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Abstract

In the ocean, the spatial distribution of biogeochemical tracers is affected by their physical

transport in the fluid medium. Many tracer distributions such as sea surface chlorophyll and

temperature, are highly correlated at length scales of 1–100 km on account of a commonality

in the transport processes that affect them. We characterize and differentiate between the

spatial heterogeneity of the tracers by using a variance-based measure for “patchiness”. When

we analyze the satellite-derived fields of surface chlorophyll and temperature, we find that

chlorophyll is more patchy than temperature, i.e., a greater proportion of its variance occurs

at small scales. We explain such differences in heterogeneity by taking the approach that

the observed spatial heterogeneity of a tracer results from a balance between processes that

generate variance and those that shift the variance from one length scale to another. The

longevity of the tracer determines the extent to which the variance can be shifted to another

scale. In the surface ocean, variance introduced at large-scales due to geographic variations,

can be driven to smaller scales by the horizontal stirring and stretching of fluid filaments.

On the other hand, small-scale vertical motion associated with fronts introduces small-scale

variance that spreads to larger scales if the tracer anomalies are long lasting. For the latter

case, we derive a quantitative relationship between a tracer’s patchiness, and the time scales

of processes that modify its concentration in the upper ocean. This relationship links the

observed spatial heterogeneity in the system to the processes that contribute to its generation.

It lends hope to our being able to use quantitative measures of spatial heterogeneity, like

the patchiness parameter defined here, to gain information about processes or vice versa, to

predict how the spatial heterogeneity might be modified as a result of a change in processes.

Introduction

A key factor that influences spatial heterogeneity in the ocean and distinguishes it from hetero-
geneity in landscapes is that substances or properties in the ocean are transported within the
fluid medium, which is in motion. Hence the variability in the distribution of properties is largely
linked to the dynamics of the fluid, which is complex since it varies in both space and time. Spa-
tial heterogeneity in the ocean is constantly evolving in time, in contrast to terrestrial systems,
where the variability of the underlying medium (for example, the geology or soil conditions) is
more or less static on the time scales of relevance in the ocean. The fluid dynamical processes
act over a wide range of time and length scales. In addition, there are a number of processes
like warming or cooling at the surface, evaporation and precipitation, biological production of
phytoplankton, and air-sea gas exchange, that alter the properties of the ocean. Some processes
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generate variability and others annihilate it; our objective is to understand the net effect of these
factors on the distribution of properties.

Transport in the ocean occurs through the process of advection, that carries properties along with
the flow, and diffusion, due to which substances or energy can spread through the fluid. Diffusion
is generally associated with small scales; it is important to individual plankton and bacteria and
they may rely, for example, on the a spatial variation in the concentration of a nutrient for its
transport. A net diffusive flux occurs without the input of energy when the concentration gradient
of a substance is spatially varying. The molecular diffusivity κ, of most substances is small and
thus diffusive transport (quantified as κ∇2c where c is the tracer concentration and ∇ the gradient
operator) is relevant only at small length scales (the diffusive length scale Ldiff ∼

√
κT ≈ 1 mm,

for κ = 10−5 ms−2 and a time interval T = 10 s). At longer times T , and at length scales greater
than a centimeter or so in the upper ocean where typical velocities U are in the range of 0.01
to 1 m s−1, advective transport by the fluid by far dominates diffusion. A net advective flux of
tracer, u · ∇c, occurs when there is a concentration gradient in the tracer ∇c, in the direction of
the fluid velocity u. The length scale associated with advection, Ladvec ∼ UT , increases linearly
with time T , as compared to the 1/2 power in the case of diffusion. Hence with increasing
time, advection affects larger length scales than diffusion. A process of considerable relevance
in the ocean, and somewhat different from pure advection and diffusion, is mixing. It transfers
energy and property gradients from larger to smaller scales and results in the homogenization of
properties over the region on which it operates on relatively short time scales. Mixing, which is
often induced by shear and convective instability, contributes much more to the flux of energy
and tracers than molecular diffusivity, which is relatively negligible for length scales of more than
a few centimeters. The effective flux of energy or tracer generated by random turbulent motions
is often parameterized as a diffusion-like process by using an enhanced ”eddy” diffusivity κeddy.

Another aspect that differentiates the ocean from the land surface is that it is a three-dimensional
medium. However, the rotation of the earth, the small geometrical aspect ratio of depth to
length scales in the ocean, and density stratification, all contribute to the fact that motion in
the horizontal plane dominates vertical motion. In fact, vertical velocities are several orders of
magnitude smaller than horizontal velocities when one considers length scales of the order of tens
of meters or more. Hence, even though the ocean is three-dimensional, it is highly layered. The
variation (i.e. the gradient) of properties is much stronger in the vertical than horizontal, but
motion is much more rapid in the horizontal. Hence the distributions of properties evolve more
rapidly in the horizontal plane. The upper ocean, in particular, is more energetic and fast-moving
than the deep. Hence the property distributions are rife with a highly transient variability that is
influenced strongly by advection and mixing within the fluid, as well as forcing factors the modify
the properties. Figure 1 displays the kind of spatial variability that results from the coupling
between the biological and fluid transport processes.

In this chapter, we focus largely on upper ocean heterogeneity that has a transience time scale
of the order of weeks and a coherence length scale in the range of 1–100 km. Since the fluid
dynamical transport processes are common to the various substances or properties in the ocean,
it it no surprise that the distributions of different tracers in the ocean are correlated on these length
and time scales. Yet, the spatial heterogeneity of one property can vary from that of another to
which it is closely linked. One challenge is therefore to quantitatively relate the heterogeneity
of properties to the processes that affect them. Such an understanding might enable us to use
one property as a proxy for the distribution of another, and secondly, learn something about
the processes at play from the characteristics of the distribution. Further, we might be able to
anticipate a change in spatial heterogeneity resulting from a change in the processes or controlling
parameters.

In general, the spatial and temporal heterogeneity of a system depends on the length and time
scales of relevance and the process under consideration. Questions concerning the importance of
heterogeneity, how we may model it, and how it might affect the ecosystem function are difficult
to generalize and best viewed in a specific context. But, a somewhat general set of questions

2



about heterogeneity and its link to processes that I would like to consider are:

1. What role does heterogeneity play for the question at hand? What is the effect of varying
the heterogeneity (or some measure of it) on an ecosystem function, an ecosystem response,
or on an integrated measure of interest?

2. How might one quantify the heterogeneity of the system?

3. What are the most important parameters/ factors/ processes behind the heterogeneity?
How does the heterogeneity vary as a function of these parameters?

4. What is the relationship between the heterogeneity, the ecosystem response and the param-
eters on which the heterogeneity depends?

5. Is it possible to account for the heterogeneity without explicitly modeling or measuring it?
How might one sample a variable to correctly estimate an integrated measure of it?

Discussed below, are some thoughts relating to these questions. Following this, I describe a study
that attempts to explain and relate the spatial heterogeneity of different tracers at the sea surface
over length scales in the range of 1–500 km.

The Relevance of Heterogeneity

Most oceanic processes are intermittent in space and time and it is often important to account
for variability to gain an accurate estimate of a process or flux. This is particularly true when
a processes in non-linear, in which case, even an integrated flux measure across the system’s
boundary requires a description of the heterogeneity. Let us consider, for example, the flux of
carbon dioxide (CO2) across the air-sea interface. We would like a time-integrated estimate of the
flux of CO2 into or out of the ocean, though the flux varies in time depending on the properties
of the sea water, wind and surface conditions. The air-sea gas flux is generally parameterized
as the product of a gas exchange coefficient k, the solubility of the gas, and the difference in
the partial pressure of the gas ∆pCO2, between sea and air. The gas exchange coefficient k is
estimated empirically and is typically a function of the wind speed raised to a power that varies
between 1.6 and 3, depending on the formulation [Liss & Merlivat (1986); Wanninkhof (1992);
Wanninkhof & McGillis (1999)]. This non-linear dependence implies that short bursts and gusts
of wind are more effective in fluxing CO2 across the air-sea interface than a constant wind of
the same mean intensity. Since the average of the instantaneous wind speed when squared, is
not the same as the square of the wind speed averaged in time, the averaging period and the
frequency of sampling the wind speed become relevant to the estimate of air-sea gas transfer that
one would obtain from such a relationship. An estimate for the global air-sea flux of CO2 can vary
by a factor of two depending on whether we use monthly-averaged or 6-hourly winds to compute
the fluxes. Any covariance between the variables k, s and ∆pCO2 also affects the estimate and
requires accounting for each of their variabilities independently over short time scales. Thus, the
required resolution or the permissible period of averaging that is required to capture a process is
highly dependent on the process and the distributions of the variables themselves. In this case,
the integrated flux in and out of the system is dependent on the heterogeneity at the boundary
since the process has non-linear dependencies.

As another example, consider the new production rate of phytoplankton in the subtropical gyres
of oceans. New production (as opposed to the production that feeds off recently recycled organic
matter) is derived from the supply of fresh nutrients from the subsurface, a processes that is
highly episodic in time and space. A snapshot view of the ocean does not adequately represent
this process, but the time-integrated effect of the process affects its state. Though the transport
of nutrient by fluid advection may be considered a linear process, it is dependent on the spatial
gradients in the nutrient. Quicker uptake of nutrient in the upper ocean and more efficient
lateral transport at the surface, ensures a steeper vertical gradient in the nutrinet concentration
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and a greater net flux to the surface from below. Patchy upwelling generates a heterogeneous
surface distribution of nutrient. This enhances the lateral nutrient transport and leads to stronger
vertical nutrient gradients at the upwelling sites, consequently resulting in a greater supply of
nutrients from the subsurface as compared to the situation where the upwelling is uniformly
distributed in space [Martin et al. (2002)]. In this case the transport of nutrient within various
components of the system are linear processes, but the net productivity is nonetheless affected
by the heterogeneity in the processes and distributions within a system. The net productivity in
turn, affects the surface distribution of pCO2 and the flux of CO2 in and out of the system.

On much smaller scales, the transport of oxygen to a patch of decaying organic matter is depen-
dent on the spatial heterogeneity in the oxygen distribution since the diffusive flux is proportional
to the second spatial derivative of the concentration. If the supply of oxygen is rate-limiting to
the process, then the heterogeneity of the oxygen distribution which may be generated by the
bacterial uptake itself, is crucial for this activity. In such a case, the ”patch” of decaying matter
is not self-contained and depends on the spatial heterogeneity generated by itself or its neighbors
for its survival. The turbulent diffusion of mechanical energy also occurs on a similar length scale
to that at which diffusion operates because the molecular diffusivity of momentum is comparable
to that of a trace substance in the fluid. However, turbulent dissipation is itself intermittent
and the intermittency in the turbulent energy dissipation rate is found to account for a decrease
in zooplankton-phytoplankton encounter rates by 25–50%, an increase in the nitrogen flux to
non-motile phytoplankton cells by 6–62%, and a decrease in the coagulation and sedimentation
of phytoplankton cells by 25–40% in experiments [Seuront (2001)].

What causes Spatial Heterogeneity?

One way of thinking of spatial heterogeneity is that it results from competing processes, one set
that tends to homogenize the distribution of a property, and another, that tends to introduce
variance or heterogeneity in the system. If one considers, for example, temperature in the ocean,
it is homogenized by mixing and diffusion at small scales, but unequal heating or cooling gener-
ates spatial heterogeneity in its distribution on very large scales. At the intermediate scale, one
could think of long wave radiation as relaxing the temperature to ambient atmospheric conditions,
and advective motions in the fluid as generating heterogeneity by stirring. The observed spatial
distribution would be more homogeneous if the diffusion-like mixing processes were relatively
vigorous or the relaxation to an ambient state were more rapid, and more heterogeneous if the
unequally heated regions were stirred into fine scale structures more rapidly than can be homog-
enized. Processes like diffusion or relaxation to an ambient state tend to generate uniformity in
the fields, while specific sources for the properties, like biological reproduction or generation by
nucleation, create heterogeneity. In the case of phytoplankton, heterogeneity is generated by the
variable response of phytoplankton to varying physical properties and the availability of light and
nutrients, but also by their reproduction which is dependent on the presence of mature phyto-
plankton cells. They are, however, removed or reduced to an ambient state of low concentration
by predation, death and sinking. Their distributions are also homogenized by mixing and made
more heterogeneous by advection which can generate narrow filamentous structures by stirring.

Relating Heterogeneity to Process Time Scales

The extent of the spatial heterogeneity in the distribution of a property results from the balance
between the processes that homogenize and generate heterogeneity. These processes can be
quantified in terms of the time scale on which they alter the concentration of the property.
Hence, the rate of change of concentration c of a property can be expressed as

∂c

∂t
=

c

τV

− c

τH

, (1)

where τV is a time scale on which variance is increased in the system and τH is a time scale
on which the distribution is homogenized. In the case where c describes the concentration of
phytoplankton whose heterogeneity is considered over length scales ranging from 0.1–1 m, τV
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could the time scale of net growth or reproduction, while τH might be the time scale of diffusion
∼ L2/κ, where L is a length scale and κ, the kinematic or eddy diffusivity. In the statistically
steady state, it is the balance between the right hand side terms in the above equation that
determines the characteristics of the distribution. Hence it is the ratio of time scales τH/τV

that determines the degree of spatial heterogeneity of the system. Later in this paper, we will
show how the patchiness or spatial heterogeneity varies with the ratio τH/τV , when variance is
introduced at the small scales.

Accounting for Heterogeneity

We have seen earlier, that the spatial heterogeneity of different properties can vary substantially.
Thus, the grid resolution required in models and observation networks depends on the spatial
heterogeneity of the property, given that one would like to observe the majority of its variance.
Highly heterogeneous distributions require more resolution. Once again, the factor by which the
resolution needs to be scaled up when going from one property to a more heterogeneous one, can
be related to the ratio τH/τV for each of these. The question of how to account for heterogeneity
is a more difficult one. It depends on the function or process that one wishes to account for
(how it depends on the heterogeneous property), and also on the statistical characteristics of the
property’s distribution.

Quantifying Heterogeneity

Several methods have been used to quantify heterogeneity in the oceans. The most common
among these are spectral analysis [Platt & Denman (1975); Gower et al. (1980)], semi-variogram
analysis [Yoder et al. (1987); Yoder et al. (1993); Glover et al. (2002); Deschamps et al. (1981)]
and autocorrelation analysis [Campbell & Esaias (1985)], probability density functions (pdf’s),
structure functions and multifractals [Seuront et al. (1999)]. In general, these methods analyze
the variability of a distribution as a function of the length scale. A method that we have chosen to
use in this presentation, characterizes the variance as a function of the size of the region. When a
greater proportion of the variance lies at smaller length scales, we tend to refer to the distribution
as more heterogeneous, patchy or intermittent. Once again, this depends on the range of length
scales that one is considering.

In terms of processes, one may think of those that tend to shift the variance in a distribution
to smaller scales, or others that obliterate (smear) it. In a fluid, advection or stirring, tends to
drive variance to smaller scales because fluid filaments interleave and fold, generating finer scale
filaments. Thus stirring two fluids generates one in which variance moves downscale with time.
Hence the length scale at which the variance or heterogeneity is initially introduced, is relevant.
If it be at the large scale, then variance can increase with time due to advection by the fluid. But
if a process introduces heterogeneity at the small scale, then it gets annihilated with time due to
processes like diffusion that smear gradients and reduce variance.

The Distribution of Biogeochemical Tracers at the Sea Surface

Sea surface temperature (SST) and chlorophyll (Chl) are two properties of the ocean that can be
remotely measured from satellite platforms at a global resolution of approximately 1 km × 1 km.
The distributions of these properties are highly correlated because both Chl and temperature are
advected by the same underlying flow (Figure 2a). Oceanographic flow is largely two-dimensional;
velocities in the vertical are several orders of magnitude smaller than in the horizontal when the
length scales considered are such that the geometrical aspect (depth to length) ratio is small. Yet,
these vertical velocities, which are on the order of tens of meters per day at most, can introduce
anomalous concentrations at the surface because the concentration gradient of most substances
and properties in the ocean is very large in the vertical as compared to the horizontal. Upper ocean
processes, such as air-sea exchange, heating , evaporation and phytoplankton production modify
the concentrations of substances, while the slow rate of mixing across the thermocline (which
extends to a depth of 500 or so meters beneath the surface mixed layer and is a region over which
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temperature and density change rapidly with depth) maintains a strong concentration gradient
in the vertical. This common characteristic in the distribution of various properties ensures a
similar response in their sea surface concentrations to upwelling, and consequently to horizontal
advection that stirs the anomalous signatures introduced at the sea surface by upwelling.

In the following sections I describe a study in collaboration with J.W. Campbell [Mahadevan &
Campbell (2002); Mahadevan & Campbell (2003)] in which we relate the spatial heterogeneity of
tracers at the sea surface to the characteristic response time of processes that modify them in the
upper ocean. Our interest is in quantifying and understanding processes such as the air-sea flux
of CO2, new production, the upwelling rate of nitrate (a key nutrient for phytoplankton), organic
carbon export from the surface ocean and rates of remineralization of detrital organic matter,
that are related to the carbon cycle in the ocean. Spatial heterogeneity seems to affect several
of these processes and their rates; hence we would like to examine the reasons for the spatial
heterogeneity in biogeochemical distributions and relate them to the underlying processes.

This study was motivated largely by the need to make a connection between remotely sensed
variables like SST and Chl, and those that are more difficult to observe but play an essential
role in the carbon cycle, such as the total dissolved inorganic carbon content (TCO2) and oxygen
(O2). The questions of concern are: Why do the spatial heterogeneities of these substances differ
and how may they be related? How may we account for this when modeling or observing different
variables.

When we analyze satellite data for the sea surface distributions of Chl and temperature in the
pelagic ocean, we find they are correlated, but Chl has a greater percentage of its variance
at smaller length scales as compared to temperature. This analysis is done by computing the
variance in two concurrent views of SST and Chl in a region covered by 256×256 pixels of data,
where each pixel is approximately 1 km2 in area. The variance corresponding to a length scale
L is computed as V (L) = N−1Σ(xi − x̄)2, where N is the number of pixels, xi is the value of
the variable at the ith pixel, and x̄ is the mean over all N pixels. L is the dimension of the box
over which the variance is computed. Having computed the variance V1 over the whole domain of
size L1, we divide the domain into boxes of consequently smaller sizes L1/2, L1/4, L1/8...etc. and
compute the average (over all the boxes in the domain) variance associated with each box of size
L1/2, L1/4, L1/8.... We normalize the variance V (L) by the total variance in the domain V1 so
that we can compare the correspondence between variance and length scale for different variables.
In Figure 2b, we show V plotted against L on log-log axes for Chl and SST from different regions
of the ocean. There are two notable features in these plots: (a) The plots of log V v.s. log L are
more or less linear, suggesting that

V ∼ Lp (2)

for Chl and SST over this range of length scales, and (b) p(Chl) is consistently less than p(SST).
The slope p of the log V vs.log L plots is a measure of the spatial heterogeneity of the distribution.
Smaller p implies that a greater percentage of the total variance is contained in small scales and
we think of the distribution as more ”patchy”. Hence p can be considered a patchiness index or a
measure of the spatial heterogeneity, smaller p corresponding to greater patchiness. Sea surface
Chl is found to be more patchy than SST for length scales ranging from 1-500 km. The reason
for this is explored in the next few paragraphs where p is related to the properties of the tracer.

In an earlier study [Mahadevan & Archer (2000)], we examined the variability of different bio-
geochemical tracers within a model for a region of the subtropical gyres of the ocean. This model
is initialized with nutrients (for phytoplankton) absent from the surface waters, but increasing
with depth. When upwelling brings nutrients to the surface sunlit layers, they are converted to
organic matter by the new production of phytoplankton. The phytoplankton production takes
up TCO2 in the surface layer, but TCO2 is also modified by the air-sea exchange of CO2 gas
on a much longer time scale (several months to a year because CO2 in the ocean equilibrates
very slowly with the atmosphere). Dissolved O2 is taken up by the remineralization of organic
matter produced in the model, released by phytoplankton production and also subject to air-sea
exchange, but with a shorter equilibration time than CO2. We include two idealized tracers that
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are initialized as varying exponentially from 0 at the surface to 1 at depth over an e-folding
distance of 100 m. Their concentration changes due to the flow, but they are restored to their
initial concentration profiles on time scales of 60 days and 3 days. The slowly restored tracer is
meant to mimic dissolved organic carbon (DOC) and the fast-acting tracer resembles hydrogen
peroxide H2O2.

When we analyze the surface distribution of the various tracers in the model, we find that the
faster responding tracers or properties like new production, H2O2 and O2 develop smaller scales
or more patchiness than their respective counterparts: temperature, DOC and CO2 (Figure 3).
This dependence on the time scale can be understood by considering the balance between the
processes that generate variance (at the small scale) and those that obliterate it or shift it to larger
scales. The range of length scales considered here (the sub-meso and meso scales covering 1–500
km) is rather energetic. This is because the natural length scale of frontal instabilities and eddies
in the ocean, the so-called the internal Rossby radius of deformation, lies within this range; it is
typically between 10–100 km. Upwelling associated with fronts and eddies occurs along the edges
of frontal meanders at sub-mesoscales (1–10 km) which are even finer than the internal Rossby
radius. Since tracer concentration gradients are strong in the vertical, sub-mesoscale upwelling
introduces an anomalous signature in the sea surface concentration of tracers, or can alternatively
be thought of as introducing variance at the finest scales under consideration here. If the tracer
considered is nutrients (nitrate or phosphate that are essential for phytoplankton production) then
the upwelling results in the generation of small scale phytoplankton patches. This is the situation
when the surface of the pelagic ocean is depleted of nutrients and phytoplankton production
is limited by the supply of nutrients from the subsurface. Phytoplankton production takes up
the nutrients from the surface, restoring it to its nutrient-depleted state. If the time scale for
biological production in response to the nutrients is short, then the variance in phytoplankton
is seen mostly at the small scales at which it was generated. If the response time scale is large,
the nutrient patches generated by sub-mesoscale upwelling spread to larger regions due to the
advection of the upwelling features in the flow. Consequently the variance is distributed to larger
scales.

A balance between the processes generating small-scale variance (sub-mesoscale upwelling) and
removing it (nutrient uptake) can be written as

w
∂c

∂z
∼ − c

τ
(3)

where c is the anomalous tracer concentration at the surface (normalized by the mean), w is the
upwelling velocity, z denotes the vertical coordinate direction, and τ is the response or removal
time scale of the tracer (nutrient) in the surface layers. We scale this relation, by choosing W to
represent the typical upwelling velocity, c and c∞ to be the normalized concentration of the tracer
at the surface and depth, and h to be the characteristic depth over which the upwelling occurs.
Thus w∂c/∂z ∼ W (c − c∞)/h ∼ −c/τ . Taking the logarithm of both sides (terms 2 and 3),
using the definition of the patchiness index p ≡ log V/ log L, and considering the variance spread
over the same range of length scales for different tracers with different τ , we get the relation
[Mahadevan & Campbell (2002)]

p ∼ log τ̄ + log c∞, (4)

where τ̄ is the time scale τ normalized by the upwelling time scale h/W . The scaling suggests
that the patchiness varies as the logarithm of the ratio of the time scales τ and h/W . The time
scale h/W may be difficult to ascertain in the field but the spatial heterogeneity of various tracers
can nonetheless be compared using this relation, because they are affected by the same flow field.
Hence their patchiness p is expected to vary logarithmically with the characteristic time scale of
the tracer’s response to processes that modify it in the upper ocean. While this scaling relation
is derived using a rather simplistic balance between two processes (sub-mesoscale upwelling and
nutrient uptake), tracers in the ocean may be affected by a number of competing processes with
several time scales. It is possible to account for multiple time scales by calculating an effective
non-dimensional τ̄ using 1

τ̄
= 1

τ̄1

+ 1

τ̄2

+ 1

τ̄3

....
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This dependence of the spatial heterogeneity on the response time scale is tested with a three-
dimensional fluid dynamical model of an ocean front that contains a tracer. The model is con-
figured in an east-west periodic channel that is initialized with a north-south density gradient
representative of an upper ocean front in the mid-latitudes. The front and the associated east-
west jet are baroclinically unstable and form meanders and eddies, as are seen in the ocean. The
tracer is initialized to resemble nitrate; it is absent from the surface and increases exponentially
with depth. Any excursions of the tracer from this initial profile due to upwelling are restored
to the initial state on a time scale τ , where τ is chosen to be 2.5,5,10,20 ,40 and 80 days. The
spatial heterogeneity of the surface layer of the model is analyzed for the tracers with different
values of τ at different instants in the flow using the variance based analysis (Figure 4). The
slope of the V -L plot in log-log space gives the value of the patchiness index p. This index p is
found to vary with the log of the time scale τ suggesting that spatial heterogeneity of tracers with
different response time scales that are affected by the same fluid dynamical motions is related by
the scaling relationship we derived.

The above discussed relationship between patchiness and response time applies to regions of the
ocean where the phytoplankton growth is strongly limited by the upwelling of nutrients from the
subsurface. Even though we neglected the effect of horizontal advection in generating small-scale
variance while deriving the scaling relationship, the three-dimensional model results are fairly
consistent. This is because the vertical motions make a dominant contribution to surface spatial
distributions in the model, as is the case in many regions of the ocean. However, it is noteworthy
that different results are obtained when the effects of horizontal advection are dominant as in
the situation where phytoplankton blooms generate large scale gradients in Chl between bloom
regions and clear waters. In this case, variance is introduced at the large scale and stirred in to
smaller scale filaments by advection [Martin (2003)]. The relationship between the longevity of
the tracer and its patchiness is just the opposite of what is derived above, because with time,
the tracers develop finer scale structure. Abraham (1998) Abraham (1998) uses the balance
between advection and reaction in a two-dimensional flow to explain the difference in patchiness
between phytoplankton and zooplankton populations in a model. In his modeling study, the
longer-lived zooplankton generate finer scales than the phytoplankton. This demonstrates how
relevant processes are to the spatial heterogeneity.

Finally, we address the issue of modeling or observing different tracers given what we have learned
about their spatial heterogeneity and its dependence on the response time τ . If our intention is
to capture the bulk of the variance in the distribution of the tracer, then clearly, the tracer that
is more patchy, requires higher spatial resolution for modeling or observing. If for example, we
wish to capture 80% of the variance in a tracer distribution, then setting V , the non-dimensional
variance as 0.8 in (2), and taking L to be the model resolution ∆, we get log ∆ ∼ 1/p, which
when combined with (4)) gives

∆ ∼ exp(−1/ log τ̄ ). (5)

Thus two tracers that differ by a factor of 10 in their response times τ , differ by a factor of 4
in the resolution required to model or sample them. The faster acting tracer generates variance
at finer scales and requires higher model and sampling resolution. Phytoplankton reproduction
and organic matter remineralization time scales are typically on the order of a few days, and are
shorter than the time scale of equilibration of physical properties in the oceanic mixed layer with
the atmosphere. (For example, the time scale on which the surface ocean temperature equilibrates
with the atmosphere may be approximately be a month, but the time scale for phytoplankton
growth is only a few days.) This means that higher spatial resolution is needed to model and
observe the phytoplankton ecology and carbon chemistry in the oceans, than the distribution of
temperature. Further, the logarithmic dependence of the spatial heterogeneity on τ implies that
models are much more sensitive to the choice of the process time scale τ , when τ is small.

Conclusions
By analyzing the distribution variance V of various properties in the surface ocean as a function
of length scale L, and plotting log V vs. log L, we find that V ∼ Lp for satellite derived fields
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of sea surface Chl and temperature on length scales ranging from 1–500 km. We use the slope p
of the V -L curves as a measure of the spatial heterogeneity or patchiness; smaller p corresponds
to greater patchiness. We develop a relationship between the spatial heterogeneity of sea surface
tracers and the time scale of processes that modify them by considering the balance between
processes that generate variance at one scale and processes that shift the variance to another
scale. The distributions of tracers at the sea surface are affected by sub-mesoscale upwelling
which introduces variance at small scales, and also by processes like air-sea exchange, heat flux,
evaporation or biological production, that remove this variance and restore the surface ocean to
an ambient state. The ratio between the time scale of upwelling and the time scale of the process
that modifies the tracer in the upper ocean τ , determines the patchiness of the system. For
various tracers affected by the same flow field, the patchiness index p ∼ log τ̄ . This relationship
enables us to relate the spatial heterogeneity of different tracers with different response times.
It also enables us to estimate the model resolution needed to model the variability of different
substances in the ocean.

Finally, it is worth putting this oceanographic study in the context of terrestrial studies and
asking whether our approach is generalizable to other systems. Distributions in the ocean tend
to be transient and coupled to the dynamics of the fluid medium. Since properties in the ocean
are evolving, we use a measure of spatial heterogeneity that is independent of the specifics of
the distribution, but characterizes it in terms of the distribution of variance over length scales.
Such measures of heterogeneity can also be used for terrestrial systems if the appropriate variable
(such as the concentration of a substance or property) can be measured. Assuming a steady state
in the variance distribution, we then balance the factors that change the variance in the system
in opposing ways. This approach could be applied to systems where the processes generating
or changing variance are understood and quantifyable, and when a steady state can be assumed
in the variance characteristics. But many terrestrial systems evolve very slowly and hence it is
difficult to measure the processes that modify them and their rates of modification, particularly
when the evolution of the system occurs in a highly erratic fashion. Nonetheless, we hope that
this study would provoke thinking about what properties and parameters need to be measured in
a system to explain its heterogeneity. Further, various measures for spatial heterogeneity might
be conceived for different systems. If indeed relationships can be found between these measures
and the processes that alter the system, then it is conceivable that the evolution of the spatial
heterogeneity will be predictable from information about the processes, or inversely, the spatial
heterogeneity of a system will provide information about the rates or strengths of the processes
at play.
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Figure 1: An example of spatial heterogeneity in the ocean is seen in this Advanced Very High
Resolution Radiometer (AVHRR) satellite image of a coccolithophore bloom south of Iceland in
June 1991. Coccolithophores are a kind of phytoplankton that grows calcium carbonate plates
that are shed, making the water appear milky in these images. The small crosses in the figure
are 110 km apart. The image shows the strong coupling between physical flow fields and the
biological distributions in the upper ocean. (AVHRR image received at the NERC Receiving
Station Dundee and processed at the Plymouth Marine Laboratory – courtesy Steve Broom.)
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Figure 2: (a) Satellite image of sea surface chlorophyll (Chl) in the Atlantic Ocean acquired
by the Moderate Resolution Imaging Spectroradiometer (MODIS). The boxes on the right show
simultaneous views of the SST and Chl for the dashed region in the larger picture. This region is
512 × 512 km2.The key is logarithmic for Chl, but linear for SST. (b) The variance vs. length-
scale, i.e. V -L, relationship for Chl and SST plotted on log− log axes for simultaneous satellite
data of SST (bold) and Chl (dotted) as that shown above. The M-336 curves are based on MODIS
data from the Arabian Sea. In addition, we show results for three concurrent AVHRR (A-278,
A-286, and A-288) SST and SeaWiFS (S-278, S-286, and S-288 ) Chl images from the N. Atlantic
in October 2000. The length scales analyzed range from 2 to 512 km. The slopes indicated are
estimated for lines fitted to the points between L = 4 km and 256 km. (Published in Mahadevan
and Campbell, 2002.)
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Figure 3: (a) Surface distributions of a fast and slowly responding tracer within a model of a
100 × 100 region of the Atlantic. The model was driven by time-dependent boundary conditions
extracted from a global circulation model and run at a resolution of 0.10 latitude-longitude. The
tracers shown are the fast-acting H2O2-like tracer and the slower DOC-like tracer. They were
initialized as being 1 at the surface and decreasing exponentially to 0 over an e-folding depth of
100 m. When the tracers deviated from this distribution due to advection, they were restored
to it with an e-folding time of 3 and 60 days, respectively. The tracer with the shorter response
time is seen to develop finer scale structure. (b) The log V vs. log L curves demonstrate that
the different tracers used in this model (temperature, dissolved inorganic carbon (DIC), oxygen
(O2), new production and the H2O2-like fast and DOC-like slow tracers) develop different spatial
heterogeneities. The faster acting tracers are more patchy and have smaller p than the slower
acting ones. (Published in Mahadevan and Campbell, 2002.)
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Figure 4: Top left: Surface density field and flow vectors in a model simulation of a baroclinically
unstable evolving front shown 17 days after initialization. The domain size is 258 km×285 km and
the horizontal resolution is approximately 4 km. Top right: Sureface view of the tracer (nutrient)
distribution in the upper 95 m. The tracer shown has a response time τ of 40 days. Tracers with
a lessor value of τ show a similar distribution but are more patchy and less abundant. Below:
The slope of the log V vs. log L curves for the tracers in the model plotted vs. the value of
τ (on a log axis) to verify that V ∼ log τ . Each curve corresponds to a different time in the
simulation at which the spatial heterogeneity was analyzed. (Previously published in Mahadevan
and Campbell, 2002.)
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