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ABSTRACT

The incompressibility and hydrostatic approximations that are traditionally used in large-scale oceanography
to make the hydrodynamic equations more amenable to numerical integration result in the primitive equations.
Thesc are ill-posed in domains with opesi boundaries and hence not well-suited to mesoscale or regional mod-
eling. Instead of using the hydrostatic approximation, the authors permit a greater deviation from hydrostatic
balance than what exists in the ocean to obtain a system of equations that is well-posed with the specification
of pointwise boundary conditions at open or solid boundaries. These equations, formulated with a free-surface
boundary, model the mesoscale flow field accurately in all three-dimensions, even the vertical. It is essential to
retain the vertical component of the Coriolis acceleration in the model since it is nonhydrostatic.

1. Introduction

The ocean is recognized to be a major component of
the earth’s climate system. Just the top few meters of
the ocean’s surface are capable of retaining and trans-
porting more heat than the entire atmospheric layer.
The ocean currents, which are largely responsible for
the transport of heat and momentum, meander and form
eddies in a highly irregular manner. A major challenge
is to model this behavior over long periods of time.
Eddy-resolving models developed for this purpose
should be applicable to limited domains, since the res-
olution required by these models cannot be afforded
for the entire world’s oceans.

One fundamental difficulty with large-scale ocean
modeling is the presence of waves with vastly different
wave speeds. While we are interested in modeling the
slower motions that constitute mesoscale features (fea-
tures of 10—100 km in horizontal extent), it is the speed
of the fastest waves that governs the time step of the
explicit numerical integration scheme. Sound waves,
the fastest waves in the ocean, propagate at speeds
more than 10° times that of the fluid itself, and their
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presence requires the time step in the explicit numerical
integration scheme to be 10° times smaller than what
is required to resolve the motions of interest. Another
fundamental problem in the three-dimensional model-
ing of large-scale oceanic flows is that the extremely
small ratio of the vertical to horizontal length scales
leads to a nearly perfect hydrostatic balance between
the vertical pressure gradient and buoyancy forces. The
slightest inaccuracy in computing the deviation from
this balance results in a relatively large error in the
vertical velocity obtained from integrating the vertical
momentum equation. This makes the numerical solu-
tion of the equations for large-scale flow infeasible
without the use of some approximations.

The approximations traditionally used to address
these difficulties are by no means satisfactory. The in-
compressibility approximation filters out sound waves
(or makes the sound speed infinite) and enables the use
of a larger time step in the numerical procedure. It also
alleviates the severe demand on accuracy in computing
the divergence of the velocity. Computing the pressure
is, however, at each time step relatively more expensive
(especially in a nonuniform geometry) with the use of
this approximation since it requires solving an elliptic
equation or using some other iterative procedure in the
absence of a time-dependent pressure equation. The fast
surface gravity waves in the ocean are often eliminated
by using the rigid-lid approximation in the model.
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The hydrostatic approximation, which assumes per-
fect balance between the vertical pressure gradient and
fluid weight, is used to alleviate the unreasonable de-
mand on accuracy in computing the vertical momen-
tum. It eliminates acoustic waves in the vertical direc-
tion and can also be viewed as reducing the problem
of computing the three-dimensional pressure field to a
two-dimensional one (since once the pressure is known
at one depth, it can be computed at any other depth by
integrating the hydrostatic relation). A serious draw-
back of using the hydrostatic approximation in three-
dimensional models is, however, that it renders the re-
sulting (so called primitive) equations ill-posed in do-
mains with open boundaries (Oliger and Sundstrom
1978; Browning et al. 1990). This can be seen from
the fact that the sign of the eigenvalues, and hence the
direction of the characteristics of the linearized system,
is dependent on the wavenumber and is not known a
priori at an open boundary. It is thus impossible to de-
sign pointwise boundary conditions at an open bound-
ary for which the problem will be well-posed. A further
deficiency in the hydrostatic equations is that since the
vertical velocity is computed from the continuity equa-
tion, any error in computing the horizontal divergence
of velocity is amplified by the inverse of the Rossby
number in the vertical velocity. This error is significant
in the small Rossby number flows of interest to us.

In spite of its ill-posedness, the primitive equation
model continues to be used in domains with open
boundaries. While effects of molecular viscosity are
negligible in mesoscale and large-scale oceanographic
flows, viscous terms are added to account for subgrid-
scale motions and dissipate energy at smaller scales.
The use of sufficiently large viscous terms makes the
solution of the primitive equations computationally vi-
able with open boundaries. The need to model the sub-
grid-scale motions, however, arises from the numerical
discretization and not from the physics. Hence, we be-
lieve that the equations that describe the physics should
not have to rely on a minimum size of viscous term for
their well-posedness.

Although large-scale oceanographic flows are, to
first approximation, hydrostatic and two-dimensional,
the shallow-water and quasigeostrophic equations are
unable to satisfactorily represent the energetic meso-
scale flows associated with currents and eddies. It has
become evident that even though the vertical velocities
are much weaker than the horizontal velocities, it is
necessary to model them accurately in order to explain
mesoscale phenomena. Present day models are unable
to achieve this.

The objective here is to develop and implement an
accurate three-dimensional model for mesoscale flow
that is well-posed in domains with open or solid bound-
aries. This paper is Part I of two parts and focuses on
model development. Part II (Mahadevan et al. 1996)
describes the numerical implementation and flow sim-
ulations.
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In developing the model we use the approach of
Browning et al. (1990) and refrain from making the
usual hydrostatic approximation. Instead, we permit a
greater deviation from hydrostatic balance than actually
exists in the ocean to alleviate the stringent accuracy
requirement in computing the vertical momentum. It
thus becomes possible to compute the vertical velocity
by integrating the vertical momentum equation. The
modification to the equations does not have any signif-
icant effect on the large-scale motions of interest and
the resulting equations are shown to maintain a desired
solution accuracy. Most importantly, they are well-
posed in domains with open or solid boundaries.

A scaling analysis of the governing equations reveals
the existence of a fine balance between the Coriolis
acceleration and nonhydrostatic pressure gradient in
the vertical, analogous to the geostrophic balance in the
horizontal. Hence, we find it essential to retain the com-
monly neglected component of the Coriolis accelera-
tion in the vertical momentum equation.

In order to specify the correct boundary condition at
the top surface and maintain the same desired relative
accuracy in the vertical velocities as in the horizontal,
we model the ocean with a free surface. The free-sur-
face position is also of practical interest since satellite
altimetry data of ocean surface elevation is readily
available and can be used for assimilation into models.
It turns out, for reasons explained in the following pa-
per (Mahadevan et al. 1996), that the numerical inte-
gration of the free-surface model is much more efficient
than that of the rigid-lid one.

The model is developed for mesoscale oceanic flows,
for example the flow associated with the meandering
Gulf Stream current that sheds eddies. The features of
interest in such flows are typically 10—100 km in hor-
izontal extent, occur over depths of order 1000 m and
have characteristic horizontal velocities of 0.1-1
m s~'. The earth’s rotation has a dominant influence at
such scales, and the Rossby number of these flows is
of the order 1072107, The effects of molecular vis-
cosity and molecular diffusion are 107"'=107'° times
the inertial effects, and we have neglected them alto-
gether. A subgrid-scale model that accounts for un-
resolved scales of motion and forcing terms that
model heat fluxes, evaporation—precipitation and wind
stresses omitted here for simplicity, may be added to
the model without difficulty.

We believe that the model will enable us to capture
the upwelling and downwelling in mesoscale flows that
has eluded modelers. The transport of deep water to the
surface has biological implications, and an understand-
ing of this process would help piece together the overall
picture of ocean circulation. The model is suited to
studying the thermohaline structure of the ocean that is
sensitive to the vertical circulation and to situations
where varying topography may influence the vertical
structure of the flow.
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An outline of this paper is as follows. In sections 2
and 3 we present the governing equations and scale
them based on the characteristics of mesoscale flow
described above. In section 4 we introduce an increased
compressibility and deviation from hydrostatic balance
as in Browning et al. (1990). In section 5 we make the
extension to incompressibility. In section 6 we refor-
mulate the model with a free-surface boundary and
show that we can achieve a desired accuracy with these
equations in all three dimensions. Section 7 draws up
the conclusions. The numerical implementation of the
model and its application to simulating the flow in an
ocean basin are described in Mahadevan et al. (1996).

2. Governing equations

Neglecting the effects of molecular viscosity, diffu-
sion, and any sources or sinks of heat, salt, and mo-
mentum, the equations describing oceanographic flow
can be written as

Ds
—=0 2.1
Dt (2.1a)
DT
— = 2.1b
Dr (2.1b)
D t 19,
Du_uvtang ww 10P _ ftpw=0 (210)
Dt a a pox
Dv  u?tang ww 19p
—+—+—+-——+fu=0 (2.1d
Dt a a pady Ju ( )
Dw u*+v? 1dp
—_— - -——+g—-—bu=0 (21
Dt a p 0z & “ (2-1e)
Dp 2
— + -V=0. 2.1f
Dr c*pV (2.1f)
p=p(s,T,p), (2.1g)
where '
D 9 d d J d
—=—+V-V="tu—+v—+w_—.
-t YV a T T e T e

The coordinates x and y are eastward and northward
distances along the surface of the globe. If ¢ denotes
latitude, 6 longitude, and a the mean radius of the earth,
then dx = a cos¢df and dy = ad¢. The variable z is
the distance from the surface of the globe in a direction
antiparallel to gravity. The components of velocity V
are defined as u = dx/dt, v = dy/dt in the eastward
and northward directions, and w = dz/dt in the vertical
direction. The Coriolis acceleration is resolved into a
component normal to the earth’s surface, f = 21 sing,
and into a component tangential to the earth’s surface,
b = 2Q cos ¢, where ¢ is the latitude of the point where
the equations are applied and €2 is the magnitude of the
angular velocity of rotation of the earth.
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In these equations s denotes salinity, 7 the potential
temperature,' p the pressure, p the density, ¢ the speed
of sound, ¢ time, and g acceleration due to gravity.
Equation (2.1g) is an equation of state for density. The
quadratic terms on the left-hand side of the momentum
equations are due to the curvature of the earth (section
2.3, Holton 1992) and are relatively small.

3. Scaling the equations

In order to rewrite the governing equations in di-
mensionless form, we scale the variables (in a manner
similar to Browning et al. 1990) as follows, such that
the dimensionless (primed) quantities are O(1).

p=R+ Ryps(z) + Rp'(x,y,2) (3.1a)
p=p,—DGRg'z' + Pypy(z) + Pip'(x,y,z) (3.1b)

x=Lx', y=Ly', z=Dz', u=Uu'(x,y, 2),

v=W'(x,y,2), w=Wwi(x,y,z)
t = (LI, g=Gg', a=Aa’, f=Ff'(y),
b=Fb'(y), s=X+Xis'(x,y, 2),
T=Y+VT'(x,y, 7).

Here X, Y, R are the mean values of salinity, potential
temperature, and density, and p; is the surface pres-
sure. The advective timescale L/U is chosen as the
characteristic timescale of the motions. The values of
the characteristic rotation rate F = 10 % s ™', gravi-
tational acceleration G = 10 m s~ 2 and radius of
earth A = 107 m.

The sum of the first three terms in (3.1b) is the hy-
drostatic pressure due to the mean density profile rep-
resented by the sum of the first two terms in (3.1a). It
follows that

Py 3pi(2)

+ GRyg' p§ =0,
D a3z’ 08 po(2)

(3.2)

and hence

Py = DGR,. (3.3)

To estimate the size of the dimensionless groups of
variables that arise from the scaling, we make use of
the following characteristics of the flow:

1) It is approximately geostrophic, that is, the
Rossby number ¢ = U/FL < 1 and the pressure gra-
dient and Coriolis acceleration are in near balance.
Hence, P,/RU? = FL/U = 1/¢. We consider the cases
where L = 10*m, U = 0.1 ms™', and L = 10° m,

! The potential temperature 7 of a parcel of sea water is the tem-
perature the parcel would have if it were displaced adiabatically to
the sea surface; T is a conserved quantity and differs slightly from
the in situ temperature due to the compressibility of sea water.
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U =0.1 —1ms~". For these cases the Rossby number
€ lies in the range 0.1-0.01.

2) The ratio of the depth to length scale, D/L < 1.
Hence the flow is nearly hydrostatic, that is, the vertical
pressure gradient term is of the same order as the buoy-
ancy term and DGR,/P, = 1.

3) The Boussinesq approximation is justified and
hence p/R can be taken to be 1 except where p is mul-
tiplied by g.

4) The speed of sound c is nearly constant in the
fluid and hence can be replaced by the mean speed of
sound C.

5) It occurs in the midlatitudes.
=0(1).

These are the characteristics of a wide range of meso-
scale flows. Features such as the Gulf Stream rings in
the North Atlantic, eddies shed from the Loop Current
in the Gulf of Mexico, and Mediterranean salt lenses,
or ‘‘meddies’’, have typical diameters of 30-300 km,
and typical surface speeds that range from 0.1 m s ' to
as much as 1 m s ' in the Gulf Stream eddies.

By forming the equation for the vertical component
of vorticity and nondimensionalizing it, we find that

Hence tan¢

(3.4)

We can now express Eq. (2.1) in terms of the dimen-
sionless parameters in Table 1. Dropping the primes
from the dimensionless quantities and neglecting terms
less than or equal to O(1072), we rewrite the equations
as follows:

Ds
— =0 .
Dr (3.5a)
DT
—=0 .5b
Dt (3.5b)
D 1
(g~ fot+esbw)=0 (3.5
Dt €
Dv 1
— + = (p, + fu) = .5d
ot TPy fu) =0 (3.54)
Dw (u? +v?)
Dt+6262<pz+pg—6bu—)\e6 p =0
(3.5¢)
Dp €
E-F% u, +v, + ew,
M2 M2
+ €57 PoW — e—g—;gw> =0 (3.5f)
p=p(s,T,p), (3.58)
where
D 9 0 d d
—=—+u—+v—+ew—
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TasLE 1. Dimensionless parameters in the inviscid equations for
large-scale oceanographic flow. The range indicates the typical size
of the parameters for the mesoscale flows discussed.

Parameter Definition Range
A=L/A 1072-1073
Aspect ratio §=DIL 107'-1072
Rossby number e = UIFL 107'-1072
Mach number M= UIC 1073107
Froude number % = U/(GD)"* 1072-1073
Internal Froude number 9, = U/R,R'GD)'? 107'-1072

The coefficients 1/¢262 and €/? in (3.5¢) and (3.5f)
lie in the range 10*—10® and 10°-107 for the relevant
range of flow parameters in Table 1. In order to main-
tain two digits of accuracy in the equations, the groups
of terms multiplied by these coefficients have to be
computed to an accuracy of 0.5 X 1072 times the in-
verse of the coefficient that multiplies them. This is an
extremely stringent requirement on the accuracy of
computation and is difficult to attain in practice. Since
these coefficients serve to define a large sound speed,
as shown in section 4a, their size also severely restricts
the time step of the explicit numerical solution proce-
dure. It is to overcome these difficulties that we need
to resort to some approximations.

4. The quasi-compressible nonhydrestatic model

Instead of applying the hydrostatic and incompress-
ibility approximations, we follow the approach of
Browning et al. (1990) and reduce the sizes of the co-
efficients that multiply the groups of terms defining the
hydrostatic balance and velocity divergence. This
makes the fluid more compressible and permits a
greater deviation from hydrostatic balance than actually
exists, thus resulting in a decreased sound speed and
internal gravity wave speed. Reducing the sound speed,
an approach used in atmospheric flow simulations by
Anderson et al. (1985) and Droegemeier and Wilhelm-
son (1987), permits a larger time step in the explicit
numerical integration of the equations. The greater de-
viation from hydrostatic balance and the greater com-
pressibility alleviates the unreasonably stringent accu-
racy requirement in computing the hydrostatic balance
and velocity divergence.

To make this approximation we replace the large co-
efficients 1/¢%62 and ¢/ in (3.5¢) and (3.5f) by «/,
o, where

o € 1/€%6%, a, < el M>. 4.1

Browning et al. (1990) showed from scaling that the
error made in using the modified coefficients «; and a,
is no greater than max[a;', (eay) ']. Thus, if we
choose

a) = 102,

a, = 10%! 4.2)
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we make an error no larger than O(1072). In the ap-
proximate system that uses «,, a, the sound speed is
several orders of magnitude less than the true sound
speed. Hence we can use a larger time step in the ex-
plicit numerical solution of the approximate system,
which is written as

Ds
o =0 (4.32)
DT
o 0 (4.3b)
Du 1
L S (pe—fo+esbw) =0  (43c)
Dt €
D1
—_— 4+ - , + = .
YR (py +fu)y=0 (4.3d)
D
2 i (p.+pg—Sbu) =0  (4.3e)

Dt

D M
Ff + a2<ux +v,+ew, —¢€ ?gW> =0 (4.3f)

(4.3g)

Terms that make a contribution less than or equal to
O(107?) for the values of a;, a, suggested in (4.2)
have been neglected. While Browning et al. (1990) use
a conservation of mass equation for density, we prefer
to model the physically relevant salinity and tempera-
ture fields in the ocean, and use and equation of state
for density. This also avoids the problems that arise
because the conservation of mass and pressure equa-
tions reduce to the same equation in the incompressi-
bility limit.?

We should mention that the approximation used here
is opposite in approach to the hydrostatic and incom-
pressibility approximations that take the limit as «, and
a, approach infinity, respectively. The accuracy of the
hydrostatic and incompressibility approximations and
some suggested improvements are discussed in the ap-
pendix. Another noteworthy improvement to the hy-
drostatic approximation is the ‘‘quasihydrostatic’’ ap-
proximation proposed by Orlanski (1981).

p=p(s,T,p).

2 1If the speed of sound is treated as a constant, the equation for
pressure and the conservation of mass equation are linearly dependent
for an adiabatic flow. In the Browning et al. (1990) model, the di-
vergence of velocity is substituted into the conservation of mass
equation from the pressure equation to remove this dependency; in
the process a ‘‘potential density’’ p, is defined and density p is re-
placed by p, = p — 107%p where p is the pressure. While this process
eliminates the dependency of the equations, the introduction of p, in
lieu of p in the vertical momentum equation introduces an error that
is amplified by the large coefficient that precedes it. This error could
be eliminated by substituting p, + 107 for p in the vertical mo-
mentum equatlon.
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a. Sound speed

Equations (4.3) are a quasilinear hyperbolic set of
equations that can be written in the form
9q

Jq Jq aq
—+A —+A —4+A — +F(q)=0,
Y 1(q)ax 2(q)ay 3(q) 5z (q)

(4.4)
where
q=(s,T,u,v,w, p)l,

Ai(q),Ax(q), A3;(q) are coefficient matrices and F(q)
is the forcing vector. The eigenvalues of A}, A,, A; are

e L, u+ Jae !,

U, u, u, , U —

U, U, U, U, U — Vae L, U+ Jane !

and

ew + Yeaa,

respectively. Since the eigenvalues are real, the system
is hyperbolic. The largest eigenvalue is the speed of the
fastest wave and governs the time step in the numerical
integration of the equations when an explicit method is
used. Here Ya,e ™' is the sound speed in the horizontal
directions nondimensionalized by U, while vVea,a, is
the sound speed in the vertical direction nondimen-
sionalized by ¢~!W. Table 2 illustrates the changes
made to the equations and correspondingly to the sound
speed by the approximations.

Decreasing the coefficient in the vertical momentum
equation in addition to the coefficient in the pressure
equation results in the modified sound speed being less
in the vertical direction than in the horizontal.

EW, EW, EW, €W, €W — Veo Qs ,

b. Well-posedness

We can symmetrize the equations (4.3) by making
the substitutions

0= ea,u, ¥ = Jeayv, W = £

a,

The system then becomes

9  ~ .. 94 ~ . 94
— + A — + A —
ot 1(4) ox 2(q) 3y
NIUURN | [
+ A3(Q) Fr F(q) = 0,
Z
4.5)
where
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TaBLE 2. Values of coefficients multiplying the hydrostatic balance and velocity divergence in the vertical momentum
and pressure equations. The corresponding sound speeds in the vertical and horizontal directions are indicated.
Value of coefficient in
Sound speed (m s™")
Vertical momentum
equation Pressure equation Horizontal Vertical
Original equations 1/e%6 /M c C
Primitive equations infinity infinity infinity infinity
Approximate equations a, a, Ve la,U Vea a6 "'W
Suggested (for two digit accuracy) 100 €~'100 e~'100U ¢~ '100W = 1006U
when U= 1ms™',L=10°m 100 1000 100 1
when U=01ms™,L=10°m 100 10 000 100 0.1
when U=01ms ', L=10"m 100 1000 10 1
Now A,(§), A,(), A;(§) are symmetric coefficient This is the system of equations
matrices and F({) represents the modified forcing
vector. é u _a_s =0 (4 93)
Since Egs. (4.3) may be reduced to symmetric hy- ot ox
perbolic system, the differential operator is semi-
bounded (Kreiss and Lorenz 1989). The initial— oT +u aT =0 (4.9b)
boundary value problem is well-posed if the incoming ot ox
characteristic variables are specified (Oliger and Sund- 5 3 fu
v v
strom 1978). — oy — = — = (4.9¢)
ot ox €
¢. Boundary conditions Ow Ow
.. . — tu——=—a(pg — bbu)y (49d)
To see what boundary conditions need to be speci- ot Ox
fied, we rewrite the equations in characteristic form. To
do this we must diagonalize the coefficient matrices in 9 . P . N a,\ 9 L P
: - u U — | u
(4.4_1). Upfortunately Ay, A,, Ay cannot all be diago- Jone e ) ox Jore
nalized simultaneously, and the analysis must be done
one direction at a time. The direction for the charac- f
teristic is usually chosen as the direction normal to the e T obw. (4.9¢)
boundary, with the assumption that information prop-
agates normal to an open boundary. Here we choose x
as the characteristic direction and diagonalize A, to get g p a,\ 0 P
the characteristic equations. Slu—— )t -, ) lu—
ot v € ) Ox v
We neglect the terms A,(q)dq/dy + As(q)dq/dz ot o€
from Eq. (4.4), or alternatively move them over to the fo
right-hand side (which we have not done to retain sim- = — — + ébw. (4.9f)

plicity) and rewrite the equation

dq 9q _

o T A(q) o F(q) =0 (4.6)
as

9q el _

Py + XAX P + F(q) = 0, (4.7)

where the columns of matrix X are eigenvectors of A,
and A is the diagonal matrix of eigenvalues of A,. The
characteristic equations are given by

X“%+AX“@—=

—X 'F(q).
ot ox (@)

(4.8)

€

The quantity va,/e, which is the dimensionless
sound speed in the x direction, is much larger than u.
At a solid boundary x = x,, the normal velocity u is
zero. The only incoming characteristic is (4.9f), and
hence only one boundary condition, # = 0, need be
specified. At an inflow boundary x = x,, there are five
incoming characteristics, (4.9a)—(4.9¢), and five
boundary conditions need to be specified. Four of them
are s, T, v, w and the fifth is either u4 or p, or a com-
bination of u and p. At an outflow boundary, there is
one incoming characteristic, that is, (4.9f), and one
boundary condition needs to be specified. This could
be either the normal velocity u, the pressure p, or a
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combination of u and p. With these boundary condi-
tions, the problem is well-posed.

d. Difficulties in the numerical solution

If we consider a flow characterized by U =1ms™’,

L = 10° m and ¢ = 0.1, the reduced horizontal sound
speed in the approximate equations that maintain 2
digits of accuracy is 100 m s~! as seen from Table 2.
Though this is less than one-tenth the actual sound
speed in the ocean, it is 10® times the characteristic
horizontal velocity, and the time step required in the
explicit numerical procedure is 10? times smaller than
the time step required to resolve the advective motions.
While decreasing «, further would further decrease the
sound speed, we cannot do this as it would lead to a
loss of accuracy in the solution.

We attempted to integrate the approximate equations
using an explicit time-splitting method that uses
smaller time steps for the fast part of the equations as-
sociated with the large eigenvalues, and larger time
steps for the slower parts (LeVeque and Oliger 1983).
Such methods have been used for atmospheric flows
by Klemp and Wilhelmson (1978). The ratio of the
large to small time steps is equal to the ratio of the
modified sound speed to advective speed, or the ratio
of largest to small eigenvalues and is equal to 100 in
this case. The method fails for this large a ratio. Nu-
merical experiments by Skamarock and Klemp (1992)
reveal that time split schemes work only when the ratio
of the fast to slow motions is on the order of 10 or less.
We also had problems with maintaining accuracy in the
integration of the pressure equation where a, = 1000
and the divergence of the velocity needed to be com-
puted to an accuracy of 0.5 X 10~ to maintain the two
digits of accuracy that we are striving for.

5. The incompressible nonhydrostatic model

We now reconsider the approximation to the pres-
sure equation on account of the problems faced in the
numerical solution of the quasi-compressible equa-
tions. We reverse the trend of the approximation in the
pressure equation, which was to decrease the size of
the large coefficient ¢/M? to «,. Instead we take the
limit as S — 0. In the vertical momentum equation we
replace 1/¢%6 by a smaller coefficient «; as before.

The equation for pressure is thus modified into
u, +v, + ew, = 0, (5.1a)

a constraint arising from the incompressibility, and the
equation of state

p=p(s,T)

is now for the potential density,* which is independent
of pressure.

3 The potential density p of a parcel of sea water is the density the
parcel would have if it were displaced adiabatically to the sea surface.
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The numerical solution of Egs. (5.1) along with
(4.3a—e) requires an iterative procedure since they are
no longer a hyperbolic system and the time-dependent
pressure equation has been replaced by a constraint on
the velocity. A common method is to construct an el-
liptic equation for pressure whose solution, when used
in the momentum equations, results in a divergence-
free velocity field. The additional work required in
solving an elliptic equation at each time step is fortu-
nately offset by the fact that the time step of the explicit
numerical integration is no longer governed by the
sound speed since the equations do not admit acoustic
waves.

Well-posedness and boundary conditions for the
incompressible equations

The incompressible equations (5.1) along with
(4.3a—e) arise as the singular limiting equations for the
compressible system as the Mach number tends to zero.
The solution approximates the solution of the com-
pressible equations provided the Mach number is small
as is the case in the ocean. This is shown formally by
the use of asymptotic expansions by Majda (1984). A
restriction on the initial condition for the incompress-
ible equations is that the flow field be divergence free.
The incompressible system is thus well-posed with the
specification of the boundary conditions described for
the compressible case.

According to Oliger and Sundstrom (1978), rigor-
ous results on the necessary form of the boundary con-
ditions for the well-posedness of systems like (5.1),
(4.3a—e) are obtainable. The problem is well-posed if
the velocity vector, salinity, and temperature are spec-
ified at the inflow and the normal velocity is specified
at the outflow. At solid boundaries, the condition is that
the normal velocity is zero. Nothing further need be
specified. The compressible system is well-posed when
either the pressure, or the normal velocity is specified
at the outflow. Numerical experiments suggest that this
is also the case for the incompressible equations.

6. The free-éurface model

It is common practice to approximate the free surface
by a rigid lid since free-surface variations are small
compared to the depth of the ocean. The advantage in
doing this is that the position of the top boundary is
fixed and that one need not worry about the time step
of the numerical integration being restricted by surface
gravity waves whose speeds are about 10%>-107 times
that of the fluid. However, there has recently been con-
siderable interest in free-surface models (Dukowicz
and Smith 1994; Killworth et al. 1991; Blumberg and
Herring 1987) because data of ocean surface elevation
available from satellite altimetry could be used for as-
similation and model validation. It has also become a
matter of contention as to whether rigid-lid models are
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able to model the physics and energetics of mesoscale
flows.

Our motivation to model the free surface stems from
wanting to be accurate in the specification of boundary
conditions at the top boundary. The nonhydrostatic
equations model the dimensionless vertical velocity to
two (or more) digits accuracy* provided the boundary
conditions are accurate. Obviously we could not claim
this accuracy if we were to use the rigid-lid approxi-
mation and introduce an O(1) error in the vertical ve-
locity w by setting w = 0 at the top surface.

It turns out that the free-surface formulation used
here lends a very substantial numerical advantage to
the solution of the three-dimensional (3D) elliptic
equation for pressure that we solve at each time step.in
the solution of the nonhydrostatic equations. We de-
couple the pressure into a hydrostatic and nonhydro-
static component. The hydrostatic component is ob-
tained by solving a two-dimensional (2D) boundary
value problem for the free surface using a semi-implicit
formulation. The small aspect ratio of the ocean gives
the nonhydrostatic pressure field the quality that its sec-
ond derivative varies much more over the horizontal
extent of the domain than over the vertical. Hence, with
the exaggerated deviation from hydrostatic balance, the
3D elliptic equation for the nonhydrostatic component
of the pressure is much easier to solve than the 3D
elliptic equation for the total pressure in the rigid-lid
model. Further, we can use a Dirichlet boundary con-
dition at the free surface for the nonhydrostatic pressure
as opposed to having to use a Neumman boundary con-
dition for the total pressure in the rigid-lid case. The
numerical solution of the nonhydrostatic model with
free surface that is described in Part II of this paper,
requires only about one-tenth the computational effort
required for the same model with a rigid lid, and is just
a few times more expensive than the ill-posed hydro-
static model. The free-surface formulation hence dis-
pels our reservations in using the nonhydrostatic equa-
tions.

a. Governing equations for free-surface flow

In the free-surface model, the position of the free-
surface h(x, y, t), is a variable in the problem. Inte-
grating the equation of continuity from the lower
boundary z = —d to the free surface z = %, and using
the kinematic boundary conditions we get

oh 9 J‘” 0 J‘" _
Ey + 8x< B udz) + 8y< y vdz) =0. (6.1)

This equation for s (expressed in dimensional form) is
an equation of continuity for a column or vertical line

4 We measure accuracy in terms of the dimensionless variables
because the velocities in the vertical direction are several orders
smaller than in the horizontal (W = ¢bU).
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of incompressible fluid extending from the ocean bot-
tom to the free surface.

In the free-surface formulation, we can compute the
hydrostatic pressure at any point by integrating the
weight of the fluid downward from the free surface
once the free-surface position is known. We thus de-
compose the pressure p into a hydrostatic component
p;, and a nonhydrostatic component g (Casulli 1995) as
follows:

P=p.tq. (6.2)

The dimensional forms of horizontal momentum equa-
tions (2.1c) and (2.1d), written while neglecting some
of the small quadratic curvature terms, are then

Du 19
7)7+;—(§)—C(ph+q)—fv+bw—0 (6.3a)

Dy

19
— 4+ -——(pp+q)+fu=0, (63b)
p Iy

Dt
where
f=20sinp, b = 2Q coso.

Since the hydrostatic pressure p, satisfies the relation-
ship

1opy _ _

6.
P (6.5)

by definition, the vertical momentum equation (2.1e)
reduces to

(6.6)

b. Scaling

We now nondimensionalize the momentum equa-
tions (6.3a), (6.3b), and (6.6) using

x=Lx', y=Ly', z=Dz', t=(L/U),
u=Uu', v=U", w=Ww

q=0q", pw=(PIL)pi, pr = (PIL)pjy,
a=Aa', f=Ff', b=Fb'

so that the dimensionless (primed) quantities and their
derivatives are O(1). The quantities L, D, U, W, F, A
are the same as in section 3 and represent the charac-
teristic length, depth, horizontal velocity, vertical ve-
locity, Coriolis parameter value, and radius of the earth;
P is the characteristic variation in hydrostatic pressure
over the horizontal length scale L and Q is the char-
acteristic value of the nonhydrostatic pressure ¢ that
varies about 0. The potential density, expressed as the
mean density R plus a deviation about the mean, is
written as
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p=R+Rp'(x,y,2,1).

We need to determine the characteristic size of the non-
hydrostatic pressure Q in terms of the other variables.
On making the Boussinesq approximation and drop-
ping the primes from the dimensionless variables, we
write the dimensionless momentum equations as

D 1
_E + = (phr + qu —fU + €(SbW) =0 (67&)
Dt ¢
B L o+ 3g,+ iy =0 6.7b
Dt € Phy qy fu = ( )
Dw (8 ™ Lo (670
Dr Tes\ed T T AT )T 6T
where
6= QIP,

6 = D/L is the aspect ratio, A = L/A, and ¢ is the

Rossby number as before. From the arguments pre-

sented in section 3, we know that

P FL l
€

and = ¢f.

RU> U

w
U

Clearly in (6.7c), the vertical Coriolis acceleration
term that is O(1/¢%6) must be balanced by the non-
hydrostatic pressure gradient, which must also be of the
same order in magnitude. Hence

5=4. (6.8)

Thus, we see that the vertical Coriolis acceleration and
nonhydrostatic pressure gradient are the dominant
terms in the vertical momentum equation. They are in
balance and their difference results in vertical accel-
eration. Omitting either of these terms would leave a
large unbalanced term; therefore, the Coriolis acceler-
ation due to the tangential component of the earth’s
rotation cannot be neglected in the nonhydrostatic
equations. The ratio of the nonhydrostatic to hydro-
static pressure gradients is of the order of the aspect
ratio 4.

c¢. The quasi-nonhydrostatic approximation

Already we can see an advantage from decomposing
the pressure into its hydrostatic and nonhydrostatic
components in the free-surface model. The O(1) ac-
celeration term in the vertical momentum equation is
equal to the difference between the nonhydrostatic
pressure gradient and Coriolis terms, each of which are
O(1/€%6). In the rigid-lid equations (3.5), the O(1)
vertical acceleration was the difference between the
O(1/€%6%) pressure gradient and buoyancy terms plus
the effect of the O(1/¢26) Coriolis term. By subtracting
out the O(1/€%6?) pressure gradient and buoyancy ef-
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fects that cancel each other out, we are left with O(1/
€26) terms and gain in the accuracy of computation.

As in the rigid-lid model of section 5, we would like
to reduce the size of the coefficient 1/€26 in the vertical
momentum equation (6.7c) to further alleviate the de-
mand on accuracy. We therefore replace 1/¢26 by 3,
where

B < 1/€%, (6.9)

and making use of (6.8) rewrite the vertical momentum
equation as

Dw

—+ ﬂ(qz — bu — e\ =0. (6.10)

(u? +v?)

Dt a )
In section 4 it was stated, in accordance with Browning
et al. (1990), that the maximum error in modifying the
coefficient 1/€%6* that multiplies the difference be-
tween the pressure gradient, buoyancy, and Coriolis ef-
fectto a; is O(a;"'). We had therefore suggested using
a; = 100 to maintain two digits of accuracy. Here the
maximum error involved in modifying the coefficient
1/€*6 to B is O(B~"). Hence we choose § = 100 to
maintain two digits of solution accuracy in the dimen-
sionless variables.

Any error in the computation of (p, + pg — ébu) in
(4.3¢) is amplified by «, which is taken to be 100. In
(6.10) we have reduced the error by subtracting out the
buoyancy term and pressure gradient that balances it.

d. Accuracy

We now present a sketch of the scaling analysis
that shows that the maximum error in using the mod-
ified coefficient 8 is O(B~"'). This analysis is in di-
rect analogy to the scaling analysis of Browning et
al. (1990) that determined the minimum size of «,,
a, in section 4.

The dimensionless form of the. momentum equations
is given by (6.7), where 4 = 6. Modifying the coeffi-
cientin (6.7¢) to g results in the approximate equations

pi 1
(P + 67, — fT + €6bF) =0 (6.11a)
Dt €

o5 1.

5;+;(phy+6qy+fu)=o (6.11b)
Dw 72 + 72
—l+ﬂ<qz—bﬁ—>\e(—”———”—)>=o. (6.11¢)
Dt a

The overbars on the variables denote that they are so-
lutions to the approximate equations. Rewriting the ex-
act vertical momentum equation (6.7c) as

2 2
Dw ,6<qz — bu— N M) —F, (6.11d)
Dt a
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where
P 1 b \ u? +v?
= - == —bu— ¢
)| % a
and then subtracting the approximate equations

(6.11a), (6.11b), (6.11c) from the exact equations
(6.7a), (6.7b), (6.11d) gives

1
Dty o 1 o + 60 — foo + €bwe) =0 (6.12a)
Dt €

Dy, 1 '

Fto + - (Powy + 840y + fug) =0 (6.12b)

DWQ
Dt

=F, (6.12c)

2+ 2
+ ﬂ(qoZ — bug — \e M)
a

where the variables

Ug=U—U, Vg=V—T, Wo=W—W,
Por =Pr=DPn» 9o=9— 4

denote the solution error and have homogeneous initial
and boundary conditions. Now

F=(1 —625,3)%‘:)

Dw
%B-t-=0(l) (6.13)

since B < 1/€26. Therefore, neglecting terms that are
O(e), O(6) or less, we get

Prox — fuo =10 (6.14a)
Dnoy + fitg = 0 (6.14b)
Go, — bug = B7'F (6.14¢)
from the momentum equations, and
wo, =0 (6.144d)

from the continuity equation treated in a similar man-
ner. Thus,

(6.15)

The solution to the error equations (6.12) is O(87!).
Hence the maximum error in using the approximate
equations (6.11) is also O(B87').

By forming the equation for the kinetic energy (KE)
(u® + v? + w?)p/2 (expressed here in dimensional
form) for the approximate equations, one observes a
contribution to the KE —buw(1 — C) from the Coriolis
term. Here C is the ratio between the modified coeffi-
cient 8 in the model and the dimensionless parameter
1/€%6 in the original equations. This results from the
asymmetry introduced by the approximation. In the ex-
act equations C = 1 and the Coriolis terms do no work,
as expected. In the approximate equations C <€ 1

Drox = Proy = Ug =5 = 0.
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= 0(107? — 107°). However, if we compute the time
rate of change of the normalized KE as introduced by
this term, the normalized rate is always less than
O(107°) for the parameters of this paper; this is clearly
negligible. Since KE ~ u?, the error in the KE behaves
like the square of the error in the velocity variables and
is consistent with what is permitted in the model.

Since the term bw in the x momentum equation is
formally negligible at the level of accuracy of the anal-
ysis, it is also perfectly appropriate to modify this term
by multiplying it by C when we approximate the z mo-
mentum equation. Then the Coriolis terms balance as
desired and indeed do zero work.

e. Hydrostatic pressure and free-surface elevation

The hydrostatic pressure p, can be computed by in-
tegrating the weight of fluid downward from the free
surface. Reverting once more to the dimensional form
of the variables and indicating the dimensionless quan-
tities by primes, we express the hydrostatic pressure
pr(x,y,2,t)as

h h
Pr= f pgdz = f (R + Rip')gdz

h
= Rg(h—2)+ gf Rip'dz. (6.16)

We now define H as the characteristic free-surface vari-
ation over a horizontal distance L, so that the gradient
of & is nondimensionalized as

h, = (H/L)hL, h,= (HIL)h),

where h;., hj. are O(1). Differentiating (6.16) with
respect to x and y, substituting into the horizontal mo-
mentum equations, and nondimensionalizing we get

Du’ + P (RGH
Dt'  RU*\ P

ghi+ri+ 5q;>

1
- ;f’v’ +6b'w’ =0 (6.17a)

Dv’ P (RGH

o TrRE\ TP g’h§'+ry’+54§')

+ %f’u’ =0, (6.17b)

where
R,GD a [
; = ’d ’
g P Sl PE
€ 9 (HID)h'
:—g—zglg . p,dZ' (6.18a)



, RIGD , a (H/IDYh' ’dZ’
ry =——7"78 —7
y P g ayl - p
€ 3 (HID)h' .
=g 'dz’  (6.18b
gizg 9y J.. p'dz" ( )

are the baroclinic pressure gradient terms. Here %
= U/(R,R'GD)"* is the internal Froude number.
Both lower and upper limits of integration z and h are
nondimensionalized by D.

Since the two hydrostatic pressure gradient terms in
(6.17) (the first two terms in the parentheses) need not
necessarily cancel each other out, they cannot be larger
than the Coriolis acceleration term. It is fair to assume
that the second term in parentheses is not greater in
order of magnitude than the first since effects of baro-
clinicity are not generally greater than free-surface tilt.
The Coriolis acceleration is then balanced by the pres-
sure gradient due to the free-surface tilt and hence

GH FL 1

U U (6.19)
Also, P = RGH since P/RU? = 1/e.
The order of magnitude of the free-surface slope is

given by
| H 1U°D

= 2
L e¢eGDL e’ (6.20)

where ¥ = U/(GD)'? is the Froude number. The
characteristic free-surface variation over a distance L
for 6 = 107% and different flow parameters is shown in
Table 3.

We should comment here that the size of the baro-
clinic pressure gradient term defined in (6.18) is not
correctly characterized by RGD/L since R; is the
amount by which the density varies from its mean, but
the amount by which fzh R.p'gdz, the deviation from
mean integrated over the depth, varies over a distance
L would be much less than R,GD/L. Thus, even if
R\GD is greater than RGH, or R,/R > H/D, it does
not mean that the order of magnitude of the baroclinic
pressure gradient is greater than that of the Coriolis
acceleration.

f- The quasi-nonhydrostatic free-surface model

Using the definition of the baroclinic pressure gra-
dient in (6.18) and dropping the primes from the di-
mensionless variables, we write the dimensionless
equations as

Ds

—_— 21
D 0 (6.21a)
DT

— =0 (6.21b)
Dt
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TAaBLE 3. Characteristic free-surface variation (U, H)
for different flow parameters.

Rossby number U H
€ (ms™) (m)
0.01 0.1 0.1
0.1 1 1
0.1 0.1 0.01
D 1
S = (ghe+ 1o+ 6, — fo+ ebbw) =0 (6.21¢)
Dt ¢
Dv 1
Dr + - (ghy + r, + 6q, + fu) =0 (6.21d)
Dw (u? +v?)
—+B8lq—bu—e\————]) =0 (62le)
Dt a
u,+ v, +ew, =0 (6.211)
p=p(s,T) (6.21g)
ah € 8 f(H/D)h
— + = | = d.
ot ‘.’72|:6x( a Z)
a (H/D)h
+ — <f vdz)] =0, (6.21h)
ay —d
where
D_ 4. 0. 3
D Yox " Vay T Yy

These equations constitute an accurate model for meso-
scale flows with a free surface. Forcing terms and any
parameterization for subgrid-scale motions may be
added to these equations. The boundary conditions for
well-posedness are the same as those described in sec-
tion 5a. However, if pressure alone is prescribed at an
outflow boundary, it must consist of both the free-sur-
face elevation and the nonhydrostatic pressure. Since
the equations permit a greater deviation from hydro-
static balance than actually exists in nature, it may be
appropriate to refer to them as ‘‘quasi’’-nonhydrostatic.
We have discussed the case where two digits of accu-
racy are maintained in the solution of the nondimen-
sional variables that are O(1). Scaling shows that the
characteristic vertical velocity is €6 times the horizontal
velocity. Hence if U = 1 ms™, ¢ = 107!, and §
= 1072, then two digits of accuracy means that the hor-
izontal velocities are accurate to one centimeter per sec-
ond and vertical velocities are accurate to one-thou-
sandth of this.

7. Conclusions

Building on the approach of Browning et al. (1990),
we propose a new system of equations to model meso-
scale flows that are associated with currents and eddies
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in the ocean and are characterized by small Rossby
number and aspect ratio. In these equations, we permit
a greater deviation from hydrostatic balance than what
truly exists to alleviate the stringent accuracy require-
ment in the vertical momentum equation. The order of
magnitude of the solution error in the dimensionless
model equations is estimated as equal to the inverse of
a modified coefficient in the vertical momentum equa-
tion and is maintained small by choosing the coefficient
appropriately. These equations model the flow field to
a desired accuracy in all three dimensions. Numerical
tests performed with different values of the modified
coefficient in the following paper, show that the mag-
nitude of the solution error is indeed well within the
size predicted by the analysis.

The proposed model is well-posed in domains with
open or closed boundaries and does not rely on a min-
imum size of viscous term. Open boundaries are in-
evitable in mesoscale modeling since the resolution re-
quired for resolving mesoscale eddies is unaffordable
for the entire world’s oceans.

By achieving both accuracy and well-posedness in
open domains, we overcome the two main drawbacks
of the traditional hydrostatic (primitive) equations: (i)
that they are ill-posed in open domains and therefore
require a sufficiently large eddy viscosity to make their
solution viable and (ii) that the vertical velocities that
are computed from the continuity equation are inac-
curate when rotation effects are dominant.

In the nonhydrostatic equations, we find that it is
essential to retain the component of the Coriolis accel-
eration normal to the earth’s surface that arises from
the tangential component of the Coriolis parameter.
This component of the Coriolis acceleration is a dom-
inant term in the vertical momentum equation and is in
‘‘geostrophic balance’” with the nonhydrostatic pres-
sure gradient in the vertical. Any deviation from this
balance induces vertical acceleration in the fluid.

In the horizontal momentum equations, the ratio of
the nonhydrostatic to hydrostatic pressure gradients is
only of the order of the aspect ratio. Thus, the nonhy-
drostatic term does not have any significant effect on the
horizontal motion in large-scale flows, but retaining it
makes the model well-posed and accurate in the vertical.

By formulating the problem with a free surface we
are able to provide the correct boundary condition at
the free surface and maintain the same relative accuracy
in the vertical velocities as in the horizontal. The free
surface also enables us to decouple the pressure into
hydrostatic and nonhydrostatic components, which we
then use to our advantage in the numerical solution
procedure.

In the case of mesoscale or other nearly hydrostatic
flows, the numerical solution of the nonhydrostatic

2

M
(ue + vy + ew,) + e?p(,zw - e?gw = O(M?/e).
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equations is only marginally more expensive than that
of the hydrostatic equations. In many situations, the
nonhydrostatic equations have several advantages over
the hydrostatic system, and using them is well worth
the additional expense.

In a subsequent paper, Mahadevan et al. (1996), we
describe the numerical implementation of the model
and its application to modeling the mesoscale flow in
the Gulf of Mexico. We also explain why the free-
surface model formulation makes the numerical solu-
tion of the nonhydrostatic equations much less expen-
sive than one would expect.
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APPENDIX

Higher Order Hydrostatic and Incompressibility
Approximations

We can now use Eqgs. (3.5¢) and (3.5f) to examine
the accuracy of the hydrostatic and incompressibility
approximations. On multiplying (3.5¢) by €262, we see
that

P, + pg ~ 6bu — Neb(u® + v¥)/a = 0(€*6?). (A.1)

If we drop the curvature term, then the error in the re-
maining combination of terms is larger and is given by

p. + pg — Oobu = O(\eb). (A2)

Neglecting the Coriolis term further increases the error,
which is given by

p. + pg = 0(6). (A3)

Equation (A.3) shows that the hydrostatic approxi-
mation p, + pg = 0 has an error that is O (). Inclusion
of the Coriolis term 6bu in (A.2) gives an improved
hydrostatic relation p, + pg — ébu = 0. The error from
this new combination of terms is O(\ed); three to four
orders less than in the earlier approximation for the
range of flow parameters of concern. Inclusion of the
term \eé(u? + v?)/a further increases the accuracy, as
is shown by (A.1).

Similarly, on multiplying (3.5f) by M?*/¢, we see
that

2

(A4)
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Neglecting the pressure gradient term gives

M M?
(u, + v, + ew,) — € ?gw = O(e g—?) (A.5)
and further neglecting the gravity term gives the error
in the incompressibility approximation

2
dsux+vy+ewz=0(e%). (A.6)

92

It is now also evident as to why the hydrostatic system
of equations cannot model the vertical velocity accu-
rately for flows with small Rossby number. In the ab-
sence of an equation for the vertical velocity,

w, = e_'(ux+vy) (A7)
is used to compute w. Any error of O(e) in computing
(u, + v,) would result in an O(1) error in w.
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