 had all of its instructions performing unnormalized
arithmetic, with a separate NORMALIZE instruction.

3Note that for purposed of clarity, the pipeline delays were considered to be 0, and the branches were not
delayed.

15

can take place one after another4. An example of the Block Exponent optimization on the

expression X = A + B + C is given in figure ??.

1.3 Integer optimizations

As well as the floating point optimizations described above, there are also integer optimiza-

tions that can be used in the 𝜇FPU. In concert with the floating point optimizations, these

can provide a significant speedup.

1.3.1 Conversion to fixed point

Integer operations are much faster than floating point operations; if it is possible to replace

floating point operations with fixed point operations, this would provide a significant increase

in speed.

This conversion can either take place automatically or or based on a specific request

from the programmer. To do this automatically, the compiler must either be very smart, or

play fast and loose with the accuracy and precision of the programmer’s variables. To be

“smart”, the computer must track the ranges of all the floating point variables through the

program, and then see if there are any potential candidates for conversion to floating point.

This technique is discussed further in section ??, where it was implemented.

The other way to do this is to rely on specific hints from the programmer that a certain

value will only assume a specific range, and that only a specific precision is desired. This is

somewhat more taxing on the programmer, in that he has to know the ranges that his values

will take at declaration time (something normally abstracted away), but it does provide the

opportunity for fine-tuning already working code.

Potential applications of this would be simulation programs, where the variable repre-

sents some physical quantity; the constraints of the physical system may provide bounds on

the range the variable can take.

1.3.2 Small Constant Multiplications

One other class of optimizations that can be done is to replace multiplications by small

integer constants into some combination of additions and shifts. Addition and shifting can
4This requires that for n consecutive additions, there are log2 𝑛 high guard bits to prevent overflow. In

the 𝜇FPU, there are 3 guard bits, making up to 8 consecutive additions possible.

16

be significantly faster than multiplication. This is done by using some combination of

𝑎𝑖 = 𝑎𝑗 + 𝑎𝑘

𝑎𝑖 = 2𝑎𝑗 + 𝑎𝑘

𝑎𝑖 = 4𝑎𝑗 + 𝑎𝑘

𝑎𝑖 = 8𝑎𝑗 + 𝑎𝑘

𝑎𝑖 = 𝑎𝑗 − 𝑎𝑘

𝑎𝑖 = 𝑎𝑗 ≪ 𝑚shift

instead of the multiplication. For example, to multiply 𝑠 by 10 and store the result in 𝑟,

you could use:

𝑟 = 4𝑠+ 𝑠

𝑟 = 𝑟 + 𝑟

Or by 59:

𝑡 = 2𝑠+ 𝑠

𝑟 = 2𝑡+ 𝑠

𝑟 = 8𝑟 + 𝑡

Similar combinations can be found for almost all of the smaller integers5. [?]

1.4 Other optimizations

1.4.1 Low-level parallelism

The current trend is towards duplicating hardware at the lowest level to provide parallelism6

Conceptually, it is easy to take advantage to low-level parallelism in the instruction
5This optimization is only an “optimization”, of course, when the amount of time spent on the shifts

and adds is less than the time that would be spent doing the multiplication. Since the time costs of these
operations are known to the compiler in order for it to do scheduling, it is easy for the compiler to determine
when this optimization is worth using.

6This can been seen in the i860; floating point additions and multiplications can proceed at the same
time, and the RISC core be moving data in and out of the floating point registers and providing flow control
at the same time the floating point units are active. [?]

17

stream by simply adding more functional units to the 𝜇FPU, widening the instruction word

to control them, and then scheduling as many operations to take place at one time as

possible.

However, simply adding more functional units can only be done so many times; there

is only a limited amount of parallelism directly available in the instruction stream, and

without it, much of the extra resources will go to waste. One process used to make more

instructions potentially schedulable at any given time is “trace scheduling”. This technique

originated in the Bulldog compiler for the original VLIW machine, the ELI-512. [?, ?] In

trace scheduling, code can be scheduled through many basic blocks at one time, following

a single potential “trace” of program execution. In this way, instructions that might be

executed depending on a conditional branch further down in the instruction stream are

scheduled, allowing an increase in the potential parallelism. To account for the cases where

the expected branch wasn’t taken, correction code is inserted after the branches to undo the

effects of any prematurely executed instructions.

1.4.2 Pipeline optimizations

In addition to having operations going on in parallel across functional units, it is also typical

to have several operations in various stages of completion in each unit. This pipelining allows

the throughput of the functional units to be increased, with no increase in latency.

There are several ways pipelined operations can be optimized. On the hardware side,

support can be added to allow data to be recirculated back into the beginning of the pipeline

from the end, saving a trip through the registers. On the software side, the compiler can

utilize several tricks to try to fill up as many of the pipeline delay slots as possible, as

seendescribed by Gibbons. [?]

18

Appendix A

Tables

Table A.1: Armadillos

Armadillos are
our friends

19

20

Appendix B

Figures

21

Figure B-1: Armadillo slaying lawyer.

22

Figure B-2: Armadillo eradicating national debt.

23

