

Mean and Variability of Air-Sea Heat Fluxes in the Indian Ocean Lisan Yu Woods Hole Oceanographic Institution

Major topics:

1. Estimating the IO air-sea heat fluxes

- what are the most challenging issues?
- 2. Mean and variability of currently available heat flux products
 - seasonal
 - interannual
 - decadal

"Indian Ocean Climate Symposium" Hobart Australia. March 2005. Sponsored by the World Climate Research Program's CLIVAR project and the Intergovernmental Oceanographic Commission's Global Ocean Observing System.

Importance of air-sea heat exchanges

• Net surface heat flux: $Q_{net} = Q_{LH} + Q_{SH} + Q_{LW} + Q_{SW}$

• The time rate of change of upper ocean temperature is balanced by Q_{net} , the divergence of heat transport, and diffusion.

$$\frac{\partial}{\partial t} \int_{-h}^{0} T_m dz = \frac{Q_{\text{net}}}{\rho c_p} - \nabla \cdot \int_{-h}^{0} u T_m dz + \kappa \nabla^2 T_m$$

• The time rate of change in mixed layer depth (h),

$$\frac{\partial h}{\partial t} = w_e - w_h = C_1 u_*^3 - C_2 B(\varrho_{net, E-P})h - w_h$$

Global datasets

- Southampton Oceanographic Centre (SOC Climatology): COADS climatological monthly based on the 1982-1997 period
- NCEP/NCAR reanalysis (NCEP1): fixed model/analysis system six hourly, 1.875°-grid, 1948 – present
- NCEP/DOE reanalysis (NCEP2): fixed platform six hourly, 1.875°-grid, 1979 – present

(NCEP2 is an update of NCEP1. It corrects some known errors in NCEP1 and upgrades parameterization schemes for shortwave radiation, cloud, and soil moisture)

- ECMWF operational analysis (ECMWF): model/analysis platform changes six hourly, 1.125°-grid, 1979 – present
- ECMWF Re-Analysis 40 (ERA-40): fixed platform six hourly, 1.125°-grid,1957 – 2002

OAFlux (Objectively Analyzed air-sea heat Fluxes) Project: blended product planned activity: daily, 1º-grid, mid 1950's – present currently available: daily, 1º-grid, 1988-2003

OAFlux (Objectively Analyzed Air-sea Heat Fluxes) For the Global Oceans – in collaboration with Bob Weller and Xiangze Jin

• What is the project about?

to develop daily Q_{LH} , Q_{SH} , Q_{LW} , Q_{SW} fields for the global oceans for the past 50 years.

• Principle of the development:

to use weighted objective analysis to combine data from satellite retrievals, COADS ship reports, and atmospheric reanalysis outputs.

• Type of product:

a blended flux product with daily and 1-degree grid resolution

References regarding the methodology and validation of the OAFlux analysis:

Yu, L., R. A. Weller, and B. Sun, 2004a: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988-1999) by a synthesis approach. J. Clim. 17, 373-393.

Yu, L., R. A. Weller, and B. Sun, 2004b: Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean. J. Clim., 17, 2096-2118.

Global Surface Heat Flux

Mean Q_{net} (1988-2000)

Mean net surface heat flux (1988-2000)

(contour interval=10W/m²)

Differences between the 6 products

30

20

10

-10 -20

30

-10

-20

-30

Why is it difficult to get the flux right?

algorithm
data
Which one is most problematic?

Impact of the flux algorithm on flux estimation

LH+SH MEAN 88-94 (ci=10W/m²)

Latent and sensible fluxes $Q_{LH} = \rho L_e c_e U (q_a - q_s)$ $Q_{SH} = \rho c_p c_h U (T_a - T_s)$

Problems in model humidity

Buoy Q_{LH}

ERA40 Q_{LH}

Subsurface ADCI

120°W

100°W

BO°T

TAO/TRITON Array

30°N

20°N 10°N 0° 10°S 20°S

120°E

 140°E

ERA40 variables, COARE3.0

Positive (negative) flux anomalies indicate more (less) latent heat loss from the ocean.

(1) How different are the COARE3.0 and ERA40 flux algorithms? ?? (2) Which EAR40 variable is most different from TAO? Some Experiments

Latent heat flux: $Q_{LH} = \rho L_e c_e U (q_s - q_a)$

Replace ERA *U* with Buoy *U*

Exp#1: Does ERA40 have correct U estimates?

Replace ERA q_a with Buoy q_a

1998

2000

2002

1992 1994 1996

1990

Exp#2: Does ERA40 have correct q_a estimates? NO!!!

Errors in ERA40 near-surface humidity fieldWhich one is incorrect, mean pattern or variability?

YU'S

Latitude

Positive (negative) q_a anomalies: wet (dry) q_a bias

Problems in satellite wind speed

Mean Wind Speed (2000-2004)

Problems in satellite radiation product

ISCCP radiation: Global, 2.5-grid, 3 hourly

1988 annual mean net Radiation anomaly (W/m2)

1988 annual mean net Radiation anomaly (W/m2)

Flux buoy measurements WHOI Upper Ocean Processes Group – Bob Weller

What are measured by flux buoy?

- Air and sea temperatures
- Relative humidity
- Barometric pressure
- Wind speed and direction
- Incoming shortwave radiation
- Incoming longwave radiation
- Precipitation

How are the buoy surface heat fluxes derived?

• Latent and sensible fluxes:

 $\begin{aligned} \mathsf{Q}_{\mathsf{LH}} &= \rho \; \mathsf{L}_{\mathsf{e}} \; \mathsf{c}_{\mathsf{e}} \; \mathsf{U} \; (\mathsf{q}_{\mathsf{s}} - \mathsf{q}_{\mathsf{a}}) \\ \mathsf{Q}_{\mathsf{SH}} &= \rho \; \mathsf{c}_{\mathsf{p}} \; \mathsf{c}_{\mathsf{h}} \; \mathsf{U} \; (\mathsf{T}_{\mathsf{s}} - \mathsf{T}_{\mathsf{a}}) \\ \mathsf{COARE} \; \mathsf{bulk} \; \mathsf{flux} \; \mathsf{algorithm} \; \mathsf{3.0.} \end{aligned}$

• Net shortwave radiation:

 $Q_{SW} = SW \downarrow - \alpha (SW \downarrow)$

 α : the surface albedo based on Payne(1972) formulation

• Net longwave radiation:

 $Q_{LW} = LW \downarrow - (\epsilon \sigma T_s^4 + (1 - \epsilon) LW \downarrow)$

 σ : the Stefan – Boltzmann constant

Validation with in situ measurements – Arabian Sea Buoy

Comparison with Buoy

NET Heat FLux

	Buoy	ERA40	ECMWF	NCEP1	NCEP2	OAFlux+ISCCP
ave	64.8	38.1	12.7	-4.9	20.6	48.3
dif		-26.7	-52.1	-69.7	-44.2	-16.5
rms		55.4	75.3	89.3	73.3	38.8
cor		0.84	0.80	0.82	0.79	0.91

based on daily mean data from 1994.10 to 1995.10

Validation with in situ measurements – JASMINE cruise

Comparison with JASMINE ship data

NET Heat FLux

	Buoy	ERA40	ECMWF	NCEP1	NCEP2	OAFlux+ISCCP
ave	47.5	-21.6	-61.0	-5.4	-9.6	48.0
dif		-69.1	-108.5	-52.9	-57.1	0.5
rms		91.3	130.9	80.0	74.2	38.7
cor		0.70	0.76	0.71	0.86	0.89

based on daily mean data

Mean Net Heat Flux

Assessing the role of surface heat fluxes in seasonal-to-interannual variations of SST $dSST = dt \ Q_{net} / \rho c_p h$

- (1) How much can the surface heat fluxes explain the seasonal-tointerannual evolution of SST?
- (2) How different are different heat flux products in describing the SST seasonal-to-interannual variability?

In calculating the correlation <dSST, Qnet>,

- dt: one month
- dSST: \overline{SST} (the last 5 days of the month) \overline{SST} (the first 5 days of the month)
- Q_{net}: monthly average

seasonal variability: annual mean removed

interannual variability: mean seasonal cycle removed

30

20

10

0

-30

(contour interval=0.1)

ECMWF

STD of Net Surface Heat Flux (1988-2000)

(contour interval=10W/m²)

20 30 40 50 60 70 80 90 100 110 120

Effects of changing model platforms on ECMWF fluxes

97 98 99 00

Atlantic Ocean: average over the region [0, 45°N]

Correlation <dSST, Qnet> Interannual variability

Changes in Q_{net} during 1997-98 Avg[5°S – 5°N]

Correlation patterns: seasonal versus interannual

Pattern does not change in:

- Arabian Sea
- Southern IO

Pattern changes in:

Bay of Bengal

• W. equatorial region

Seasonal

Interannual

Model prediction of dSST: seasonal cycle dSST = dt $Q_{net}/\rho c_p h$

1 2 3 4 5 6 7 8 9 10 11 12

Model prediction of dSST: interannual variability $\frac{dSST}{dSST} = \frac{dt Q_{net}}{\rho c_p h}$

----- OBS ----- Model (h=50m)

Year-to-year variations in Q_{net}

(contour interval=10Wm⁻²)

Year-to-year variations in zonally averaged Q_{net} if the mean removed

On improving the flux estimation:

- The most challenge issue in estimating surface heat fluxes is to reduce the bias in every data source.
- Long-term buoy observations are the only means that the biases can be identified and corrected.
- A proper combination of data from different sources can reduce the bias and improve the mean and variability of the fluxes.

On variability of the flux products:

- The NWP reanalysis flux products have a reasonable representation for the variability on seasonal-to-interannual timescales.
- For decadal and longer timescales, there are major differences between the products.