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Comment on “Eddy/Wind Interactions
Stimulate Extraordinary Mid-Ocean
Plankton Blooms”
Amala Mahadevan,1* Leif N. Thomas,2 Amit Tandon3

McGillicuddy et al. (Reports, 18 May 2007, p. 1021) proposed that eddy/wind interactions
enhance the vertical nutrient flux in mode-water eddies, thus feeding large mid-ocean plankton
blooms. We argue that the supply of nutrients to ocean eddies is most likely affected by
submesoscale processes that act along the periphery of eddies and can induce vertical velocities
several times larger than those due to eddy/wind interactions.

Howdo eddies, such as those described in
McGillicuddy et al. (1), sustain their extra-
ordinary concentrations of phytoplankton

and biological productivity in an ocean whose
surface is bereft of nutrients? As an explanation,
McGillicuddy et al. invoke the mechanism of
eddy/wind interaction (2), whereby the difference
in the relative air-water velocity (and, consequently,
wind stress) felt on diametrically opposite sides of
an anticyclonic eddy, induces an upward Ekman
pumping velocity. McGillicuddy et al. assert that
the upward velocity, on the order of about 1 m/day
at the eddy center, supports the nutrient flux to
sustain the observed productivity.

Here, we point out that submesoscale effects
(3–5), which include intensification of the ageo-
strophic secondary circulation (ASC) (6) and
nonlinear Ekman transport (7–10), can result in
vertical velocities on the order of 10 to 100 m/day.
These velocities are 10 to 100 times as large as
the linear Ekman pumping velocity due to the
eddy/wind interaction mechanism. Submesoscale
effects come into play for flows whose relative
vorticity z, defined as the curl or rotary com-
ponent of the horizontal velocity field, is not
much smaller in magnitude than the planetary
vorticity f, arising from Earth’s rotation. At ocean
eddies and fronts, the quantity z/f, known as the
Rossby number (Ro), typically takes on values of
0.1 to 1.0. For such flows, the loss of geostrophy,
the balance between pressure gradient and
Coriolis effects, is restored by an overturning
circulation across lateral density variations in the
presence of straining. The strength of the over-
turning at a front, as described by the semigeo-
strophic Sawyer-Eliassen equation (11), continues
to grow as the front intensifies until limited by
mixing. Such submesoscale intensification is typ-

ically manifest on horizontal length scales on the
order of 1 to 10 km. A further effect of the rela-
tively large relative vorticity z is that the wind-
forced horizontal Ekman mass transport, ME =
−t/[r( f +z)], depends on the net (i.e., planetary
plus relative) vorticity of the flow, ( f + z) (12).
Consequently, lateral variations in the relative
vorticity can result in a modulation of the Ekman
transport, the divergence of which drives vertical
motions even if the wind stress t is spatially
uniform (Fig. 1).

To quantify the relative contributions of the
nonlinear Ekman effect and eddy/wind interac-
tion on the induction of vertical motions, we
derived the ratio of scalings for their respective
vertical velocities (see Supporting Online
Material) as Ro (ua/uo), where ua is the wind
speed, uo is the maximum azimuthal velocity of
the ocean eddy, and Ro is the Rossby number for
the eddy. Typical water velocities for the eddy
described in (1) are on the order of 0.1 m/s,
whereas wind speeds are on the order of 10 m/s;
therefore, ua /uo = O(100). This implies that for

eddies with Rossby numbers greater than 0.01,
nonlinear Ekman effects dominate the pumping
velocity. For Ro = 0.1, a typical value for meso-
scale eddies, the nonlinear Ekman effect would
be about 10 times as important for the wind-
induced vertical circulation as stress asymmetry
from the air-sea velocity difference. Further, the
nonlinear Ekman effect would be greatly en-
hanced in regions where the relative vorticity is
locally intensified and is coupled with lateral
density variations (3, 6). High-resolution model-
ing studies show that the largest relative vorticity
in eddying flows occurs in filament-like features
along fronts and at the edges of eddies, rather
than at eddy centers (4, 13), and routinely equals
or exceeds the planetary vorticity in magnitude,
bringing submesoscale effects into play.

Notably, there is a diapycnal flux associated
with submesoscale processes as evidenced from
the downscale cascade of energy (4). As nutrients
are upwelled into the euphotic zone, they are
consumed by phytoplankton production on time
scales on the order of a day. Because there is a
mean, negative vertical gradient in the concen-
tration of nutrient, and a sink near the surface, the
vertical velocities sustain a net upward transport
even though upwelling is countered by subduc-
tion. The rate of nutrient consumption and supply
are a function of the phytoplankton growth rates.

Submesoscale physics suggests that the largest
vertical velocities occur at the eddy’s periphery,
but the highest levels of chlorophyll were re-
ported at the eddy center in (1). Using a numer-
ical model of an eddying front with a nutrient
profile characteristic of the subtropical oligo-
trophic ocean, we simulated the advection of
nutrient and production of phytoplankton within
the euphotic zone. Although upwelling and new
production of phytoplankton are more pronounced
where lateral density gradients support active
frontogenesis, phytoplankton gathers up in an
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Fig. 1. The nonlinear Ekman effect
generates upwelling and down-
welling in a Northern hemisphere
anticyclonic eddy, as schematically
depicted. The Ekman transport in
the surface layer is at 90 degrees to
the right of the wind and inversely
proportional to the net rotation of
the fluid. The rotation of the eddy is
anticyclonic and opposite to Earth’s
rotation. It reduces the net spin,
( f + z)/2, felt by the fluid toward
the inside of the eddy. At the
periphery, the shear between the
eddy and ambient fluid generates a
spin in the fluid that is in the same
sense as Earth’s rotation, thus

enhancing the net spin of the fluid. Hence, the Ekman transport is enhanced on the inside of the eddy
and weakened toward the outside. The divergence/convergence of the Ekman transport drives up/down
motion as shown. The vertical motion associated with an anticyclonic eddy is greater than that with a
cyclonic eddy of similar strength because decreasing the magnitude of the net rotation solicits a greater
response than increasing it by the same amount.
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anticyclonic eddy as it is being formed. The
preponderance of phytoplankton in anticyclonic
eddies was also seen in previous model results
[see figure 5 in (14)]. By tracking the age (i.e.,
time since new production) of the phytoplankton
in our model, we are able to distinguish between

where the phytoplankon is formed and where it
accumulates over time. Although the largest ver-
tical velocities occur at the eddy’s periphery, a
small radially inward component of velocity
causes plankton to be transported toward the
eddy center. The mesoscale eddy itself forms a

closed vortex whose outer edge inhibits lateral
exchange (Fig. 2). Thus, the eddy entraps and
isolates a water mass that displays an “older”
stock of phytoplankton in the model. Therefore,
the largest concentrations of plankton can build
up in the eddy center even with nutrient supply at
the periphery.

Although nutrient replenishment in eddies
occurs largely at the periphery in this mechanism,
the biological response is sensitive to the time
scales of nutrient growth and uptake. Numerical
experiments with varying biological time scales
of growth and persistence are needed for char-
acterizing the effects of submesoscale processes
on biogeochemistry and phytoplankton distribu-
tions. Future measurements that resolve the sub-
mesoscale variability, as well as nutrient pathways
and the ensuing distribution of phytoplankton in
terms of age, size, and species, would also be
helpful in clarifying these issues.
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Fig. 2. A snapshot from a numerical simulation of a front with a uniform westerly wind stress of 0.1 N/m2

(wind speed ~10 m/s) showing, in the top row, surface views of (A) density, (B) phytoplankton resulting
from new production or the fresh supply of nutrients from beneath, and (C) phytoplankton that has been
in the euphotic layer longer than 3 days or is formed from nutrients recycled within the euphotic layer. In
(C), the phytoplankton and nutrients upwelled along the front are being entrapped in an anticyclonic
eddy. In the lower row, a vertical section A-B through the eddying structure marked in (A) shows (D) the
ratio of the relative to planetary vorticity z/f, with dashed contours denoting density; (E) vertical velocity;
and (F) phytoplankton. Contours of z/f are overlaid in (E) and (F) to demonstrate that the largest vertical
velocities are where the vorticity changes sign and thus result from submesoscale effects. The nonlinear
Ekman effect results in upwelling and downwelling at the eddy’s periphery, as depicted in Fig. 1. Although
this simulation does not represent a specific coherent eddy, it demonstrates how submesoscale processes
intensify vertical velocities and phytoplankton accumulates at the center of an anticyclonic eddy structure.
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