Distinct influence of air-sea coupling mediated by SST and current: California and Somali Current Systems

Hyodae Seo Woods Hole Oceanographic Institution Atlantic Oceanographic and Meteorological Laboratory October 18, 2017

SeaWiFS surface chlorophyll concentration

O(103km)

O(10km)

Air-sea interaction over different oceanic scales?

tp://earthobservatory.nasa.gov

15 AUGUST 2002 KUSHNIR ET AL. 2235 Pacific Decadal Oscillation

North Atlantic Oscillation

Large-scale air-sea interactions: Winds over the slab ocean

Air-sea interaction with no eddies/fronts — Correlation between wind speed and SST

2000-2009 daily QuikSCAT WS

QuikSCAT WS Megative correlation: Oceanic response to the atmosphere NOAA-OI SST

However, the oceans are filled with energetic eddies and fronts

Agulhas Current/ Rings

Gulf Stream

California Current System

Somali Current

Tropical Instability Waves

Average eddy life time of 32 wks

ECCO2 ocean state estimation based on MITgcm <http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=3820>

Eddy-mediated air-sea interaction —Correlation between high-pass filtered WS and SST

NOAA-OI SST Coreanic forcing of the atmosphere on frontal and mesoscales. Seo 2017

Mesoscale SST alters the vertical mixing in the ABL $\overline{13}$ Journal of Climate 2013 $\overline{13}$ Journal of Climate 2013 $\overline{13}$

ϵ have distinct patterns of surface temperature and ϵ with warm temperature and ϵ

$\tau = \rho_a C_D (\underline{W} - \underline{U})^2$ U: surface current vector $\mathbf{T} = \rho_a C_D (W - U)^2$ **b**, suitable building vector

e

height at 2 cm intervals

)

SST and SSH nsider an idealized anticyclonic warm-core eddy (e.g., Chelton 20 SST and SSH T_e -driven wind stress curl & W_e **a b c** Consider an idealized anticyclonic warm-core eddy (e.g., Chelton 2013)

- Let's look at the wind stress) and vice versa for a **^a** height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (clow important is this mososcalo air-son coupling to the ocean? How important is this mesoscale air-sea coupling to the ocean?
	- - $W: 10m$ wind vector $W = W_b + W_{SST}$
	- \mathbf{z}

Wind stress curl associated with mesoscale SST gradients Correlation bet'n wind stress curl and crosswind SST gradient 1993-2015, JJAS 60° N $\nabla \times \tau' = \alpha_c \nabla_c T'$ 40° N Chelton et al. 2004 $20^{\sf o}{\sf N}$ 0° 20" 40 $^{\mathrm{o}}$ S 120° E $60°S$ 5% level -0.6 -0.2 -0.4 $\overline{0}$

SST and SSH SST and SS \sum

 \rightarrow Attenuate the eddy amplitude

 $\underline{\mathsf{W}} = \underline{\mathsf{W}}_\texttt{b} + \underline{\mathsf{W}}_\texttt{SST}$ W: 10m wind vector \sqrt{W} = w_{e} $\tau = \rho_a C_D (W - U)^2$ $\frac{\sigma_a}{\sigma_a}$ and $\frac{\sigma_a}{\sigma_a}$ <u>U</u>: surface current vector $\underline{U} = \underline{U_b} + \underline{U_e}$ Ue-driven wind stress curl & We

Surface current-induced wind stress curl , Mesoscale ocean **b**, **^a** Vertical ocean velocities induced by an idealized Southern Ocean eddy. **Figure 1 |** eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated

Cyclonic wind stress curl over anticyclonic eddy

—Correlation between wind stress curl and surface relative vorticity

Imprints of surface current in wind stress curl

$\frac{Distinct\ influc}{T_e-\tau\ coupling}$ T_{eff} or r-sea interaction d Anticyclonic eddy U_{e} - τ coupling of air-sea interaction due to SST and current \overline{C} Ω on)
1990 - Paul II
1990 - Paul III $\bigcup_{e^-}\tau$ coupling 2 $\mathsf{U}\mathrm{e}$ - τ coupling T_{e} - τ coupling Distinct influences of air-sea interaction due to SST and current

Dipolar wind stress curl or We r Alleut lite public and a Gulf Control Current Stress Current and Stress Current and Stress Current and and Current and Current and Curr \overline{M} \rightarrow Affect the position of the eddy **^c ^a b** Positive correlation bet'n wind stress curl and SST gradient

- 2 –2 –1 0 \rightarrow Affect the amplitude of the eddy Monopole wind stress curl or We Affect the amplitude of
- gradient **by an idealizat wind stress curl and relative vorticity** Negative correlation bet'n

Objective

- Can we quantify the effects of the two distinctive feedback process?
	- Let's look at the two summertime boundary current systems: California & Somali Current Systems

ctl SST, SSH, t: 2010-6-30

Scripps Coupled Ocean-Atmosphere Regional (SCOAR) Model

Scale separation of air-sea coupling

AVISO CTL: include Te & U_e noTe CCS: Effect on Eddy Kinetic Energy and under the core of the CCS: Effect on Eddy Kinetic Energy **^c** and **b** and the upwelling and downwelling patterns in **^a** surface temperature and height anomalies in **^c** and **b** and the upwelling and downwelling patterns in **^a** surface temperature and height anomalies in CCS: Effect on Eddy Kinetic Energy $I = \frac{1}{117 \text{cm}^2/\text{s}^2}$ and $I = \frac{1}{117 \text{cm}^2/\text{s}^2}$ and $I = \frac{1}{117 \text{cm}^2/\text{s}^2}$ and $I = \frac{1}{117 \text{cm}^2/\text{s}^2}$

 $\overline{1}$

Seo et al. 2016 eo et al. zu ro

SST and SSH **ST** and **S**

(+42%)

→ The EKE reduction by understress occurs largely due to smallscale coupling , Mesoscale ocean **b**, **^a** Vertical ocean velocities induced by an idealized Southern Ocean eddy. **Figure 1 |** \mathbf{e} eddies have temperatures and height, with warm temperatures and \mathbf{e}) and vice versa for a **^a** height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere () and vice versa for a **^a** height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (, Mesoscale ocean **b**, **^a** Vertical ocean velocities induced by an idealized Southern Ocean eddy. **Figure 1 |**

Affect the position **Upware** $\frac{1}{2}$ interval $\frac{1}{2}$ cm data $\frac{1}{2}$ cm data $\frac{1}{2}$ cm data $\frac{1}{2}$ cm data $\frac{1}{2}$

to about 50 km, it became a positive

strong gradients in sea surface temperature in sea surface temperature in sea surface temperature in the sea s
The contract of the contract o

Solution Secure 10 a UAS 2005-2010

Chelton 2013 Chelton 2013

T_e-driven EkP $\frac{1}{\sqrt{2}}$ y–1 $\overline{}$ Surface temperature (

Lupwelling

height at 2 cm

U_e-driven EkP 11. drivan Ekp

–3

uri
J

 \mathcal{L}

 \diagup

- $T_{\rm e-T}$ and \sim 116cm²/s² \sim $T_{\rm e-T}$ has no impact on EKE
- Ue-τ reduces the EKE by 40% would induce vertical velocities with a dipole structure of downwelling in the northern **^a** idealized eddy in would induce vertical velocities with a dipole structure of downwelling in the northern **^a** idealized eddy in Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both
	- U_{tot}-τ reduces the EKE only slightly more (additional 10%) \mathbb{R} \blacksquare tool temperature patterns and collections alter surface winds, \blacksquare $\left\{\right.$ $\left\{\right.$ $\right\}$ $\left\{\right.$ $\left\{\right.}$ $\left\{\right.$ $\left\{\right.}$ $\left\{\right.$ $\left\{\right.}$ $\left\{\right. \left\{\right. \left\{\right.$

2

|
|
|

 ϵ

–1

–2

Reduce the amplitude Poduce the amplitude

(with contours of surfac

e

)

 \sim

.
1914

Downwelling

elling velocity (cm data

$$
BC = -\frac{g}{\rho_0} \overline{\rho' w'},
$$

 P_0

 $P_e \rightarrow K_e$ haroclinic conversion (RC) $\overline{}$ 34 $\rightarrow K_e$ baroclinic conversion (BC) $P_e \rightarrow K_e$ baroclinic conversion (BC)

along-shore averages

Value Reading

Depth-averaged key EKE budget terms g rd
D averaged key EKE budget terms

$$
\frac{\partial K_e}{\partial t} + U \cdot \nabla K_e + u' \cdot \nabla K_e = -\nabla \cdot (u'p') - g\rho'w' \\
\hline + \rho_o(-u' \cdot (u' \cdot \nabla U)) + u' \cdot \tau' \cdot e \\
P = \frac{1}{\rho_o} (\overline{u' \tau'_x} + \overline{v' \tau'_y}).
$$

Wind work if positive, eddy drag if negative Wind work if positive, eddy drag if negative vvind work in positive, eddy drag ii negat

•

• Only a small reduction in noU e \rightarrow can't explain the higher EKE

Baroclinic conversion

• 24% increase in noU e over the eddy-rich coastal zone \rightarrow U_e-t reduces the wind work

• Eddy-wind interaction

Across-shore distribution of

Eddy-driven Ekman pumping velocity

 \mathbb{R}

Chelton et al. (2001)

Estimating eddy SST-driven

 W_{SST} = $\nabla \times \boldsymbol{\tau}'_{\mathit{SST}}$ $\rho_o(f + \zeta)$ ≈ $\alpha_c \sum_c SST$ $\rho_o(f + \zeta)$

wind stress curl

Empirical estimation of SST-driven Ekman vertical velocity

Estimated Ekman vertical velocities W_{SST} W_ζ W_{LIN} W_{tot} 0.4 0.4 0.4 0.2 0.2 0.2 $\overline{0}$ $\overline{0}$ $\overline{0}$ -0.2 -0.2 -0.2 -0.4 -0.4 -0.4 W_{SST} W_Z W_{LIN} W_{LIN} W_{tot} W_{tot} My_{sst} 0.4 0.4 0.4 0.2 0.2 0.2 $\overline{0}$ $\overline{0}$ $\overline{0}$ -0.2 -0.2 -0.2 -0.4 -0.4 -0.4 122° W

 130° W 122° W

 130° W

Confirming two distinct influences of air-sea coupling: 2001-2010 JJAS climatology(b) τ CTL (d) τ noUe (c) τ no Te (e) τ noUtot

(e) ctl EKE

(f) noTe EKE

(g) noUe EKE

0.3 (Nm^{-2}) 0.2 0.1

 Ω

About 1° downstream shifts of the GW when T_e - τ is suppressed

T_{e} - τ influences the position of the Great Whirl (GW)

• Reduced MKE by 35% due to reduced Pm

•Weakened EKE due to reduced BT/BC

U - τ coupling influences the amplitude but not the position **MKE EKE** MKE EKE Alongshore profiles of energy input and conversions

• Small (~5%) but significant changes in the axis of the FJ and the moisture transport

Summary and Discussion

Distinct impacts of air-sea interaction mediated by SST vs surface current on the energetics of the two summertime boundary current systems

- \cdot T_e- τ coupling affects the position of eddy fields through Ekman pumping \rightarrow E.g., Great Whirl is shifted by \sim 1° downstream.
- \cdot U_e- τ coupling attenuates the kinetic energy \rightarrow by reducing wind work and increasing eddy-drag. \rightarrow Negative correlation between W_c and the relative vorticity of the eddy
- Some evidence of downstream atmospheric response \rightarrow Air–sea interaction study should consider both the thermal and mechanical coupling effects

Comments, questions? hseo@whoi.edu Thanks!