Joint Session on Air-Sea Interaction and the Coastal Environment

Coupled modeling of <u>eddy-wind interaction</u> in the California Current System — Impact on eddy kinetic energy and Ekman pumping

Hyodae Seo Woods Hole Oceanographic Institution

Art Miller & Joel Norris Scripps Institution of Oceanography

AMS Annual Meeting, Phoenix January 5, 2015

Eddy-wind interaction

$\tau = \rho C_D (U_a - U_o) |U_a - U_o|$

 $\begin{array}{c} \mbox{Eddy-wind interaction} \\ \hline \textbf{T} = \rho \ \textbf{C}_D \left(\textbf{U}_a - \textbf{U}_o \right) \left| \textbf{U}_a - \textbf{U}_o \right| \\ \mbox{Satellite observations: Xie 2004} \\ \mbox{Correlation (SST & wind): high-passed} \end{array}$

30N 20N 1 O N EQ 10S 20S 30S 180 6ÔE 120W 6ÓW 120E n 0.6 -0.4 -0.2 0.1 0.2 0.4 -0.1

northward propagation of an anticyclonic eddy

northward propagation of an anticyclonic eddy

Previous studies on impacts of T_{SST} and T_{cur}

• Previous ocean-modeling studies show weakened eddy variability with inclusion of τ_{SST} and τ_{cur} .

effect of τ_{SST} : Jin et al. (2009)

effect of τ_{cur} : Eden and Dietze (2009)

• This study examines the relative importance of T_{SST} vs T_{cur} using a fully coupled regional model.

Scripps regional coupled model and experiments

- Seo et al. 2007, 2014
- 7 km O-A resolutions
- 6-yr integration (2005-2010)

Scripps regional coupled model and experiments

EKE significantly reduced by current effect on wind stress

130°W 125°W 120°W

JAS 2005-2010

Eddy kinetic energy budget

Eddy-induced Ekman pumping velocity

(Chelton et al. 2004)

Eddy-induced Ekman pumping velocity

Ekman pumping velocity JAS climatology OBS (QuikSCAT & AVISO)

JAS 2005-2009

m/day

SST- and current-induced Ekman pumping velocity

Summary

- Surface EKE is weakened almost entirely due to mesoscale current effect on wind stress.
 - SST has no impact (at odds with some previous studies)
 - EKE budget: eddies primarily enhance the eddy drag, and weaken the wind work of secondary importance.
- Change in eddy drag means changes in Ekman pumping velocities
 - Eddy-current and eddy-SST produce Ekman pumping velocity climatologies of comparable magnitudes and different distributions.
 - Implying different feedback processes, a subject of ongoing study.

Thanks! hseo@whoi.edu

This study gratefully acknowledges NSF OCE-09060770.

Ekman pumping velocity JAS climatology

noT_e (without eddy temperature)

JAS 2005-2009

m/day

Summertime EKE budget in CTL

Summertime EKE budget in CTL

