Coupled Modeling of Mesoscale Air-Sea Interaction: Physics, Impacts, and Role of Surface Waves

Hyodae Seo (<u>hseo@whoi.edu</u>) Woods Hole Oceanographic Institution

Seoul National University September 28, 2022

The growth rate of the extratropical cyclones scales with low-level baroclinicity, which is enhanced over the WBC regions.

Air-sea interaction is spatial scale-dependent

Negative correlation: Wind drives SST responses

The sign and magnitude of the local SST-wind coupling provide a good indication of where and when the ocean influences the atmosphere.

Daily correlation between QuikSCAT wind speed and NOAA OI SST (2000-2009)

Corr(SST', W') spatially high-pass filtered 60°S

Positive correlation: SST forces the surface wind.

Seo (2017) Gentemeann et al. (2020)

Atmospheric boundary layer responses

MABL stratification and turbulent mixing

- 1-D turbulent boundary layer process •
- A shallow and rapid adjustment (~hrs) •

Wallace et al. (1998)

High-wind occurrence climatology

Imprints of warm SST in high wind frequency

Sampe and Xie (2007)

Wind convergence and vertical motion over the WBC SST front:

Minobe et al. (2008) Lindzen and Nigam (1987)

$$\frac{\varepsilon z}{2+f^2})\nabla^2 P$$

- motion to SST-driven $\nabla^2 P$.
- The model ignores the stochastic nature of the atmospheric processes in the region.

Atmospheric Responses

Kuwano-Yoshida et al. (2017)

O'Reilly et al. (2017)

(d) DJF SST CONTROL

(f) DJF v'T'850 CONTROL-SMOOTH

WBC SST impacts on local and downstream storm track

- WBC SSTs (e.g., front strength, meridional position, warm-core eddies)
 - 1. Locally, strengthen the storm activity locally,
 - 2. Downstream, modulate the intensity/path of the storm track.

$$\boldsymbol{\sigma}_{\mathrm{BI}} = 0.31 \left(\frac{g}{N\theta} \right) \left| -\frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial x} \right|$$

Hoskins and Valdes (1990); Nakamura and Shimpo (2004)

Enhanced baroclinicity MAINTAINED by the oceans near the WBCs

Linear vs. nonlinear extratropical atmospheric responses

Seo et al. (2017)

The linear response: The atmospheric fronts "feel" (diabatically) the WBC SST front

Length scale: atmospheric fronts \approx ocean fronts (10-100 km)

diabatic frontogensis and generation of APE

The sign of the dQ_{SH}/dy indicates the diabatic frontogenesis or frontolysis

 $dQ_{SH}/dy < 0 \rightarrow$ Strengthening of the atmospheric front $dQ_{SH}/dy < 0 \rightarrow$ Weakening of the atmospheric front

> Parfitt and Seo (2018) Parfitt et al. (2016)

The nonlinear response is maintained by LF rectifying effects of HF eddy vorticity flux convergence

The transient eddy effect explains a substantial portion of the low-frequency total Z250 increase

tendency solely due to anomalous Nakamura et al. (1997) edgy vorticity flux convergence

Seo et al. (2014; 2017)

Feedback to oceans

Coupled ocean-atmosphere model simulations

130[°]W 125[°]W 120[°]W 130^oW 125^oW 120^oW

- \cdot T_e- τ has small impact
- · U_e - τ is a significant damping effect (40%)

SST-wind and current-wind coupling effects on geostrophic EKE

alongshore and depthaveraged EKE $dEKE/dt = BC + P_e + \dots$

baroclinic conversion

 $BC = -\frac{g}{\rho' w'},$

geostrophic eddy wind work

$$P_e = \frac{1}{\rho_0} \left(\overline{u' \tau'_x} + \overline{v' \tau'_y} \right).$$

Seo et al. (2016);

Current-wind coupling effects in the WBCs

With the relative wind effect, the Gulf Stream and Agulhas Current are stabilized and eddy \bullet activity attenuated (30-40%).

Role of Surface Waves

Wave roughness length (z0) parameterization in COARE3.5 (Edson et al. 2013)

$$C_D \simeq \left[\frac{\kappa}{\ln(z(z_0) - \psi_m(z/L))}\right]^2$$

1. Wind Speed Dependent Formulation (WSDF)

$$z_0^{\text{rough}} = \alpha \frac{u_*^2}{g}$$
 $\alpha = f_1(U_{10N})$
Charnock coefficient

- **Assumption #1**: Wind-wave equilibrium (wave age~1.2):
 - Wind seas under high wind and swell under low wind.
- **Assumption #2:** Waves al
- Violated near strong densit limited oceans, under rapic

Parameterizing surface wave impacts on wind stress

$$C_D(W - U)^2$$

$$z_0 = z_0^{\text{smooth}} + z_0^{\text{rough}}$$

spectral peak

- Still assumes $\theta = 0$.
- MIRE often DOEC NOT would better firmer

Ocean-WAVE-atmosphere coupled modeling for wave-wind and wave-current interactions:

https://hseo.whoi.edu/scoar-model

- COARE3.5 WBF as the cornerstone of the OAW coupling
- Goal to improve WBF over a range of wind/wave regimes
- Wave-coupling procedure is documented in Sauvage et al. (Submitted to JGR Oceans)

Experiments	Coupling	z0 in COARE3.5
WSDF	WRF-ROMS	wind speed only
WBF	WRF-ROMS-WW3 with default WBF	wave-based (T _p , H _s
WBF_0	WRF-ROMS-WW3 with <i>modified</i> WBF	vector wave stress (θ
WBF_T _m		with T _m instead of T

10 km resolutions with matching grids. All runs include tides, currentwind and SST-wind interactions, and breaking wave induced vertical mixing.

z0 and τ responses to inclusion of waves and sea state in COARE3.5

• WSDF underestimates stress over young seas, but shows a good agreement with the measurements in high winds.

z0 and τ responses to inclusion of waves and sea state in COARE3.5

- WBF alleviates the low-stress bias over young seas
- But it underestimates the stress in mixed sea conditions

Re-engineering the wave-based formulation in bulk flux algorithm

winds in mixed seas:

The spatial variability in ocean currents affects the wave properties and thus air-sea flux (Ardhuin et al. 2017) Even the most advanced bulk formula do not take into account this effect.

Wave-current interaction

O-W-A coupling across scales

Synthesis and discussion

- - model physics.
- - parameterized.
 - the physics.

 Mesoscale air-sea interaction is important for simulations of ocean circulation, boundary layer dynamics, and high-impact weather events. - Challenges for developing observational strategies and improving

- In-situ measurements of PBL, air-sea flux, and sea states are extremely sparse.

- Bulk formula is imperfect. Need distributed arrays of DCF systems, bulk met. sensors, sea-state, and PBL.

 High-resolution models are leading the ocean-weather-climate research - Air-sea fluxes and MABL processes are not well validated. - Some coupled effects of ocean eddy (on EPE/EKE) are not

- Regional modeling can guide effective sampling strategies and refine

 Strong interests exist in coordinated air-sea interaction observations - A critical gap remains in remote sensing capability to provide accurate global estimates of turbulent heat/moisture fluxes at highresolution (10-25 km)

