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Abstract 46 

Two decades of high-resolution satellite observations and climate modeling studies have 47 

indicated strong ocean-atmosphere coupled feedback mediated by ocean mesoscale processes, 48 

including semi-permanent and meandrous SST fronts, mesoscale eddies, and filaments. The air-49 

sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this 50 

so-called mesoscale air-sea interaction are robust near the major western boundary currents, 51 

Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous 52 

over the global oceans wherever ocean mesoscale processes are active. Current theories, 53 

informed by rapidly advancing observational and modeling capabilities, have established the 54 

importance of mesoscale and frontal-scale air-sea interaction processes for understanding large-55 

scale ocean circulation, biogeochemistry, and weather and climate variability. However, 56 

numerous challenges remain to accurately diagnose, observe, and simulate mesoscale air-sea 57 

interaction to quantify its impacts on large-scale processes. This article provides a 58 

comprehensive review of key aspects pertinent to mesoscale air-sea interaction, synthesizes 59 

current understanding with remaining gaps and uncertainties, and provides recommendations on 60 

theoretical, observational, and modeling strategies for future air-sea interaction research. 61 

 62 

Significance Statement  63 

Recent high-resolution satellite observations and climate models have shown a significant impact 64 

of coupled ocean-atmosphere interactions mediated by small-scale (mesoscale) ocean processes, 65 

including ocean eddies and fronts, on Earth’s climate. Ocean mesoscale-induced spatial 66 

temperature and current variability modulate the air-sea exchanges in heat, momentum, and mass 67 

(e.g., gases such as water vapor and carbon dioxide), altering coupled boundary layer processes. 68 

Studies suggest that skillful simulations and predictions of ocean circulation, biogeochemistry, 69 

and weather events and climate variability depend on accurate representation of the eddy-70 

mediated air-sea interaction. However, numerous challenges remain in accurately diagnosing, 71 

observing, and simulating mesoscale air-sea interaction to quantify its large-scale impacts. This 72 

article synthesizes the latest understanding of mesoscale air-sea interaction, identifies remaining 73 

gaps and uncertainties, and provides recommendations on strategies for future ocean-weather-74 

climate research. 75 
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1. Introduction 76 

Decades of observational and modeling analysis have broadly identified two fundamental 77 

regimes of ocean-atmosphere coupling dependent on the spatial scale of ocean surface 78 

variability. The first regime involves the ocean response to large-scale (>1000 km) internal 79 

atmospheric variability, which drives a response in sea surface temperature (SST) through the 80 

mediation of surface turbulent heat fluxes and upper-ocean turbulent mixing (e.g., Frankignoul et 81 

al. 1985; Alexander and Scott 1997). The large-scale ocean response feeds back onto the 82 

incipient atmospheric circulation anomaly to reinforce or erode it (e.g., Bladé 1997). In this 83 

framework, the ocean is viewed as relatively passive, mainly advecting anomalies, storing heat, 84 

and integrating white noise atmospheric forcing. 85 

 86 

The second regime, the focus of this paper, involves an atmospheric response driven by ocean 87 

mesoscale eddy-induced spatial SST and current variability. Here, the term “mesoscale eddies 88 

and fronts” broadly refers to all forms of oceanic processes with horizontal length-scales smaller 89 

than the first regime of air-sea interaction (>1000 km) but larger than oceanic submesoscale (~1-90 

10 km), although several outstanding issues regarding the submesoscale air-sea interactions will 91 

be discussed in Sections 5 and 6. These processes include coherent, swirling, and transient ocean 92 

circulations with length-scales near the Rossby radius of deformation (Chelton et al. 2011), 93 

filamentary eddy structures that are widely observed in coastal upwelling systems, and semi-94 

permanent fronts and undulations near the midlatitude western boundary currents (WBCs) and 95 

their extensions, and SST fronts along the equatorial tongue in the Pacific and Atlantic oceans.  96 

 97 

The SST signature from these ocean mesoscale processes modifies surface turbulent heat and 98 

momentum fluxes, driving local responses in marine atmospheric boundary layer (MABL) 99 

processes (Small et al. 2008), inducing responses in winds, clouds, and rainfall (e.g., Deser et al. 100 

1993; Tokinaga et al. 2009; Frenger et al. 2013; Miyamoto et al. 2018; 2022; Takahashi et al. 101 

2020, 2021). The MABL responses then drive non-local responses in the path and activity of 102 

storm tracks in the extratropics (e.g., Czaja et al. 2019) and deep moist convection in the tropics 103 

(e.g., Li and Carbone 2012; Skyllingstad et al. 2019; de Szoeke and Maloney 2020). The 104 

atmospheric response to ocean mesoscales feeds back onto eddy activity and SST, altering the 105 

large-scale ocean circulation, further influencing these atmospheric processes (e.g., Nakamura et 106 
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al. 2008; Hogg et al. 2009; Frankignoul et al. 2011; Taguchi et al. 2012). Mesoscale ocean 107 

surface currents also affect the wind stress and heat fluxes as well as the kinematic profiles in the 108 

MABL, which influence ocean circulation, including the stability and strength of the WBCs and 109 

their meanders (Renault et al. 2016b, 2019b) and the basin-scale coupled climate variability such 110 

as ENSO (e.g., Luo et al. 2005). The ocean drives the SST variability more strongly than the 111 

atmosphere at longer time-scales and shorter spatial-scales (Bishop et al. 2017), suggesting the 112 

need to include rectified coupled effects of ocean mesoscale eddies in high-resolution coupled 113 

climate models (Bryan et al. 2010; Kirtman et al. 2012; Roberts et al. 2016; Hewitt et al. 2020). 114 

 115 

Aside from earlier limited observational studies showing evidence of the MABL response to 116 

mesoscale SSTs (e.g., Sweet et al. 1981), the first observational global-scale surveys of the 117 

MABL and surface wind responses based on satellite observations were provided by Chelton et 118 

al. (2004) and Xie (2004), followed by comprehensive review papers by Small et al. (2008) and 119 

Kelly et al. (2010). The number of publications that include aspects of mesoscale air-sea 120 

interaction has grown exponentially in the last decade or so (see Robinson et al. 2018, 2020), 121 

which also emphasizes a strong cross-disciplinary nature of the research subject (e.g., AMS 122 

Special Collection on Climate Implications of Frontal Scale Air-Sea Interaction, and the J. 123 

Oceanography Special Collection on “Hot Spots” in the climate system, Nakamura et al. 2015). 124 

Notwithstanding the existing review papers, no comprehensive synthesis papers exist that 125 

consolidate the exponential increase in scientific understanding of mesoscale air-sea interaction. 126 

This forms the key motivation of this review, which mainly focuses on a synthesis of the studies 127 

since Small et al. (2008). 128 

 129 

The paper is organized in the following logical order. Section 2 discusses the air-sea flux 130 

responses to mesoscale SST and surface currents, along with theories and analytical studies of 131 

MABL dynamics describing the flux responses. The subsequent two sections review critical 132 

aspects of large-scale atmospheric and ocean circulation responses resulting from the 133 

atmospheric boundary layer processes. That is, Section 3 discusses the tropospheric responses 134 

emphasizing the modulation of local and downstream adjustments of extratropical weather 135 

systems and their aspects related to climate change. Section 4 probes into the oceanic responses 136 

due to thermal and mechanical feedback processes. The chapter emphasizes the need to develop 137 



 5 

new theories and parameterizations to account for rectified effects of eddy-atmosphere 138 

interaction. Section 5 explores the emerging observational platforms critical for accurate in situ 139 

and remote-sensing characterization of air-sea interaction at small spatial scales in the coming 140 

decade. Section 6 provides a summary and synthesis. 141 

 142 

 143 
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Figure 1: Schematic illustrations of the coupled ocean-atmosphere feedback processes in the Northern 144 
Hemisphere. (a) On the basin scale, the storm track affected by the WBCs leads to anomalous rainfall patterns 145 
downstream. (b) A zoom-in view over the black box in (a) illustrates cold and warm fronts within a low-146 
pressure system traversing the semi-permanent SST front. On the trailing edge of the cold front (purple), the 147 
cold/dry air mass over the warm ocean water induces large diabatic heating of the storms, strengthening the 148 
storm. A similar process might occur over the transient mesoscale eddies. The modified air mass ascends over 149 
the warm front, leading to deep cumulus clouds and heavy precipitation. (c) A 2-D view of the cross-section in 150 
(b), where the cold front translates eastward over the SST front. When the cold front is east of the SST front, 151 
the large air-sea temperature and humidity differences (purple) cause the maximum upward turbulent heat flux, 152 
facilitating the diabatic frontogenesis. (d) A 2-D view of the MABL with the cross-frontal winds. For the 153 
warm-to-cold case, the warm air blowing over cold water downwind of the SST front leads to a stable internal 154 
boundary layer with a capping inversion and a shallow clockwise secondary circulation. Due to weaker vertical 155 
mixing, the surface wind slows down, reinforcing the initial wind shear. The weak wind over cold SST yields a 156 
reduced surface drag. For the cold-to-warm case, MABL and internal boundary layers deepen quickly, with the 157 
counter-clockwise secondary circulation developing downstream. The increased turbulent mixing accelerates 158 
the surface wind, leading to a well-mixed wind profile. The choppier surface waves on the warm side due to 159 
higher winds enhance surface drag. Wind direction also changes across the front as wind speed adjusts to local 160 
stability (not featured in this schematic). The surface currents near the ocean front (also not shown) modulate 161 
the wave slopes and surface roughness via wave-current interaction and the wind stress via current-wind 162 
interaction. (e) Meandering eastward currents and mesoscale eddies under a uniform westerly wind. On a large 163 
scale, because surface currents are oriented downwind, the relative wind leads to weaker geostrophic wind 164 
work than the absolute wind, stabilizing the large-scale circulation but stimulating submesoscale instabilities. 165 
Over the eddies, eddy-atmosphere coupling induces the diabatic dissipation of eddy potential energy (thermal 166 
feedback) and the negative geostrophic eddy wind work via current-wind interaction (mechanical feedback), 167 
weakening the eddy energy. The eddies’ swirling currents manifest reversely in the wind stress, leading to 168 
current-induced wind stress curls and the up/downwelling in the ocean. (f) The cross-section across the 169 
front/jet in (e). The down-front wind drives an eastward Ekman transport of cold/dense water over warm/light 170 
water, reducing stratification near the front. The unstable front leads to enhanced turbulence and submesoscale 171 
activity, with the induced secondary circulation accelerating the jet. The oceanic frontogenesis influenced by 172 
the surface waves is not featured in this schematic but illustrated in Figure 9. 173 
 174 

The readers might find it helpful to visualize key feedback mechanisms discussed throughout the 175 

paper by referring to the schematic illustrations in Figure 1, which are organized at different 176 

characteristic length scales and by processes. The MABL response to a mesoscale SST front 177 

(Figure 1d) corresponds to Section 2. The diabatic heat exchanges between the atmospheric 178 

fronts and the SST fronts (Figure 1b-c) are elaborated in Section 3b, while a broader view of 179 

modulation of the midlatitude storm track by the WBCs and the subsequent downstream rainfall 180 

patterns (Figure 1a) is discussed in detail in Sections 3a-c. The discussion about the modulation 181 

of wind stress and heat fluxes by the mean and eddy currents and their feedback to oceans 182 

(Figure 1e) jibes with Section 4a. The resulting fine-scale near-surface instability and turbulence 183 

(Figure 1d) are touched upon in Section 4b-c. 184 

 185 

It is not possible to cover all relevant aspects of mesoscale air-sea interaction with sufficient 186 

details. There exist many review articles that might be helpful for readers interested in gaining a 187 
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more in-depth understanding of specific topics. For Section 2, such papers include Bourassa et 188 

al. (2013) on challenges/needs for accurate air-sea flux measurements in high-latitude oceans; 189 

Swart et al. (2019) on observational strategies to improve Southern Ocean heat and gas flux 190 

estimates; Cronin et al. (2019) on global air-sea flux accuracy requirements; Bourassa et al. 191 

(2019) on satellite remote sensing of wind and winds stress; and Deskos et al. (2021) on sea state 192 

impacts on surface winds from a wind energy perspective. For Section 3, Kushnir et al. (2002) 193 

reviewed the atmospheric responses to extratropical SST anomalies in climate models. Czaja et 194 

al. (2019) updated the extratropical air-sea interaction based on high-resolution climate modeling 195 

studies, while Kwon et al. (2010) and Kelly et al. (2010) reviewed the impacts of WBC SST 196 

anomalies on seasonal to decadal climate variability. For Section 4, more detailed accounts of 197 

surface waves, upper ocean mixing, and submesoscale dynamics are provided by Sullivan and 198 

McWilliams (2010), D’Asaro (2014), and McWilliams (2016). McGillicuddy et al. (2016) offer a 199 

comprehensive review of mechanisms of physical-biological-biogeochemical interactions on the 200 

oceanic mesoscale. For Section 5, helpful review papers include Ardhuin et al. (2019) on 201 

observing sea state information; Villas Bôas et al. (2019) on wind-wave-current interaction; 202 

Centurioni et al. (2019) on global ocean surface observation networks; and Wanninkhof et al. 203 

(2019) on global CO2 flux measurements. The observational needs for data assimilation, coupled 204 

reanalyses, and short-term and extended-range predictions have been discussed by Penny et al. 205 

(2019), Domingues et al. (2019), and Subramanian et al. (2019).  206 

 207 

 208 
2. Boundary layer and surface heat, momentum, and gas flux responses  209 

Surface fluxes communicate mass and energy between the ocean and atmosphere and are thus 210 

vital processes in Earth’s climate system. The ocean is a major reservoir of heat and carbon in 211 

the Earth system, and it is increasingly clear that exchanges with the atmosphere occurring on the 212 

oceanic mesoscale are significant in shaping Earth’s climate. Recent assessments on projected 213 

trends in surface air temperature (SAT) and SST have indicated a need to better understand 214 

surface heat fluxes to reconcile conflicting lines of evidence on the projected trends in SAT and 215 

SST (e.g., Box TS.1, IPCC 2021). The surface turbulent heat fluxes are composed of sensible 216 

and latent heat fluxes, while the surface wind stress represents the turbulent momentum flux 217 

between the atmosphere and ocean mediated by surface waves. This section discusses air-sea 218 
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heat, momentum, and gas flux responses to spatially heterogeneous fields of SST, surface 219 

currents, and sea state. We also discuss the local MABL response to ocean-induced mesoscale 220 

forcing, given its strong relationship with the surface fluxes. These processes are illustrated in 221 

Figure 1d. 222 

 223 

Spatially heterogeneous SST and surface currents generate localized anomalies in the surface 224 

heat and momentum fluxes. The atmospheric and oceanic responses to these flux anomalies are 225 

initially confined to the MABL and ocean mixed layer, but the responses to this coupling may 226 

spread to the free atmosphere above (Section 3) or the ocean thermocline below (Section 4). The 227 

atmospheric boundary layer and the oceanic mixed layer directly mediate responses of the large-228 

scale oceanic and atmospheric circulation to the mesoscale and frontal-scale air-sea coupling.  229 

 230 

Figure 2 shows the strong correlation between monthly mesoscale surface fluxes and ocean 231 

mesoscale variability from the ERA5 reanalysis (Hersbach et al. 2020). Here, the turbulent heat 232 

flux is defined as positive downward (ocean warming). When the local point-by-point correlation 233 

between the turbulent fluxes and SST is strongly negative, the SST variability can be viewed as 234 

the ocean forcing the atmosphere (e.g., the warm ocean heats the atmosphere). Similarly, when 235 

the correlation between turbulent heat flux and SST tendency is positive, the atmosphere is 236 

considered to drive ocean variability. Over mesoscale, the wind stress and upward heat fluxes are 237 

enhanced over warm SST anomalies (SSTA) and reduced over cool SSTA. The correlations are 238 

much stronger for sensible and latent heat flux responses, while the surface stress response on 239 

this spatial scale is much more apparent in oceanic frontal boundary regions where mesoscale 240 

SST variability is most pronounced. However, it should be noted that the amplitude of 241 

correlation represents empirical estimates of the strength of covariability since the atmospheric 242 

response to an ocean anomaly modifies the turbulent fluxes and would obscure this simple rule 243 

(e.g., Sutton and Mathieu, 2002). The effect of the surface flux on the ocean is discussed in  244 

Section 4. 245 
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 246 
Figure 2: Maps of the cross-correlation coefficients between ERA5 monthly spatially high-pass filtered SST 247 
and (a) wind stress magnitude, (b) surface sensible heat flux, and (c) surface latent heat flux. The spatial high-248 
pass filter removed variability with spatial scales greater than 1000 km. These maps were averaged over the 249 
30-year period 1991-2020. The ERA5 reanalysis time period used here was 1991-2020. The standard sign 250 
convention for ERA5 surface fluxes is used: positive fluxes mean energy entering the ocean. The high 251 
correlations in these maps correspond to regions of strong mesoscale SST variability, such as in the WBCs and 252 
their extension regions (Kuroshio, Gulf Stream, Brazil Current, and Agulhas Current), along the Antarctic 253 
Circumpolar Current and equatorial fronts, and near the Somali Current. A similar plot to Figure 2(a) can be 254 
found in Small et al. (2008) and Seo (2017). 255 



 10 

a. Turbulent heat flux response 256 

On smaller scales encompassed by the oceanic mesoscale and on time-scales longer than 257 

synoptic time-scales in the atmosphere (e.g., 2-8 days), spatial variations in the surface turbulent 258 

heat fluxes are driven primarily by spatial perturbations of SST, such that negative heat flux 259 

anomalies (i.e., atmosphere heat gain) occur over warm SST perturbations and positive heat flux 260 

anomalies (i.e., atmosphere heat loss) occur over cool SST perturbations (Figure 2b-c). Over 261 

these scales, the ocean forces a response of the atmosphere driven by the surface heat exchange, 262 

which is fundamentally distinct from the response over larger spatial scales. Near-surface air 263 

temperature and specific humidity adjust slowly to spatially heterogeneous SST as air flows 264 

across SST gradients. Ocean mesoscale eddies and SST fronts near the semi-permanent WBCs 265 

often generate large air-sea temperature and humidity differences (Figure 1b-c). A dramatic 266 

example was observed during the CLIMODE experiment near the Gulf Stream during 267 

wintertime, when air-sea temperature differences exceeded 10 °C over 200 km, yielding >1000 268 

W/m2 surface turbulent heat fluxes into the atmosphere (Marshall et al. 2009). 269 

 270 

Past field experiments captured less extreme but nonetheless strong responses of turbulent heat 271 

fluxes and MABL convective turbulence to mesoscale and frontal-scale SSTs. Examples can be 272 

found from the Sargasso Sea during the FASINEX experiment (e.g., Friehe et al. 1991), Gulf 273 

Stream (e.g., Plagge et al. 2016), Kuroshio (e.g., Tokinaga et al. 2009); Pacific Tropical 274 

Instability Waves (Thum et al. 2002), Brazil-Malvinas Confluence system (e.g., Pezzi et al. 275 

2005; Villas Bôas et al. 2015; Souza et al. 2021; Cabrera et al. 2022), Agulhas Current (e.g., Jury 276 

and Courtney 1991; Messager and Swart 2016), and the western Arabian Sea (e.g., Vecchi et al. 277 

2004). 278 

 279 

The scale dependence of turbulent flux responses to mesoscale SST variations has been 280 

quantified primarily from reanalysis-based surface flux and SST datasets (e.g., Li et al. 2017; 281 

Sun and Wu 2022). Bishop et al. (2017), in particular, showed that on time-scales longer than 282 

one month, the turbulent heat fluxes on the ocean mesoscale and frontal scale are driven by SST 283 

variability associated with oceanic internal processes. On shorter time-scales, the variability is 284 

driven more by synoptic-scale weather variability, particularly along the storm tracks overlying 285 

the WBCs. Based on this simple diagnostic, Kirtman et al. (2012) concluded that eddy-286 
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parameterized models grossly underestimate the ocean forcing of the atmosphere in eddy-rich 287 

regions (e.g., WBCs and the Southern Ocean) and overestimate the atmospheric forcing of the 288 

ocean throughout much of the mid-latitudes compared to the ocean eddy-resolving simulations. 289 

 290 

b. Turbulent momentum flux and MABL wind responses  291 

The turbulent heat flux response to SST is a crucial process that drives the responses in turbulent 292 

momentum flux to SST. The variability in ocean surface currents at mesoscales also affects the 293 

wind stress through the relative motion of the surface winds and currents. The most immediate 294 

local atmospheric response to SST and surface currents is initially confined to the MABL. The 295 

wind and wind stress responses mainly result from a dynamical adjustment of the MABL 296 

pressure and vertical turbulent stress profile distinct from simple adjustments of the surface layer 297 

logarithmic wind profile (Small et al. 2008; O’Neill 2012; Renault et al. 2016a), the relative 298 

importance of which strongly depends upon background wind condition (e.g, Schneider and Qiu 299 

2015; Byrne et al. 2015; Section 2c). 300 

  301 

1) Mesoscale SST effects 302 

Traditionally, local atmospheric responses to the mesoscale SST have been characterized 303 

empirically by linear regressions between collocated mesoscale SSTs and surface winds and 304 

surface wind stress, all spatially high-pass filtered to isolate the coupling on scales smaller than 305 

about O(1000 km). Linear regression coefficients, also called coupling coefficients, obtained 306 

from satellite-observed wind speed and wind stress indicates ubiquitous increases in their 307 

magnitudes over warm SSTs, increases of wind divergence and wind stress divergence co-308 

located with the downwind component of the SST gradient, and wind curl and wind stress curl 309 

that scale with crosswind components of SST gradients (Chelton et al. 2001; O’Neill et al. 2003, 310 

2012). The SST-induced curl and divergence responses provide further constraints on spatial 311 

scales of the SST-induced MABL response. These simple but powerful diagnostic metrics have 312 

been broadly used to diagnose the simulated air-sea interaction over a range of scales in 313 

numerical models (Bellucci et al. 2021), leading to refinements in the SST resolution (Chelton 314 

2005) and the PBL parameterizations in NWP models (Song et al. 2017). However, the coupling 315 

coefficients include contributions from broad scales represented in the high-pass filtered input 316 

fields. Hence, other than the gross separation of small scales from large scales, it is difficult to 317 
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extract useful information about scale dependence from such calculations. Alternative statistical 318 

and analytical approaches exist, including cross-spectral analysis (e.g., Small et al. 2005b; 319 

O’Neill et al. 2012; Laurindo et al. 2019; Samelson et al. 2020), cross-covariance and correlation 320 

functions between SST (and its tendency), wind and turbulent heat fluxes (e.g., Frankignoul and 321 

Hasselmann 1977; Wu et al. 2006; Bishop et al. 2017; Small et al. 2019), and an analytical 322 

model for MABL heat and momentum budgets (Schneider and Qiu 2015; Schneider 2020). The 323 

analytical model for MABL is explored in detail in Section 2c. 324 

 325 

2) Mesoscale current effects 326 

Regions of strong SST gradients are also regions of substantial variability in ocean surface 327 

current. The current feedback (CFB) mechanism directly modifies wind stress through the 328 

relative motion of surface winds and currents, which in turn alters the low-level wind shear and 329 

wind. That is, a negative current anomaly induces a positive stress anomaly acting on the 330 

atmosphere, which causes a negative wind anomaly (Renault et al. 2016a). At the mesoscale, 331 

CFB primarily impacts the surface wind stress curl but not its divergence due to the quasi-332 

geostrophic nature of ocean currents (Chelton et al. 2004). The wind stress and wind responses to 333 

CFB can also be diagnosed using empirical relationships based on satellite and numerical 334 

simulations. Renault et al. (2016a; 2019a) defined two coupling coefficients related to CFB: sw is 335 

the regression slope between mesoscale surface currents and 10 m wind and s𝜏 is the linear 336 

regression coefficient linking mesoscale surface current and surface stress. The coefficient s𝜏	 can 337 

be interpreted as a measure of the damping efficiency of CFB to ocean eddy energy, as discussed 338 

in greater detail in Section 4. 339 

  340 

The SST and current-induced stress responses are challenging to separate since mesoscale SST 341 

and current variations co-vary strongly near ocean fronts and eddies. Nonetheless, estimates of 342 

the contributions of the current-induced wind stress response via the linear coupling coefficients 343 

indicate that the current-induced stress anomalies exceed the SST-induced response over strong 344 

WBCs and within isolated ocean eddies (e.g., Gaube et al. 2015; Renault et al. 2019a). The 345 

current-induced stress response exists in scatterometer and direct air-sea flux observations and 346 

coupled ocean-atmosphere simulations, but it is not directly apparent in atmosphere-only 347 

simulations and reanalyses, such as the ERA5 wind stress anomalies used in Figure 2. Including 348 
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both current and SST-induced stress anomalies strongly impacts the mesoscale wind stress curl 349 

field (e.g., Renault et al. 2019a). 350 

 351 

c. Analytic framework for SST-induced boundary layer response 352 

The MABL response to ocean mesoscale current must incorporate coupling between the MABL 353 

thermodynamics and dynamics to adequately represent the influence of SST and surface current 354 

on the surface wind stress and sensible and latent heat fluxes. An analytical framework for SST 355 

impacts was recently proposed, which incorporates MABL heat and momentum budgets that 356 

capture the first-order response of the MABL to SST forcing (Schneider and Qiu 2015; 357 

Schneider 2020) and includes a representation of the processes shown in the literature to be of 358 

primary importance. This framework considers an MABL capped by an inversion (Battisti et al. 359 

1999). Within this layer, air temperature is assumed to be well mixed and vertically constant, and 360 

subject to horizontal advection and air-sea heat exchanges. The system is driven by winds with 361 

horizontal scales far larger than the ocean mesoscale that satisfy a drag law at the sea surface and 362 

experience zero vertical momentum flux at the inversion. The large-scale winds  form a 363 

modified Ekman spiral (Holton 1965a,b), which is considered horizontally homogeneous on 364 

scales commensurate with the ocean mesoscale.  365 

 366 

SST T enters the heat budget of the layer via the air-sea heat exchanges due to the air-sea 367 

temperature difference with a rate 𝛾. The MABL air temperature Θ results, to first order, from a 368 

quasi-steady balance of surface sensible heat fluxes with advection by large-scale winds (e.g., 369 

Small et al. 2005a), 370 

 371 

𝑈$$⃗ ⋅ ∇Θ = 𝛾(𝑇 − Θ) .  (1) 372 

 373 

The air temperatures 𝛩 adjust to SST T over a length-scale of 𝑈/𝛾, forming a wake of elevated 374 

values of the air-sea temperature differences in the lee of spatial SST variations. Thermal 375 

adjustment rates of the boundary layer 𝛾 correspond to adjustment times of a few hours to half a 376 

day (Schubert et al. 1979), yielding length-scales of the response of O(100 km). The momentum 377 

equations govern the wind response to the ocean mesoscale SST-induced acceleration 𝐹⃗ 378 

(Schneider and Qiu 2015) such that, 379 
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'

= 𝐹⃗. (2) 380 

 381 

On the left-hand side of Eq. (2), the term I represents the horizontal advection by large-scale 382 

winds 𝑈$$⃗  of SST-induced winds 𝑢$⃗ . The term II is the vertical advection by 𝑤⋆ of the large-scale 383 

shear, where a sigma coordinate is used in the vertical so that s=0 is the sea surface and s=1 is 384 

the mean inversion height, H. The term III indicates the Coriolis acceleration with Coriolis 385 

frequency 𝑓, where 𝑒̂% denotes the unit vector in the vertical. The term IV is the divergence of 386 

vertical fluxes of horizontal momentum due to large-scale mixing with eddy coefficient A. The 387 

term V is the hydrostatic pressure gradient forces, including the so-called back pressure effect 388 

(e.g., Hashizume et al. 2002), due to ocean mesoscale-induced changes of inversion height (h). 389 

Together with the continuity equation and boundary conditions of a drag law at the sea surface, 390 

and a material inversion with no flux of momentum, these equations provide a complete 391 

analytical solution for the wind response to ocean mesoscale SSTs.  392 

 393 

The changes in 𝛩 due to ocean mesoscale SSTs impact acceleration  to the horizontal 394 

meomentum equation 395 

 396 
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    (3) 397 

through the modulation of the hydrostatic pressure gradients (the term VI) and the sensitivity of 398 

the vertical mixing to the fluxes at the air-sea interface (the term VII). Here, Θ, is a reference 399 

temperature, g is the earth's gravitational acceleration, and 𝐴̇	is the sensitivity of vertical mixing 400 

coefficient A to SST.  401 

 402 

The pressure effect (the term VI), originally formulated by Lindzen and Nigam (1987), 403 

designates the acceleration of surface winds to the baroclinic pressure gradient imparted by air 404 

temperature gradients, which drive secondary wind circulations and up/down-drafts (e.g., Wai 405 

and Stage 1989; Wenegrat and Arthur 2018; Sullivan et al. 2020; Figure 1d). Lindzen and Nigam 406 

(1987) neglected advection and assumed that air temperature decays linearly from the SST to 407 

zero at a height of 3000 m. In contrast, we include advection in the momentum budget in Eq. (2) 408 
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and assume that the SST imprint is vertically constant, consistent with a reduced gravity 409 

formulation (Battisti et al. 1999).   410 

 411 

The vertical mixing effect (the term VII) is a linearization of the 'nonlinear' term envisioned by 412 

Wallace et al. (1989) and Hayes et al. (1989) that captures the modulations of the vertical mixing 413 

acting on the large-scale wind profile. The dynamics, amplitude, and vertical structure of 414 

𝐴̇	determine the character of mixing sensitivity. Mixing can intensify and change its vertical 415 

scale. The dependence of vertical mixing on the non-equilibrium air-sea temperature difference 416 

is but one possibility. Alternatively, SST induces convective adjustment of the lapse rate and 417 

permanently deepens the atmospheric boundary layer over warmer waters (Samelson et al. 418 

2006). These diagnostic formulations for 𝐴̇ are endpoints of the non-equilibrium evolution of 419 

vertical mixing simulated by Large Eddy Simulations (LES, e.g., de Szoeke and Bretherton 420 

2004; Skyllingstad et al. 2007; Sullivan et al. 2020), which allow for changes in the vertical 421 

mixing that lag modulations of boundary layer stability (Wenegrat and Arthur 2018). As such, 422 

the coupling between surface winds and SST is sensitive to the MABL turbulence closure 423 

schemes (e.g., Song et al. 2009, 2017; Perlin et al. 2014; Samelson et al. 2020). The MABL 424 

turbulence subsequently affects the SST by altering mixing and entrainment in the ocean surface 425 

boundary layer, indicating co-dependence of the turbulent boundary layer schemes in the 426 

atmosphere and oceans (Fox-Kemper et al. 2022). 427 

 428 

Advection by large-scale winds allows for disequilibrium in air-sea temperature and shifts 429 

responses of winds or stress as a function of the SST spatial scales and the large-scale wind 430 

direction and speed (e.g., Small et al. 2005a, 2008). Spectral transfer functions, or their 431 

corresponding physical-space impulse response functions, capture these non-local relationships 432 

and generalize the widely used coupling coefficients to include spatial lags. Estimates from 433 

satellite observed winds and SST of spectral transfer functions suggest scale-dependent, lagged 434 

dynamics as a function of the Rossby number determined by large-scale winds, the wavenumbers 435 

of ocean mesoscale SST, and the Coriolis frequency f, or thermal or frictional adjustment rates 𝛾 436 

or A/𝐻-(Schneider 2020; Masunaga and Schneider 2022). For small Rossby numbers, the 437 

pressure effect dominates, while large Rossby numbers favor the vertical mixing effect, and 438 

order one Rossby numbers combine both with rotational effects, consistent with modeling 439 
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studies of boundary layer responses to prototype SST fronts (Spall 2007a; Kilpatrick et al. 2014, 440 

2016) and ocean eddy fields (Foussard et al. 2019a) in the presence of large-scale winds. 441 

 442 

The analytical model described above considers a dry MABL without incorporating MABL 443 

moisture or latent heat fluxes. The contribution of moisture to buoyancy fluxes, latent 444 

heating/cooling, and overall MABL structure has not been investigated in as much detail within 445 

the context of the mesoscale MABL response. However, it is anticipated to have a non-negligible 446 

impact on the MABL dynamical response to mesoscale SSTA (Skyllingstad and Edson 2009). 447 

For instance, during CLIMODE, the buoyancy heat flux was approximately 20% larger than the 448 

sensible heat flux due to moisture, and the average magnitude of the latent heat flux was ~2.5 449 

times greater than the sensible heat flux (Marshall et al. 2009). In the tropics, the ratio of latent to 450 

sensible heat flux is even larger (e.g., de Szoeke et al. 2015), so the moisture contribution is often 451 

an order of magnitude greater than the sensible heat contribution. The impact of moist 452 

convection during a cold air outbreak over the Gulf Stream was investigated with an LES 453 

(Skyllingstad and Edson 2009), showing that the latent and sensible heat fluxes are enhanced 454 

over a simulated SST front resulting in stronger turbulent mixing and precipitation compared to a 455 

constant SST simulation. The simulation across the SST front shows that relatively low humidity 456 

values near the surface are maintained by the continual expansion of the boundary layer in the 457 

entrainment layer, which mixes dry air from aloft into the MABL. This maintains the large air-458 

sea specific humidity and temperature differences necessary for strong latent and sensible heat 459 

fluxes in the surface layer. Additional simulations and measurements are required to investigate 460 

the role of moisture in response to mesoscale SST. For example, the analytical model could 461 

provide insight by using the virtual temperature at both the sea surface and aloft. 462 

 463 

d. Modulation of air-sea fluxes of tracers  464 

Air-sea gas fluxes of tracers depend on the air-sea disequilibrium and processes driving 465 

exchange, such as winds and breaking waves. From the ocean perspective, the disequilibrium can 466 

be understood as the difference of the concentrations of a gas in the seawater, 𝐶, relative to the 467 

concentration the gas would have at equilibrium with the atmosphere,	𝐶./ , which, in turn, is 468 

determined by the solubility of the gas in seawater. The air-sea flux Fx	of a gas x then is 469 

estimated as Fx = k ( C – Ceq ),	 where 𝑘 is the gas transfer velocity (e.g., Woolf 1993; McGillis 470 
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et al. 2001; Wanninkhof et al. 2009; Dong et al. 2021). Impacts of ocean mesoscale features on 471 

the net 𝐹 may be introduced via 𝑘 or 𝐶./ , each of which varies nonlinearly with wind speed and 472 

depends on sea state. The mesoscale may also affect 𝐶	by impacting biological sources and sinks 473 

of tracers (Section 4d). Indeed, studies find local modulations of air-sea CO2 fluxes due to the 474 

effects of mesoscale eddies on solubility, productivity, or winds (Jones et al. 2015; Song et al. 475 

2015, 2016; Olivier et al. 2021). One such study in the Southwest Atlantic Ocean detected clear 476 

spatial covariations of CO2 flux with the MABL stability over a warm-core eddy (Figure 3; Pezzi 477 

et al. 2021). Yet, on the basin-to-global scales, positive and negative mesoscale anomalies of 478 

CO2 fluxes appear to essentially cancel (Wanninkhof et al. 2011; Song et al. 2015). Clear 479 

separation and quantification of the individual and rectified effects of mesoscale phenomena on 480 

𝑘, 𝐶, and 𝐶./ from observations and models remain challenging, given the difficulty of capturing 481 

transient mesoscale variations in the ocean and atmosphere, including the concentration of 482 

tracers such as carbon. 483 

 484 

 485 
Figure 3: (a) Observed SST (°C) in the Southwestern Atlantic Ocean on 18 October 2019. The white circles 486 
denote the Po/V Almirante Maximiano trajectory. (b) In situ CO2 fluxes (μmol m-2s-1) measured by Eddy 487 
Covariance method (solid) and atmospheric stability parameter, SSTbulk-Tship (°C) (dotted), where SSTbulk and 488 
Tship denote the sea surface and near-surface air temperatures, respectively. The error bars denote the standard 489 
error representing a 95% confidence interval. Figures adapted from Pezzi et al. (2021). The figure needs 490 
permission to reproduce. 491 
 492 

 493 
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3. Free-tropospheric, extratropical atmospheric circulation responses  494 

This section investigates atmospheric response beyond the MABL (Section 2) by focusing on 495 

local and non-local circulation responses in the extratropics to SSTA patterns observed in the 496 

WBC regions, including the semi-permanent SST fronts and transient mesoscale eddies. Some 497 

aspects of deep convective response in the tropical atmosphere have also been attributed to 498 

MABL adjustments to the mesoscale SST fields (Li and Carbone 2012; Skyllingstad et al. 2019; 499 

de Szoeke and Maloney 2020), although much of the studies on deep atmospheric responses 500 

published to date is based on the extratropics. We start with a summary of previous studies on 501 

the role of extratropical SSTA in quasi-equilibrium atmospheric circulation and storm tracks. We 502 

then revisit the debates about the observed near-surface wind convergence and precipitation in 503 

WBC regions diagnosed as a response to either SST variations or extratropical storms. Finally, 504 

we will consider whether these processes may be important to future climate, focusing on the 505 

difference between projections at high and low resolution in the oceans. The feedback processes 506 

examined in this section are schematically illustrated in Figure 1a-c. 507 

 508 

a. Time-mean general circulation responses 509 

The question of how the extratropical atmosphere responds to variability in ocean fronts and/or 510 

extratropical SSTA has been addressed over many decades. Early studies considered the linear 511 

response (Hoskins and Karoly 1981; Frankignoul 1985), which predicted a shallow heating 512 

response characterized by a downstream trough with a baroclinic structure. This was argued 513 

against by Palmer and Sun (1985), who found a downstream ridge, with an advection of 514 

temperature anomalies by mean flow acting against anomalous advection of mean temperature 515 

gradients. Later, Peng et al. (1997) showed that the transient eddy response was important in 516 

forming an equivalent barotropic high. More recent observational analyses find a weak low-517 

pressure response east of warm SSTA near the Gulf Stream (Wills et al. 2016) and Kuroshio 518 

(Frankignoul et al. 2011; Wills and Thompson 2018). Deser et al. (2007) demonstrated that the 519 

initial linear, baroclinic response is quickly (within 2 weeks) replaced with the equilibrium 520 

barotropic response with a much broader spatial extent and magnitude (Ferreira and Frankignoul 521 

2005, 2008; Seo et al. 2014). The adjustment time is shorter near WBC regions (Smirnov et al. 522 

2015). This literature is well summarized in existing review papers (Kushnir et al. 2002; Small et 523 

al. 2008; Kwon et al. 2010; Czaja et al. 2019).  524 
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Recent studies also indicated a strong sensitivity to the spatial resolution of the atmospheric 525 

dynamics governing the large-scale circulation response. For example, Smirnov et al. (2015) 526 

show that a low-resolution (1°) model induces a weak response resulting from shallow 527 

anomalous heating balanced by equatorward cold air advection, consistent with the results from 528 

steady linear dynamics. This contrasts with the higher resolution (1/4°) model showing that the 529 

anomalous diabatic heating is balanced by a deep vertical motion mediated by the transient 530 

eddies (Hand et al. 2014; Wills et al. 2016; Lee et al. 2018). The anomalous diabatic heating and 531 

the induced vertical motions maintain the climatological circulation pattern over the WBCs.  532 

 533 

b. Synoptic storms and storm track responses 534 

Storm tracks typically occur in the 30-50° latitude band coincident with the climatological SST 535 

fronts (Figure 4) and are associated with strong and frequent precipitation, particularly via 536 

atmospheric fronts. Midlatitude storm tracks can be primarily defined in two ways (Chang et al. 537 

2002; Hoskins and Hodges 2002): either using distributions of the tracks and intensity of 538 

synoptic cyclones (the Lagrangian view) or as regions of strong variability or co-variability of 539 

winds, geopotential height, temperature, and humidity in the lower to upper troposphere (the 540 

Eulerian perspective). To better elucidate the forcing of near-surface weather by the oceans, 541 

other studies also use the surface-based storm track, defined as the variance of near-surface 542 

meridional winds (Booth et al. 2010, 2017; O’Neill et al. 2017; Small et al. 2019). The concept 543 

of the surface storm track stems from earlier scatterometer measurements illustrating strong 544 

imprints of the free-tropospheric storm tracks in the surface wind fields over the warm WBCs 545 

(Sampe and Xie 2007; Bourassa et al. 2013). The reduced static stability and the enhanced 546 

vertical mixing within the MABL (Figure 1d) synchronize the locations of the surface storm 547 

track with the warm currents (Figure 4). The surface and free-tropospheric storm tracks are, thus, 548 

dynamically coupled via deep moist convection (Czaja and Blunt 2011).  549 

 550 

One possible mechanism of midlatitude oceanic influence on the storm track was suggested by 551 

Hoskins and Valdes (1990), which found that enhanced diabatic heating by surface fluxes over 552 

WBCs supports atmospheric baroclinicity, a vital element in setting the location of the storm 553 

track (Hawcroft et al. 2012; Kaspi and Schneider 2013). Nakamura and Shimpo (2004) and 554 

Nakamura et al. (2004) further argued that SST gradients directly influence low-level air 555 
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temperature gradients via cross-frontal gradients in sensible heat flux (Nakayama et al. 2021). 556 

The baroclinicity is measured as the atmospheric maximum Eady growth rate (Charney 1947; 557 

Eady 1949; Lindzen and Farrell 1980), such that stronger low-tropospheric baroclinicity is 558 

associated with weaker static stability and a stronger meridional air temperature gradient (see 559 

Figure 4 caption). Both conditions are observed over WBCs. Hence, the anchoring effect by 560 

cross-frontal differential heat supply from the ocean is consistent with the formation of a storm 561 

track over the WBC SST fronts (Nonaka et al. 2009; Hotta and Nakamura 2011), while diabatic 562 

heating over the warm portion of the WBC SST fronts to the warm and cold sectors of the 563 

cyclones supports the growth of transient baroclinic waves (Booth et al. 2012; Willison et al. 564 

2013; Hirata and Nonaka 2021; Figure 1b,c). 565 

 566 

 567 
Figure 4: The climatological relationship of the extratropical storm tracks with the SST fields in (a) Kuroshio-568 
Oyashio Extension and Gulf Stream in the Northern Hemisphere and (b) Agulhas Current and the Antarctic 569 
Circumpolar Current systems in the south Indian Ocean. The atmospheric storm track is estimated in (a) as the 570 
time-mean meridional heat transport by atmospheric transient eddies, 𝑣′𝑇′$$$$$ at 850 hPa (low troposphere), where 571 
primes denote the 2-8-day bandpass filtered fields and the over-bar indicates the time-mean, and in (b) as the 572 
atmospheric maximum Eady growth rate, defined as the most unstable baroclinic mode whose growth rate is 573 
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scaled as the magnitude of the baroclinicity vector, |𝜎𝐵𝐼| = 0.31 M 𝑔

𝑁𝜃
N O− 𝜕𝜃

𝜕𝑦
, 𝜕𝜃
𝜕𝑥
O, at 850 hPa, where g is the 574 

gravitational acceleration, N is the buoyancy frequency, and θ is the potential temperature. These storm track 575 
quantities are derived from ERA5. The SST climatology is obtained from the NOAA daily Optimum 576 
Interpolation dataset. The climatologies are calculated from 2010 to 2015.  577 
 578 

A standard method to diagnose the SST forcing mechanism of the storm track is to run a pair of 579 

AGCM simulations, one using observed SSTs (CONTROL), and another using a spatially-580 

smoothed SST field with weaker gradients (SMOOTH), which also alters absolute SST (Figure 581 

5). Alternatively, AGCMs are forced by shifting the latitude of the SST fronts or filtering 582 

mesoscale eddy SSTs (Seo et al. 2017). Such AGCM simulations indicate a strengthening of the 583 

storm track near the Kuroshio-Oyashio Extension (KOE) (Kuwano-Yoshida and Minobe 2017) 584 

and the Gulf Stream (O'Reilly et al. 2017) in CONTROL near the climatological maximum 585 

cyclogenesis (Figure 5). Altered storm activity over the WBC regions influences the intensity of 586 

the coastal storms, and, thereby, inland weather near the Kuroshio (Nakamura et al. 2012; 587 

Hayasaki et al. 2013; Sugimoto et al. 2021), Gulf Stream (Infanti and Kirtman 2019; Hirata et al. 588 

2019; Liu et al. 2020), and the Agulhas Current (Singleton and Reason 2006; Nkwinkwa 589 

Njouodo et al. 2018). 590 

 591 
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 592 
Figure 5: (Left) January observed SST, its difference (CONTROL-SMOOTH), and the difference 593 
(CONTROL-SMOOTH) in storm tracks over the North Pacific Ocean. The thin black contours show 𝑣′𝑇′$$$$$ from 594 
the CONTROL case. Thick contours denote the 95% confidence level. (Right) As in (left) but for over the 595 
North Atlantic. Black contours in (f) denote atmospheric Eady growth rate at 775 hPa. The dashed and solid 596 
blue contours indicate significant differences at the 10 and 5% levels, respectively. Figures adapted from 597 
Kuwano-Yoshida and Minobe (2017) and O’Reilly et al. (2016, 2017). The figure needs permission to 598 
reproduce. 599 
 600 

Recent studies indicate that atmospheric mesoscale phenomena within the storm tracks, such as 601 

atmospheric fronts, directly interact with the WBC fronts. Parfitt and Czaja (2016) used 602 

reanalysis data over the Gulf Stream, and Parfitt et al. (2016) used AGCM simulations over the 603 

KOE to argue that the cross-frontal sensible heat flux gradients across the SST fronts exert 604 

"thermal damping or strengthening" of atmospheric fronts depending on the space-time 605 

alignment between the SST gradients and atmospheric fronts with shared cross-frontal length-606 

scales (Figure 1b-c). The most significant diabatic heating by surface fluxes is concentrated on 607 
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the narrow space-time scales at which the cold sectors of the atmospheric front coincide with the 608 

warm sector of the SST fronts (Figure 1c), significantly enhancing precipitation associated with 609 

the atmospheric fronts and often facilitating explosive cyclogenesis (Hirata and Nonaka 2021 610 

and references therein). 611 

 612 

In contrast, other studies emphasize the limited role of SST fronts on extreme cyclones. AGCM 613 

experiments by Tsopouridis et al. (2021) indicated that the direct impacts of sharp SST fronts on 614 

individual cyclones over the Gulf Stream and KOE are weak, although SST fronts induce 615 

significant indirect responses in large-scale environments in which such storms form. Using an 616 

analytic model, Reeder et al. (2021) showed that diabatic frontogenesis over the WBCs 617 

intensifies atmosphere fronts only when strong and rapidly propagating synoptic systems are not 618 

already in the environment. 619 

 620 

Much uncertainty remains in model simulations and observational analysis regarding the relative 621 

importance of SST gradients causing cross-atmospheric frontal sensible heat flux gradients vs. 622 

absolute SST affecting the large-scale condensational heating over warm currents. Another 623 

critical issue is that since the SST contributions to the precipitation from the warm and cold 624 

sectors of extratropical cyclones differ in terms of magnitude and spatial distribution (i.e., 625 

broader for the warm sectors and more "anchored" to the SST fronts for the cold sectors, e.g., 626 

Vannière et al. 2017), the cold sector contribution might have been dominating the sensitivity of 627 

relatively high-resolution (~50 km) AGCM simulations to SST smoothing. It remains an open 628 

question whether even higher resolution AGCMs might amplify a sensitivity from the dynamics 629 

of the warm sectors, including atmospheric mesoscale instabilities developing on the warm 630 

conveyor belt (Czaja and Blunt 2011; Sheldon et al. 2017). 631 

 632 

c. Near-surface wind convergence and vertical motion over the WBCs 633 

A crucial part of the storm track response to SST is precipitation, which tends to cluster around 634 

the WBCs and is associated with high near-surface wind convergence (NSWC) and substantial 635 

vertical ascent. The climatological NSWC coincides with the ocean fronts and the Laplacians of 636 

SST and SLP, which indicates that the boundary layer process depicted by linear Ekman 637 

dynamics is germane to the observed NSWC and precipitation responses (Feliks et al. 2004; 638 
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Minobe et al. 2008, 2010). However, the unambiguous attribution of NSWC to the steady 639 

Ekman-balanced mass adjustment mechanism remains difficult due to the coexistence of 640 

extratropical storm tracks with the WBC currents, which also induce minima in the time-mean 641 

SLP Laplacian over the SST fronts (O’Neill et al. 2017). 642 

 643 

O'Neill et al. (2015) show from QuikSCAT observations and a regional atmospheric model that 644 

linear boundary layer dynamics cannot explain the daily time-scale occurrence of NSWC since, 645 

on rain-free days, surface divergence dominates even though the SST Laplacian would indicate 646 

convergence (Figure 6). Using an extreme value filter, O'Neill et al. (2017) further show that 647 

NSWC and vertical motion over the Gulf Stream are highly skewed and consist of infrequent yet 648 

extreme surface convergence events and more frequent but weak, divergent events, such that the 649 

median surface flow field is weakly divergent or nearly non-convergent (Figure 6). Parfitt and 650 

Czaja (2016) and Parfitt and Seo (2018) argue that much of the precipitation and NSWC are 651 

associated with atmospheric fronts, given that only a weak near-surface divergence remains 652 

when the contribution from atmospheric fronts is removed (Rousseau et al. 2021). In contrast, 653 

Masunaga et al. (2020a,b) showed that storms and fronts of moderate intensity are significant 654 

contributors to the time-mean convergence observed over the Gulf Stream and KOE. 655 

 656 

Current research emphasizes identifying how and why atmospheric fronts align with and linger 657 

over ocean fronts in all major WBCs and whether there is an additional underlying, steady, 658 

small-scale boundary layer effect. There might exist a distinct temporal dependence of the 659 

NSWC over WBC SSTs, where atmospheric fronts govern its day-to-day variability, while the 660 

pressure adjustment and vertical mixing mechanisms provide lower frequency modulations (e.g., 661 

Brachet et al. 2012; Small et al. 2022).  662 

 663 
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 664 
Figure 6: Maps of the 10-yr-mean QuikSCAT all-weather divergence (a) consisting of all points; (b) after 665 
application of the 2σ temporal extreme-value filter; (c) difference between (a) and (b); and (d) the percentage 666 
of divergence points removed by the 2σ extreme-value filter. The contours in each panel are of the 10-yr-mean 667 
Reynolds SST with a contour interval of 2ºC. From O’Neill et al. (2017). The figure needs permission to 668 
reproduce. 669 
 670 

d. Non-local downstream atmospheric circulation responses 671 

The upstream storm track variability leading to downstream development of the storm track is an 672 

essential characteristic of midlatitude baroclinic waves (Chang 1993). The altered synoptic-scale 673 
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disturbances over the baroclinically unstable western basins (Section 3b) radiate energy 674 

downstream, influencing the growth of a subsequent baroclinic wave toward the eastern basins 675 

(e.g., Chang and Orlanski 1993). The downstream atmospheric circulation also results from the 676 

synoptic eddy-mean flow interactions, where low-frequency atmospheric circulation is coupled 677 

with the transient eddy activity modified over the WBCs (e.g., Haines and Marshall 1987; 678 

Nakamura and Wallace 1990). Here, downstream (or remote, or non-local) refer to the region 679 

immediately east of the SST forcing and the tail-end of the storm track abutting the west coasts 680 

of the continents, as illustrated in Figure 1a. 681 

 682 

Many AGCM studies demonstrate a non-local, downstream response in the storm track to WBC 683 

SST forcing. Using the observational datasets, Wills et al. (2016) and Joyce et al. (2018) 684 

identified significant transient atmospheric circulation responses (storm track and atmospheric 685 

blocking) downstream that lag the SSTA in the Gulf Stream extension by several weeks to 686 

months. The modeling studies by O'Reilly et al. (2016, 2017) showed that a strengthened storm 687 

track over the Gulf Stream leads to the northward shifted atmospheric eddy-driven jet and the 688 

increased European blocking frequency far downstream. Along a similar line, Lee et al. (2018) 689 

suggested that SST biases near the Gulf Stream trigger extended biases in the simulation of deep 690 

convection and downstream circulation via Rossby wave response. 691 

  692 

In the North Pacific, O'Reilly and Czaja (2015) found that baroclinic eddies grow faster when the 693 

KE front is in its stable regime (stronger SST gradients). The local shift in baroclinic wave 694 

activity leads to the early barotropitization of the baroclinic eddies downstream, resulting in 695 

weaker poleward eddy heat flux and increased occurrence of blocking in the eastern Pacific. An 696 

AGCM study by Kuwano-Yoshida and Minobe (2017) also suggested the enhanced storm track 697 

by the KOE SST fronts leads to a northward shifted storm track in the eastern Pacific. Ma et al. 698 

(2015, 2017) showed from AGCM simulations that the transient SSTA associated with the KOE 699 

mesoscale eddies leads to a northward shifted storm track and reduced precipitation in parts of 700 

western North America (Foussard al. 2019b; Liu et al. 2021; Siqueira et al. 2021).  701 

 702 

In the Southern Ocean, Reason (2001) showed that amplified cyclone activity over the warm 703 

Agulhas Current yielded an enhanced storm track in the southeast Indian Ocean. Recent 704 
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aquaplanet AGCM experiments have also demonstrated the critical role of the oceanic fronts in 705 

shaping the structure of the baroclinic annular mode variability (e.g., Sampe et al. 2013; Ogawa 706 

et al. 2016; Nakayama et al. 2021), leading modes of variability of the extratropics (e.g., 707 

Thompson and Wallace 2000). Evidence exists that the oceanic frontal zones also impact the 708 

troposphere-stratosphere interactions (e.g., Hurwitz et al. 2012; Ogawa et al. 2015; Omrani et al. 709 

2014), potentially affecting the entire hemispheric climate patterns. 710 

 711 

e. Climate change  712 

Climate change simulations for the 21st Century have emphasized the critical role of ocean 713 

circulation leading to natural modes of variability such as ENSO and PDO (Seager et al. 2001), 714 

the projected weakening of the Atlantic Meridional Overturning Circulation (AMOC; Weaver et 715 

al. 2012), and the delayed warming of the Southern Ocean (Marshall et al. 2014). These changes 716 

are relevant to the observed and projected intensification and poleward shift of the Kuroshio and 717 

Agulhas, weakening of the Gulf Stream, and changes in the frontal systems of the Antarctic 718 

Circumpolar Current (ACC) (e.g., Wu et al. 2012; Yang et al. 2016; Sen Gupta et al. 2021). 719 

 720 

The IPCC report (IPCC, 2022) indicates that during the 21st Century, the North Pacific storm 721 

track will most likely shift poleward, the North Atlantic storm track is unlikely to have a simple 722 

poleward shift, and the Southern Hemisphere storm track will likely shift poleward. 723 

Understanding these regional differences in projected changes in midlatitude storm tracks and 724 

precipitation and their association with the predicted WBC changes have been the primary goals 725 

of high-resolution CGCM studies, especially those that contrast the CGCMs with the eddy-rich 726 

ocean (typically 0.1º resolution) to those with the eddy-parameterized ocean (0.5-1º). These 727 

studies with increased ocean model resolution to mitigate the known biases in representing the 728 

WBC dynamics and separation show distinct responses in SSTs and storm tracks in the WBC 729 

regions to anthropogenic climate change. 730 

 731 

In these eddy-rich simulations, the KOE front shifted equatorward, contrary to projections by the 732 

eddy-parameterized IPCC-class CGCMs, which likely reflects the large natural variability in the 733 

North Pacific (Taguchi et al. 2007; Seager and Simpson 2016). In the North Atlantic, the Gulf 734 

Stream separation tends to be too far north in lower resolution models, an issue common to other 735 
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WBCs, but is improved in eddy-rich models. This makes it possible for the separation to move 736 

northwards as a response to AMOC weakening in eddy-rich models (Gervais et al. 2018; 737 

Moreno-Chamarro et al. 2021; Grist et al. 2021), leading to a significant projected ocean 738 

warming near the US eastern coastline (Figure 7; Karmalkar and Horton 2021). In the Southern 739 

Ocean, CMIP5-based climate change simulations indicate delayed warming, often attributed to 740 

stratospheric ozone depletion (McLandress et al. 2011; Polvani et al. 2011). However, the recent 741 

satellite observations and eddy-rich CGCMs simulations indicate a ubiquitous cooling trend 742 

(1961-2005) poleward of the ACC due to the effects of resolved ocean eddies (Bilgen and 743 

Kirtman 2020). Analysis of eddy-rich ocean simulations also indicates warmer and stronger 744 

Southern Hemisphere WBCs, suggesting that resolved ocean eddies play a critical role in long-745 

term SST changes.  746 

 747 

 748 
Figure 7: (a-c) 2031–2050 minus 1951–1970 differences simulated by the HadGEM3-GC3.1, with 25 km 749 
atmospheric resolution coupled to 1/4° ocean (eddy-permitting, HM) and 1/12° ocean (eddy-rich, HH): SST 750 
(°C) (a) HH and (b) HM, precipitation (ms-1) (d) HH and (e) HM; surface storm track (ms-1) (g) HH and (h) 751 
HM. Panels (c, f, i) show the difference between the HH future change and the HM change. The black lines 752 
denote the 95% significance. Gray lines in (c,f,i) denote the 90% significance. From Grist et al. (2021). The 753 
figure needs permission to reproduce. 754 
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The reorganization of the oceanic frontal zone and its associated eddy field modulates the 755 

atmospheric low-level baroclinicity and the strength and location of the diabatic heating source 756 

for the atmosphere. It is clear from this and other studies (Woollings et al. 2012; Winton et al. 757 

2013; Keil et al. 2020) that such features would not occur without ocean circulation changes. 758 

However, the exact pattern of large-scale SST change is highly dependent on the ocean model 759 

and its resolution (Saba et al. 2016; Menary et al. 2018; Alexander et al. 2020), which also 760 

affects the projected WBC responses to climate change (Jackson et al. 2020). Climate projections 761 

with eddy-rich oceans have typically been performed with a small number of realizations and for 762 

short durations due to high computational costs (e.g., Haarsma et al. 2016). Currently, high-763 

resolution coupled climate modeling projects are underway with much longer integration and 764 

multi-ensembles (e.g., Chang et al. 2020; Wengel et al. 2021). These efforts will enable a robust 765 

assessment of the forced responses in WBC and ocean circulation from natural variability in 766 

response to projected changes in the large-scale climate. 767 

 768 

 769 

4. Feedback of atmospheric responses onto the ocean  770 

The new insights gained from the studies discussed in Section 3 have also led to improved 771 

process understanding and notable revisions of theories of ocean circulation. This section 772 

discusses current knowledge of ocean feedback mechanisms, including feedback impacts on 773 

ocean biogeochemical cycles, and theories of ocean circulation and model parameterizations to 774 

account for eddy-atmosphere interaction. The processes covered in this section correspond 775 

mainly to Figures 1e,f. 776 

 777 

a. Feedback on ocean circulation 778 

For simplicity, we consider two categories of oceanic mesoscale effects on air-sea fluxes: SST 779 

impacts (thermal) described in Section 2b1 and surface current impacts (mechanical) in Section 780 

2b2. The thermal feedback (TFB) results from kinematic and thermodynamic responses in the 781 

MABL to mesoscale SSTs, modifying the wind stress and heat fluxes. The current feedback 782 

(CFB) represents the frictional processes by which the surface ocean current alters the wind 783 

stress, near-surface wind, and turbulent heat fluxes. This subsection focuses on the respective 784 

feedback impacts of the air-sea fluxes on ocean circulation. 785 
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1) Thermal feedback (TFB) effect 786 

Observed near-surface wind stress responses to mesoscale processes by Chelton et al. (2004) 787 

were interpreted based mainly on the TFB effect. Vecchi et al. (2004) and Chelton et al. (2007) 788 

hypothesized that the wind stress curl responses to SST fronts exert a vital feedback mechanism 789 

driving the evolution of SST fronts via resulting anomalous Ekman pumping. Spall (2007b) 790 

considered the impacts of SST-induced Ekman pumping on baroclinic instability in the ocean in 791 

the modified linear theory by Eady (1949), showing that the SST-induced Ekman pumping 792 

adjusts the growth rate and wavelength of the most unstable waves, especially the low-latitude 793 

flows with strong stratification. Hogg et al. (2009) extended SST-induced Ekman pumping to an 794 

idealized double-gyre circulation in mid-latitudes, showing that it destabilizes the eastward jet 795 

with the enhanced cross-gyre potential vorticity fluxes, stabilizing the double gyre circulation by 796 

30-40%. 797 

 798 

Mesoscale SSTAs are damped by induced turbulent heat fluxes (THF), resulting in a negative 799 

SST-THF correlation at oceanic mesoscales. Over the KOE, Ma et al. (2016) examined this 800 

mesoscale SSTA damping in the context of the eddy potential energy (EPE) budget and the 801 

Lorenz energy cycle. Compared to the eddy-filtered coupled model simulation (using a 1000 km-802 

by-1000 km boxcar filter), the eddy-unfiltered simulations showed a significant increase (>70%) 803 

in diabatic EPE dissipation, leading to a decrease in eddy kinetic energy (EKE) by 20-40%, most 804 

strongly at wavelengths shorter than 100 km (Figure 1d). Other studies find that TFB has a weak 805 

impact on EKE (Seo et al. 2016; Seo 2017). It is possible that a large filter cutoff, as used in Ma 806 

et al. (2016), overestimates EKE damping and may also smooth large-scale meridional SST 807 

gradients, altering the large-scale wind curl and the mean circulation. Bishop et al. (2020) 808 

evaluated the EPE damping over the global oceans using eddy-resolving climate model 809 

simulations to find that the diabatic EPE damping was systematically stronger over warm-core 810 

eddies (Figure 1c,e). Other studies point out that the efficacy of the negative SST-THF 811 

correlation in the maintenance of the mesoscale SSTA and their gradients depends on the 812 

distribution of the mixed-layer depth, which modulates the effective heat capacity, vertical eddy 813 

heat transport, and hence the sensitivity of the SST to the heat flux anomaly (e.g., Tozuka et al. 814 

2017; 2018; Jing et al. 2020). 815 

       816 
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2) Current feedback (CFB) effect 817 

Although weaker than surface winds, surface currents modify surface stress directly by altering 818 

wind speed (Bye 1986). By modulating the stress, the CFB exerts a "bottom-up" effect on the 819 

wind, where a positive current anomaly causes a positive wind anomaly via a negative stress 820 

anomaly (Renault et al. 2016a; 2019a). The CFB effect has initially focused on impact on wind 821 

stress. Using satellite and in situ data, Kelly et al. (2001) showed that CFB reduces the median 822 

wind stress from 20% to 50% near the equator, and Chelton et al. (2004) observed a clear imprint 823 

of the Gulf Stream flow on the surface stress and the curl. 824 

 825 

 826 
Figure 8: (a) Geostrophic eddy wind work (10-5 m3s-3) estimated from the EC-Earth global coupled simulation 827 
(15 km atmosphere coupling 1/12° ocean) with current feedback (CFB). The negative values indicate a 828 
momentum transfer from geostrophic mesoscale currents to the atmosphere. This sink of energy is the primary 829 
driver of the damping of EKE illustrated in (b), as the difference of EKE (m2 s-2) between the simulations 830 
without CFB and with CFB. The positive values indicate the relative increase in EKE in the absence of CFB 831 
due to the transfer of the momentum to the atmosphere. The geostrophic wind work and EKE are both 832 
estimated over 30 years. Details about the coupled model and experiments can be found in Renault et al. 833 
(2019c). 834 
 835 
 Several studies have highlighted the role of CFB as a "top drag" (Dewar and Flierl 1987), acting 836 

on the oceanic circulation over a wide range of space-time scales. At the large-scale where the 837 

currents tend to flow downwind (Figure 1e), CFB reduces the mean energy input from the 838 

atmosphere to the ocean and slows down the mean circulation (Pacanowski et al. 1997). By 839 

weakening net energy input to the ocean, CFB triggers a host of changes in eddy-mean flow 840 

interactions and the inverse cascade of energy, weakening baroclinic and barotropic instabilities 841 

and mesoscale activity (Renault et al. 2017b, 2019a; Figure 8). When the wind and current are in 842 

the opposite sense, the CFB serves as a conduit of energy from the ocean to the atmosphere, 843 

which can be seen from satellite data as negative mean and eddy wind work (Figure 8a; Scott 844 

and Xu 2009; Renault et al. 2016a,b, 2017a). Numerous studies have demonstrated a strong EKE 845 
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damping effect of ~30% (See references in Jullien et al. 2020; Figure 8b). CFB also induces 846 

additional Ekman pumping that weakens an eddy (Gaube et al. 2015) and influences the upper-847 

ocean stratification and SST (Seo et al. 2019; Song et al. 2020).  848 

 849 

Recent studies also have emphasized the CFB impact on near-surface winds (Renault et al. 850 

2016a, 2017a, 2019a). Over the shelf oceans where the current speed at tidal frequencies well 851 

exceeds the wind speed, tidal currents induce tidal winds, with an amplitude of about one-third 852 

of the underlying tidal currents (Renault and Marchesiello 2022). Since the wind curl is more 853 

strongly impacted by current gradients (Shi and Bourassa 2019), the consideration of wind-854 

current coupling at tidal frequency might be necessary for the simulation and prediction of 855 

surface winds and the MABL momentum EKE balances in the offshore environments. 856 

 857 

There are several open questions. First, little is known about CFB at the submesoscale. For the 858 

US West Coast, Renault et al. (2018) highlighted a submesoscale dual effect of CFB: it damps 859 

submesoscale eddies but also catalyzes submesoscale current generation. By affecting mixing, 860 

stratification, and eddy variability, Second, CFB modulates biogeochemical variability 861 

(McGillicuddy et al. 2007), yet the detailed mechanisms behind the biogeochemical impacts are 862 

not fully understood, although the impact depends highly on background stratification (e.g., 863 

Kwak et al. 2021). Finally, since CFB and TFB coexist where mesoscale currents are strong 864 

(Song et al. 2006; Seo et al. 2007; Takatama and Schneider 2017; Renault et al. 2019b; Shi and 865 

Bourassa 2019), CFB likely influences large-scale boundary-layer moisture, clouds, 866 

precipitation, and atmospheric circulation via rectified effects. However, this downstream 867 

influence is only beginning to be explored (e.g., Seo et al. 2021).  868 

 869 

b. Wave-current interactions near ocean fronts 870 

While sea state is a salient aspect of air-sea fluxes (Fairall et al. 1996; Cavaleri et al. 2012; Edson 871 

et al. 2013), there are other aspects related to surface wave interactions with (sub)mesoscale 872 

currents potentially important for small-scale air-sea interaction (Section 6c). For example, it has 873 

long been known that sheared currents affect the propagation of surface wave rays (Villas Bôas 874 

and Young 2020). In the open ocean, the spatial gradients in mesoscale surface currents 875 

dominate the variability of significant wave height, leading to the refraction of waves near steep 876 
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vorticity gradients (Ardhuin et al. 2017; Villas Bôas et al. 2020). Similarly, the underpinnings of 877 

the Craik-Leibovich theory of Langmuir turbulence specify that rectification of wave-vorticity 878 

interactions in the upper ocean leads to Stokes forces, which can cause substantial wave effects 879 

on currents (Leibovich et al. 1983; Lane et al. 2007). The LES models that include vortex forces 880 

and regional models that include the wave refraction by currents (Romero et al. 2020) illustrate 881 

the frontal adjustment and frontogenesis triggered or enhanced by surface wave interactions 882 

(McWilliams and Fox-Kemper 2013; Suzuki et al. 2016; Sullivan and McWilliams 2019). 883 

Examples are provided in Figure 9 (upper panel), where a submesoscale density front in the 884 

downwind and down-Stokes direction interacts with Langmuir turbulence. Strong overturning 885 

circulation (downwelling) sharpens the front and strengthens the along-front jet. Classic balances 886 

are altered by waves to yield the wavy Ekman balance (McWilliams et al. 2012), the wavy 887 

geostrophic balance (McWilliams and Fox-Kemper 2013; Figure 9, lower panel), and the 888 

baroclinic and symmetric instabilities affected by waves (Haney et al. 2015). 889 

 890 

 891 
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Figure 9: (Upper panel) Examples of a front interacting with Langmuir turbulence (box centered on this 892 
feature), which is aligned in the downwind and down-Stokes direction. (a) Vertical velocity (ms-1) at z=-893 
11.25m shows ubiquitous Langmuir cells, but also a long, coherent (downwelling) overturning circulation 894 
along the front due to frontogenesis and accelerated by the Stokes shear force. (b) Along-front (x-direction) 895 
velocity anomaly (with respect to the horizontal mean, ms-1) at z=-11.25 m shows the frontal flow. (c)  896 
Buoyancy anomaly (with respect to the horizontal mean, ms-2) at z=-11.25 shows the front characterized by a 897 
sharp transition in buoyancy (or temperature). Adapted from Suzuki et al. (2016). (d) Estimated ratio of ε 898 
(strength of Stokes drift-induced vertical acceleration vs. buoyancy, an indicator of wave contributions added 899 
to the traditional hydrostatic balance) to Rossby number (indicating geostrophic balance). This ratio implies 900 
the deviation from the hydrostatic balance due to waves compared to the geostrophic balance due to advection. 901 
This estimate is based on the de Boyer-Montegut et al. (2004) mixed layer depth climatology (h) and a global 902 
simulation of WaveWatch3 and AVISO geostrophic velocity. Figures redrawn from McWilliams and Fox-903 
Kemper (2013). 904 
 905 

c. Physics of ocean mesoscale processes and air-sea interaction   906 

Traditionally, mesoscale and submesoscale eddy parameterizations have been deterministic and 907 

focused only on effects on the mean and variance of tracers (Gent and McWilliams 1990; Fox-908 

Kemper et al. 2011), while neglecting rectified effects on air-sea coupling. However, in 909 

simulations where some eddies are resolved, deterministic closures do not stimulate a resolved 910 

eddying response or backscatter (e.g., Bachman et al. 2020). In response, there is a growing 911 

desire to implement stochastic parameterizations of the eddy transport into non-eddy-resolving 912 

models, for example, via uncertainty in location (Memin 2014), transport (Drivas et al. 2020), 913 

closure (Nadiga 2008; Jansen and Held 2014; Zanna et al. 2017; Bachman et al. 2020), or 914 

equation of state (Brankart 2013). These efforts should include stochastic parameterizations of 915 

the eddy-driven air-sea coupling (Ma et al. 2016; Bishop et al. 2020; Jing et al. 2020). As 916 

stratification and rotation parameters vary globally, building scale awareness into 917 

parameterizations is also crucial (Hallberg 2013; Dong et al. 2020, 2021). Changing the relative 918 

orientation of atmospheric winds and oceanic fronts leads to qualitatively different results (e.g., 919 

enhancement vs. suppression of submesoscales, Figure 1f), implying that directional subgrid 920 

information will be necessary to consider (e.g., D’Asaro et al. 2011; Suzuki et al. 2016; 921 

McWilliams 2016). Observed air-sea fluxes are highly variable, indicating a response to high 922 

spatio-temporal variability (Yu 2019), scale dependence (Bishop et al. 2017, 2020), and sea state 923 

dependence (Kudryavtsev et al. 2014), thus offering the potential for stochastic implementation. 924 

While idealized studies have begun to develop a process-level understanding (Sullivan et al. 925 

2020, 2021), no realistic model implementation of stochastic air-sea fluxes seems to have been 926 

evaluated carefully.  927 
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d. Impacts on primary productivity 928 

Mesoscale air-sea interaction can also influence biogeochemical environments and primary 929 

productivity (e.g., McGillicuddy 2016). Satellite observations show that the wind stress 930 

responses to mesoscale SST and currents introduce perturbation Ekman upwelling and 931 

downwelling (e.g., Gaube et al. 2015), leading to dramatic mid-ocean mesoscale plankton 932 

blooms, such as those observed in the nutrient-replete subtropics (e.g., McGillicuddy et al. 933 

2007). Additionally, eddy-induced modifications of wind stress impact vertical mixing in the 934 

upper oceans. Eddy effects on mixed-layer depths are asymmetric between anticyclones and 935 

cyclones (e.g., Dufois et al. 2017; Hausmann et al. 2017). However, to what extent this 936 

asymmetry stems from the mesoscale modulations of surface wind stress has yet to be 937 

determined. Considering the prevalence and persistence of nonlinear mesoscale eddies in the 938 

global oceans (Chelton et al. 2011a,b), the relevance of mesoscale eddy impacts on primary 939 

productivity via eddy-wind interaction needs robust quantification. 940 

 941 

 942 

5. State of observational capabilities  943 

Observing mesoscale air-sea interaction processes is challenging since multiple oceanic and 944 

atmospheric parameters must be measured with high accuracy and spatio-temporal resolution. 945 

The past decade has seen the emergence of many novel in situ and remote sensing platforms that 946 

increasingly better capture mesoscale and smaller processes with high accuracy and resolution 947 

(e.g., Chapter 9 of Kessler et al. 2019). These novel observational technologies are expected to 948 

provide opportunities for multi-platform, coordinated measurements for air-sea interaction 949 

studies (e.g., Bony et al. 2017; Wang et al. 2018). 950 

 951 

a. In situ observations 952 

Oceanographic moorings can be equipped with meteorological instruments, including direct 953 

covariance flux systems and bulk meteorological sensors, to provide directly measured and bulk-954 

estimated air-sea fluxes, respectively. An example system is shown in Figure 10 from the second 955 

Salinity Processes in the Upper-ocean Regional Study (SPURS-2) experiment, which computed 956 

and telemetered in near-real-time the motion-corrected surface wind stress and sensible and 957 

latent heat fluxes from a surface mooring for the first time (Clayson et al. 2019). There is overall 958 
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a good qualitative agreement between the measured and estimated air-sea fluxes (Bigorre et al. 959 

2013). However, the bulk formula method underestimates the momentum flux and overestimates 960 

the buoyancy flux under high wind conditions. These biases are categorically related to 961 

deficiencies in formulations for the drag and heat transfer coefficients. Edson et al. (2013) 962 

revised the formulations for drag coefficient in COARE 3.5 to alleviate the low drag coefficient 963 

bias and proposed a new formula for heat transfer coefficients. Ayet and Chapron (2022) 964 

reviewed potential wave-atmospheric turbulence coupling mechanisms that allow for further 965 

refinements. Recently, buoy arrays have been deployed as part of the Ocean Observatories 966 

Initiative (OOI, Trowbridge et al. 2019) and operated for years on both coasts. These in situ data 967 

and the simultaneous measurements of surface meteorology and wave conditions are crucial to 968 

reducing the uncertainty in air-sea flux estimates in modern bulk formulas (Edson et al. 2013; 969 

Cronin et al. 2019; Villas-Boas et al. 2019).  970 

 971 

 972 
Figure 10: (left) The SPURS-2 central mooring with instrumentation at the upper right includes a sonic 973 
anemometer, infrared hygrometer, and sensors to remove buoy motion. The sensor package can directly 974 
measure the surface stress, sensible heat, and latent heat fluxes (See Clayson et al. 2019 for more details on 975 
instrumentations). (right) Time series of these fluxes showing bulk estimates in red and direct covariance (DC) 976 
fluxes in black. A good qualitative agreement is seen between the bulk and DC estimates, with the most 977 
significant discrepancies visible in the sensible heat flux (Bigorre et al. 2013). The coincident measurements of 978 
direct flux and bulk meteorology from SPURS-2 and prior field campaigns (e.g., CBLAST, DYNAMO, 979 
CLIMODE, etc.) are being used for improving the bulk flux algorithm for turbulent heat flux transfer 980 
coefficients. Photo by James B. Edson (WHOI). 981 
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Autonomous surface vehicles (ASVs) are piloted wave- or wind-propelled surface platforms that 982 

can be instrumented with ocean, atmospheric, and biogeochemical sensors. Widely-used ASVs 983 

include Saildrones (Meinig et al. 2019) and Wave Gliders (Thomson and Girton 2017), which 984 

have long-endurance (~6 months) and can sample in remote locations and be piloted across 985 

fronts. Using numerous instruments can mitigate issues with cross-frontal sampling and thus 986 

capture mesoscale and smaller variations in air-sea interaction (Quinn et al. 2021; Stevens et al. 987 

2021). 988 

 989 

Drifting platforms can be instrumented with various sensors that capture air-sea interaction. The 990 

Global Drifter Program, a global network of surface drifters that typically measure currents, SST, 991 

and barometric pressure, has contributed to understanding global mesoscale circulation 992 

(Laurindo et al. 2017; Centurioni et al. 2019). Drifting spar buoys (Graber et al. 2000; Edson et 993 

al. 2013) have been measuring surface fluxes in situ for decades. In recent years, sophisticated 994 

low-profile Lagrangian platforms have been developed, such as SWIFTs (Thomson 2012), to 995 

measure surface currents, waves, and near-surface ocean turbulence over various wave 996 

conditions. Benefits of drifters include relatively low cost and Lagrangian sampling. However, 997 

they tend to converge at fronts; therefore, multiple drifters are necessary to characterize cross-998 

frontal structure (D'Asaro et al. 2018).  999 

 1000 

Recent advancements in biologging technology may help facilitate autonomous measurements 1001 

and real-time monitoring of essential ocean variables that may be important for air-1002 

sea interaction studies (Harcourt et al. 2019). As the biologging data can track mesoscale eddies 1003 

and fronts in greater detail (Charrassin et al. 2008; Miyazawa et al. 2019) and can be assimilated 1004 

into operational models (Yoda et al. 2014; Miyazawa et al. 2015), the application of animal-1005 

borne sensors has the potential to advance predictive capabilities of extratropical cyclones that 1006 

strongly interact with the oceans (Section 3b). 1007 

 1008 

Aircraft measurements are crucial for air-sea interaction studies. The platform's mobility is 1009 

advantageous because of its ability to obtain in situ measurements of the horizontal and vertical 1010 

variability in and above the MABL in a short time. With carefully designed flight patterns, it can 1011 

also derive mesoscale forcing to the boundary layer using the velocity field measured at flight 1012 
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level (Lenschow et al. 1999; Stevens et al. 2003). In the past 20 years, air-deployable sensor 1013 

packages such as GPS dropsondes, AXBT, AXCTD, and instrumented floats have further 1014 

expanded the sampling capability to depict the entire column of the atmosphere and the upper 1015 

ocean, particularly when low-level flights are not feasible (Doyle et al. 2017). In recent years, 1016 

airborne measurements have been extended to 10 m above the sea surface using a controlled 1017 

towed vehicle (Wang et al. 2018). This new capability is significant to air-sea interaction studies, 1018 

particularly surface flux parameterization. 1019 

      1020 

b. Remote sensing 1021 

Emerging remote sensing platforms, including satellite, ground-based, or airborne 1022 

measurements, present promising means to estimate air-sea fluxes at ocean mesoscale and 1023 

smaller. Scatterometer and microwave measurements provide collocated global views of ocean 1024 

vector winds and SST under all wind conditions at daily scales. However, considerable 1025 

uncertainty exists under extreme conditions due to inconsistent in situ reference wind speeds 1026 

from dropsondes and moored buoys to calibrate satellite winds (e.g., Polverari et al. 2021). This 1027 

also implies uncertainties in modeling ocean drag and air-sea interaction. The virtual 1028 

constellation of scatterometers (Stoffelen et al. 2019) provides good temporal coverage of the 1029 

extremes, with now 7 scatterometers in space with revisits globally within 30 minutes or a few 1030 

hours (Gade and Stoffelen 2019). Future satellite observations will need to resolve synoptic 1031 

variability under strong wind and rain and increase the resolution of the vertical profiles within 1032 

the MABL to better estimate the relationship between the surface flux and flux profiles.      1033 

 1034 

For momentum fluxes, key variables are surface winds, currents, and waves. In coastal regions, 1035 

high-frequency radar systems provide surface currents at O(1) km resolution (Kim 2010; Paduan 1036 

and Washburn 2013; Kirincich et al. 2019), which can be used to infer surface wave conditions 1037 

and wind stress (e.g., Saviano et al. 2021). The airborne DopplerScatt system simultaneously 1038 

captures surface wind stress, waves, and currents (Wineteer et al. 2020) and is central to the Sub-1039 

Mesoscale Ocean Dynamics Experiment (S-MODE; Farrar et al. 2020). Similar concepts for new 1040 

satellite observations have been proposed (see Villas Bôas et al. 2019) and are currently in 1041 

various development stages (e.g., Bourassa et al. 2016; López-Dekker et al. 2019; 1042 

Gommenginger et al. 2019; Wineteer et al. 2020). Surface waves are crucial for accurate 1043 
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estimates of momentum flux; new satellite missions such as CFOSAT (Chinese-French 1044 

Oceanography Satellite) simultaneously measuring waves and winds (Ardhuin et al. 2019) are 1045 

expected to improve the accuracy of the wind-speed and wave-based formulations in the 1046 

advanced bulk formula for air-sea flux. Satellite surface measurements of stress-equivalent winds 1047 

more closely respond to stress than wind (e.g., de Kloe et al. 2017). Given the persistent large-1048 

scale and mesoscale errors in NWP reanalyses (Belmonte and Stoffelen 2019; Trindade et al. 1049 

2020), these new satellite observations collocated with in situ measurements of surface stress 1050 

will be valuable for understanding stress-related air-sea coupling and improving ocean modeling 1051 

and marine forecasting (Bourassa et al. 2019). 1052 

 1053 

In contrast to momentum flux, a critical gap remains in the current satellite remote sensing 1054 

capability to provide accurate global estimates of turbulent heat and moisture fluxes. Current 1055 

satellite remote sensing systems rely on bulk parameterizations to estimate net heat and gas 1056 

fluxes (Cronin et al. 2019). Mesoscale air-sea interaction studies will benefit significantly from a 1057 

satellite mission that measures co-located, small-scale state variables, including near-surface 1058 

atmospheric temperature and humidity, SST, and wind speed, that allow accurate estimates of the 1059 

turbulent heat fluxes (e.g., Gentemann et al. 2020). This will also help validate the numerical 1060 

models to lower the uncertainty in air-sea heat flux and improve related predictions.  1061 

 1062 

 1063 

6. Discussion and synthesis 1064 

Since the first global-scale surveys of the mesoscale air-sea interactions by Chelton et al. (2004) 1065 

and Xie (2004), our theoretical understanding and observational and modeling capabilities in the 1066 

past two decades have advanced significantly, leading to a substantial body of literature related 1067 

to ocean mesoscale air-sea interaction. Our current scientific understanding indicates that 1068 

mesoscale eddies perturb the MABL via surface flux anomalies, leading to dynamic and 1069 

thermodynamic adjustments (Section 2; Figure 1d). The MABL response is communicated to the 1070 

free troposphere, especially over WBCs (Figure 1b,c), influencing downstream development of 1071 

weather and short-term climate events (Section 3; Figure 1a,b). The MABL response feeds back 1072 

to the ocean circulation, modifying WBC dynamics, air-sea gas exchanges, and nutrient 1073 

distribution (Section 4; Figure 1e,f). This new knowledge has transformed our classical 1074 
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understanding of physical processes, leading to notable revisions of oceanic and atmospheric 1075 

circulation theories that incorporate the coupled effects of ocean mesoscale processes, wave, and 1076 

biogeochemical processes (Section 4). Our observing capability has advanced rapidly to 1077 

characterize mesoscale air-sea interaction (Section 5). However, numerous challenges and open 1078 

questions remain. The remainder of the chapter will focus on physical and biological aspects of 1079 

modeling, observational, and diagnostic approaches that require further research in the coming 1080 

years.  1081 

      1082 

a. Attribution of near-surface wind convergence 1083 

While the WBC SST impact on the MABL dynamics is increasingly better understood, there are 1084 

some critical remaining questions regarding the essential role of WBC SST forcing on the time-1085 

mean atmospheric state. The ongoing debates about the origin of the near-surface wind 1086 

convergence (NSWC) and the maximum precipitation over WBCs are particularly relevant as 1087 

they entail important implications pertinent to various aspects of the topics discussed in this 1088 

article. That is, assessing whether the steady linear boundary layer dynamics account for the 1089 

time-mean NSWC and vertical motion requires a detailed understanding of the modulation of 1090 

boundary layer ageostrophic circulation by SST (Section 2; Figure 1d). On the other hand, the 1091 

demonstrated impacts of storms and atmospheric fronts on the NSWC require a careful 1092 

examination of extratropical cyclogenesis modulated by the diabatic forcing over the ocean 1093 

fronts (Section 3; Figure 1b-c). Overall, any approach to quantifying the nature of the 1094 

relationships between NSWC and SST will need to robustly separate the small magnitude 1095 

convergence predicted by linear boundary layer theory from the large anomalous convergence 1096 

induced by storm systems that are several orders of magnitude greater.  1097 

 1098 

b. Robust diagnostic framework 1099 

The debate about the role of SST fronts in the NSWC arises partly due to the lack of a robust 1100 

process-based diagnostics and analytic framework to interpret the observed convergence 1101 

patterns. The existing analytical model of Schneider and Qiu (2015) discussed in Section 2c 1102 

offers a complete account of the role of boundary layer dynamics over the SST fronts, providing 1103 

the two limiting cases of wind response to SST dependent on background wind speed. The model 1104 

also suggests an extension of the diagnostic framework from the widely used coupling 1105 
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coefficients to lagged regression, impulse response, or corresponding spectral transfer functions. 1106 

Yet, the model assumes a quasi-steady state and does not account for the stochastic and moist 1107 

processes associated with the storm tracks and their synoptic-scale influence on NSWC. A 1108 

critical path forward is to incorporate the time-dependent and moist processes related to 1109 

extratropical storms along SST frontal zones and the local SST-induced boundary layer response 1110 

in a single analytical framework. Given the coexistence of the SST and current feedback effects 1111 

along the frontal zones, any future development of diagnostic frameworks will also have to 1112 

consider the mechanical coupling effects simultaneously along with the thermal effects (e.g., 1113 

Takatama and Schneider 2017; Seo 2017; Renault et al. 2019a).  1114 

 1115 

c. Large-scale impacts in climate models 1116 

Numerous studies have demonstrated WBC impacts on downstream atmospheric circulation 1117 

(Figure 1e). Some studies argue that the sharpness of WBC fronts shifts the storm track and jet 1118 

stream, influencing the blocking frequency in Europe and Northeastern Pacific (e.g., Kuwano-1119 

Yoshida and Minobe 2017; O’Reilly et al. 2015, 2016, 2017; Piazza et al. 2016). Other studies 1120 

find that meridional shifts of WBC fronts alter the atmospheric transient eddy heat flux 1121 

downstream (e.g., Frankignoul et al. 2011; Kwon and Joyce 2013; Seo et al. 2017; Joyce et al. 1122 

2018). Warm-core eddies near the KOE act as significant oceanic sources of moisture and heat 1123 

for large-scale circulation, altering downstream precipitation patterns (Ma et al. 2015, 2016; Liu 1124 

et al. 2021). The importance of the seasonal background state in the atmosphere has also been 1125 

recognized as it shapes the atmospheric response to SSTA (e.g., Taguchi et al. 2009; Huang et al. 1126 

2020). 1127 

  1128 

However, some aspects of the far-field circulation response and its statistical significance remain 1129 

elusive (Kushnir et al. 2002; Kwon et al. 2010; Czaja et al. 2019). Deriving a robust conclusion 1130 

on downstream influences is particularly challenging difficult because the studies adopt different 1131 

methods to define WBC SST impacts, leading to distinct amplitudes/patterns of SST 1132 

perturbations and atmospheric responses. This uncertainty is in addition to differences in model 1133 

climatologies. To date, the relative impacts of sharpness of SST gradient, its meridional shift, 1134 

and activity of warm or cold-core eddies remain unquantified (Parfitt and Seo 2018). The 1135 
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importance of the coordinated modeling and diagnostic approaches regarding this specific point 1136 

is emphasized in Section 6d. 1137 

 1138 

d. Coordinated climate modeling and improved physical parameterizations 1139 

Significant progress can be made in understanding results and uncertainties in climate models of 1140 

different complexity and resolutions via coordinated modeling experiments with resolutions at or 1141 

beyond the ocean mesoscale and shared sets of diagnostics. The CMIP6 HighResMIP protocol 1142 

(Haarsma et al. 2016) and PRIMAVERA project (Bellucci et al. 2021) well represent the 1143 

community's interests in this direction. Analyses from a subset of these models reveal significant 1144 

model resolution sensitivity (especially in the oceans) of the simulated air-sea interaction and 1145 

climate regimes in the extratropics (e.g., Jullien et al. 2020; Moreton et al. 2021). Further 1146 

advances in model resolution, for example, DYAMOND (Stevens et al. 2019) and the planned 1147 

HighResMIP2, together with programs such as OASIS (Observing Air-Sea Interaction Strategy, 1148 

https://airseaobs.org; Cronin et al. 2022) that aims to bring observations and models closer 1149 

together, will build on these previous efforts and provide further insights into the fidelity of 1150 

modeled mesoscale air-sea interactions. Furthermore, in the ocean and coupled models where the 1151 

ocean eddies are not fully or only partially resolved, their rectified effects on the air-sea heat, 1152 

momentum, and tracer fluxes are not currently parameterized. Various stochastic representations 1153 

of eddy transports are being tested and implemented (Section 4c), which can potentially address 1154 

this issue of low-frequency rectification effects by eddies on large-scale climate via air-sea 1155 

interaction. (e.g., Siqueira and Kirtman 2016). 1156 

 1157 

e. Air-sea interaction mediated by ocean submesoscale and sea state 1158 

The ocean submesoscale processes with length-scales smaller than ~10 km are essential for the 1159 

ocean energy cycle (Lorenz 1960), global heat balance (Su et al. 2018), and marine 1160 

biogeochemistry and ecosystems (Omand et al. 2015; Lévy et al. 2018). While the dynamics of 1161 

the submesoscale ocean instabilities are becoming better understood (e.g., Fox-Kemper et al. 1162 

2008; D’Asaro et al. 2011), their direct impact on the MABL and heat and carbon uptake by the 1163 

oceans (e.g., Johnson et al. 2016; Bachman et al. 2017; du Plessis et al. 2019) remain poorly 1164 

understood. Thus far, only a few satellite-based studies provide direct observational evidence of 1165 

relative wind stress response to submesoscale SST fronts (e.g., Beal et al. 1997; Xie et al. 2010; 1166 
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Gaube et al. 2019; Ayet et al. 2021), although prior in situ observational studies have long 1167 

documented such interactions in localized regions (e.g., Sweet et al. 1981; Friehe et al. 1991; 1168 

Mahrt et al. 2004). While results from high-resolution numerical simulations (e.g., LES) indicate 1169 

submesoscale SST-driven MABL dynamics (Skyllingstad et al. 2007; Lambaert et al. 2013; 1170 

Wenegrat and Arthur 2018; Lac et al. 2018; Sullivan et al. 2020, 2021), they also recognize the 1171 

importance of advection and convective organization in characterizing the nonlinear MABL 1172 

dynamics that co-occur at the submesoscale. As for the oceanic impact, the ocean current 1173 

feedback dominates the wind stress response at the submesoscale, influencing the kinetic energy 1174 

cascade (Renault et al. 2018). Spatial variability in sea state and surface roughness is enhanced at 1175 

the submesoscale, and hence wave-current interactions (e.g., Villas Bôas and Pizzo 2021) and 1176 

wave-wind interactions (e.g., Deskos et al. 2021) are expected to be critical in determining wind 1177 

stress, heat flux, and MABL variations (Ayet et al. 2021; Section 4b), yet such processes remain 1178 

poorly observed, understood, and parameterized. Emerging in situ and satellite observations for 1179 

near-surface processes (Section 5), combined with dedicated atmospheric and oceanic LES and 1180 

high-resolution modeling studies, will help improve the physical understanding of air-sea 1181 

interactions at the submesoscale. 1182 

 1183 

f. Air-sea gas flux exchange and ocean biogeochemistry processes  1184 

Estimates of air-sea gas exchange do not fully consider the effects of ocean mesoscale eddies and 1185 

fronts. One issue is that the gas transfer velocity typically does not consider wind variations 1186 

introduced by mesoscale air-sea interactions. The transfer velocity is also often based on wind 1187 

speed (e.g., Wanninkhof 1992). Hence, it only implicitly accounts for the sea state variations. 1188 

Studies with parameterizations that consider bubble-mediated gas exchanges due to breaking 1189 

waves (e.g., Frew et al. 2007; Deike and Melville 2018) reveal their significant contribution to 1190 

regionally-integrated CO2 flux, especially under midlatitude storm tracks (e.g., Reichl and Deike 1191 

2020). To accurately represent the sea state influence modulated by mesoscale processes in the 1192 

transfer velocity-based flux parameterization (e.g., Fairall et al. 2011; Edson et al. 2011), it is 1193 

imperative to increase direct measurements of CO2 flux (e.g., McGillis et al. 2001) along with 1194 

the coincident observations of wind, waves, solubility, and air-sea partial CO2 pressure 1195 

differences.  1196 

       1197 
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Further, mesoscale air-sea interaction feeds back to ocean primary productivity (Lévy 2008; 1198 

McGillicuddy et al. 2016) and tracer concentrations, such as carbon. Since the physical 1199 

properties of mesoscale eddies and their relationships with biogeochemical variables vary widely 1200 

by region (e.g., Chelton et al. 2011; Gaube et al. 2013, 2014; Frenger et al. 2018), future work 1201 

should aim to identify the specific aspects of this regional variability that are due to mesoscale 1202 

air-sea interaction and subsequent impacts on upwelling and vertical mixing. Eddy-rich climate 1203 

model simulations are one avenue to gain quantitative insight into the relevance of the complex 1204 

coupling of ocean mesoscale features, biogeochemistry, and the atmosphere. Few such 1205 

simulations exist due to their computational expense (e.g., Harrison et al. 2018), but we expect 1206 

this to change in the coming years. Dedicated field experiments combined with eddy-resolving 1207 

coupled physical-biogeochemical models are critical to determining what aspects of mesoscale 1208 

air-sea interactions need to be considered and represented in non-eddy-resolving models. 1209 

  1210 

g. Final remarks 1211 

Prospects for significant advances in mesoscale air-sea interaction in the coming years are 1212 

incredibly bright. Strong community efforts and enthusiasm exist for building sustained 1213 

observational networks to characterize detailed physical and biogeochemical processes across the 1214 

air-sea coupled boundary layers (e.g., OceanObs'19 White Papers; OASIS; US CLIVAR’s air-1215 

sea interaction research initiatives). New satellite missions with advanced instrument technology 1216 

and retrieval algorithms will continue to improve our capability to monitor state variables 1217 

pertinent to air-sea interactions at fine scales and with increased accuracy. These new 1218 

observations will lead to updated physical parameterizations that are becoming increasingly 1219 

more scale-aware and that can be potentially built with stochastic schemes that account for 1220 

rectified effects of eddy transports on air-sea flux and large scales. More field experiments are 1221 

being coordinated via close integration with process-oriented and data assimilative modeling to 1222 

help not only develop the sampling plans but also improve the parameterizations and skills in 1223 

prediction models (e.g., Cronin et al. 2009; Cravatte et al. 2016; Kessler et al. 2019; Sprintall et 1224 

al. 2020; Shroyer et al. 2021; Shinoda et al. 2021; Newman et al. 2022). The climate modeling 1225 

community is developing and refining high-resolution Earth system model simulations with 1226 

advanced physical parametrizations. International partnership and coordination are becoming 1227 

increasingly solid, enabling the design of multi-model, multi-ensemble, high-resolution coupled 1228 
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modeling protocols and diagnostic frameworks. The identified common biases in mesoscale air-1229 

sea interaction in such climate models, in turn, guide the sampling strategy of observing systems 1230 

and process studies. Ensemble data assimilation systems are rapidly advancing, yielding more 1231 

accurate observationally constrained ocean, atmosphere, and biogeochemical state estimates 1232 

critical for sub-seasonal to decadal predictions (e.g., Penny and Hamill 2017; Verdy and Mazloff 1233 

2017). Overall, the successful coordination across observations, modeling, and theories has been 1234 

critical, and these coordinated efforts will and should continue to enhance Earth system 1235 

prediction skills across scales from weather forecasts to climate projection scales. 1236 
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