

Large-scale air-sea interactions: Winds over the slab ocean

North Atlantic Oscillation

75°N a 60°N-45°N-30°N-15°N-0.5 ms 75°W 100°W 50°W 25°W

Pacific Decadal Oscillation

Kushnir et al. 2002

Air-sea interaction with no eddies/fronts

Correlation between wind speed and SST

2000-2009 daily QuikSCAT WS NOAA-OI SST

Negative correlation: Oceanic response to the atmosphere

Eddy-mediated air-sea interaction —Correlation between high-pass filtered WS and SST

Mesoscale SST alters the vertical mixing in the ABL

- 1-D turbulent boundary layer process
- A shallow and rapid adjustment (~hrs)

How important is this mesoscale air-sea coupling to the ocean? Let's look at the wind stress

$$\tau = \rho_a C_D (\underline{W} - \underline{U})^2$$

U: surface current vector

<u>W</u>: 10m wind vector $\underline{W} = \underline{W}_b + \underline{W}_{SST}$

Consider an idealized anticyclonic warm-core eddy (e.g., Chelton 2013)

SST and SSH T_e-driven wind stress curl & W_e

Wind stress curl associated with mesoscale SST gradients

Correlation bet'n wind stress curl and crosswind SST gradient

1993-2015, JJAS

Surface current-induced wind stress curl

$$\tau = \rho_a C_D (\underline{W} - \underline{U})^2$$

<u>U</u>: surface current vector $|\underline{U} = \underline{U_b} + \underline{U_e}|$

<u>W</u>: 10m wind vector $\underline{W} = \underline{W}_b + \underline{W}_{SST}$

SST and SSH

U_e-driven wind stress curl & W_e

Cyclonic wind stress curl over anticyclonic eddy

→ Attenuate the eddy amplitude

Imprints of surface current in wind stress curl

—Correlation between wind stress curl and surface relative vorticity

Distinct influences of air-sea interaction due to SST and current

Dipolar wind stress curl or We

→ Affect the position of the eddy

Positive correlation bet'n wind stress curl and SST gradient

Monopole wind stress curl or We

→ Affect the amplitude of the eddy

Negative correlation bet'n wind stress curl and relative vorticity

Objective

Can we quantify the effects of the two distinctive feedback process?

Let's look at the two summertime boundary current systems:

California & Somali Current Systems

Scripps Coupled Ocean-Atmosphere Regional (SCOAR) Model Surface forcing Surface meteorology http://hseo.whoi.edu/scoar/ (U10, V10, SLP, T2, Q2, Qsw,Qlw, Pr) $(\tau_x, \tau_y, Q_{net}, Pr, Q_{sw})$ Seo et al. (2007; 2014; Model Coupler 2016, JCLI) SST & WRF or RSM ROMS Surface current 9km AS NCEP-FNL 7km CCS ctl SST, SSH, τ: 2010-7-30 SODA India Oman 20°N Bulk formula or WRF Cape Blanco Yemen PBL physics 15°N 42 °N Cape Mendocino -15 10°N An input-output based Somalia coupler: portable & 5°N flexible Matching grids in the ocean and atmosphere

Scale separation of air-sea coupling

Online 2-D Loess smoothing
(e.g., ~3°×3°)
at each coupling time-step
Putrasahan et al. (2013); Seo et al.
(2016); Seo (2017)

$$\tau = \rho_a C_D (\underline{W} - \underline{U})^2$$

	τ formulation			
	T _b	Te	Ub	Ue
CTL	Y	Υ	Υ	Y
noT _e	Y	N	Υ	Y
noUe	Y	Υ	Υ	N
noU _{tot}	Υ	Υ	N	N

CCS: Effect on Eddy Kinetic Energy

JAS 2005-2010

Depth-averaged key EKE budget terms

$$\frac{\partial K_e}{\partial t} + U \cdot \nabla K_e + u' \cdot \nabla K_e = -\nabla \cdot (u'p') - g\rho'w' + \rho_o(-u' \cdot (u' \cdot \nabla U)) + u' \cdot \tau' + \varepsilon$$

$$P = \frac{1}{\rho_0} \left(\overline{u'\tau_x'} + \overline{v'\tau_y'} \right).$$

Wind work if positive, eddy drag if negative

$$BC = -\frac{g}{\rho_0} \overline{\rho' w'},$$

P_e → K_e baroclinic conversion (BC)

along-shore averages

Across-shore distribution of EKE budget terms

Baroclinic conversion

- · Only a small reduction in noUe
 - → can't explain the higher EKE

Eddy-wind interaction

- $\,\cdot\,24\%$ increase in noU_e over the eddy-rich coastal zone
 - → U_e-τ reduces the wind work

Eddy-driven Ekman pumping velocity

$$W_{tot} = \frac{1}{\rho_o} \nabla \times \left(\frac{\tau}{(f+\zeta)}\right) \text{ when Ro~O(I)}$$
Stern 1965

$$= \frac{\nabla \times \tilde{\tau}}{\rho_o (f+\zeta)} - \frac{1}{\rho_o (f+\zeta)^2} \left(\tilde{\tau}^y \frac{\partial \zeta}{\partial x} - \tilde{\tau}^x \frac{\partial \zeta}{\partial y}\right) + \underbrace{\frac{\nabla \times \tau'_{SST}}{\rho_o (f+\zeta)}}_{\text{Wsst}}.$$

Curl-induced linear Ekman pumping

Relative vorticity gradientinduced nonlinear Ekman pumping SST induced Ekman pumping (Chelton et al. 2007)

Estimating eddy SST-driven Ekman pumping velocity

$$W_{SST} = \frac{\nabla \times \tau'_{SST}}{\rho_o(f + \zeta)} \approx \frac{\alpha_c \nabla_c SST}{\rho_o(f + \zeta)}$$

Chelton et al. (2001)

wind stress curl

$$W_{SST} = \frac{\nabla \times \tau'_{SST}}{\rho_o(f + \zeta)} \approx \frac{\alpha_c \nabla_c SST}{\rho_o(f + \zeta)}$$

Empirical estimation of SST-driven Ekman vertical velocity

Estimated Ekman vertical velocities

Estimated Ekman vertical velocities

Feedback effects

Downwelling over cyclonic anomaly \rightarrow U_e- τ weakens the amplitude of the eddies

 W_e acting on the maximum SST_g $\rightarrow T_e$ - τ influences the eddy interior U_g

Confirming two distinct influences of air-sea coupling:

2001-2010 JJAS climatology

 T_e - τ influences the position of the Great Whirl (GW)

About 1° downstream shifts of the GW when T_e - τ is suppressed

U- τ coupling influences the amplitude but not the position

Alongshore profiles of energy input and conversions

Some downstream influence in the Arabian Sea

• Small (~5%) but significant changes in the axis of the FJ and the moisture transport

Summary and Discussion

Distinct impacts of air-sea interaction mediated by SST vs surface current on the energetics of the two summertime boundary current systems

- \cdot T_e- τ coupling affects the position of eddy fields through Ekman pumping
 - → E.g., Great Whirl is shifted by ~1° downstream.
- U_e - τ coupling attenuates the kinetic energy
 - → by reducing wind work and increasing eddy-drag.
 - \rightarrow Negative correlation between W_{ζ} and the relative vorticity of the eddy
- Some evidence of downstream atmospheric response
 - → Air—sea interaction study should consider both the thermal and mechanical coupling effects

Comments, questions? hseo@whoi.edu
Thanks!