Ocean Mesoscale Air-Sea Interactions and Implications for Offshore Wind Energy

length-scale smaller than R_D (~10-1000 km) mesoscale SST, ocean currents, sea states (waves)

$$\tau = \rho_a C_D (W - U)^2$$

Hyodae Seo (<u>hseo@whoi.edu</u>)

Gwangju Regional Office of Meteorology January 27, 2023

https://www.energy.gov/eere/articles/wind-turbines-extreme-weather-solutions-hurricane-resiliency

WHOI is the World's largest private ocean research institution

- Studying the ocean and related earth systems since 1930
- Major discoveries and advances in ocean science, marine technology and engineering
- 475 scientific and technical staff
- \$200+ million annual research budget;
 ~800 active projects

ce 1930 e, marine

- Fleet of nearly 100 vehicles, including three large ships, dozens of robotic and remotely operated submersibles, and the iconic human-occupied submersible *Alvin*
- 50+ years of world-class Ph.D. program with MIT; highly regarded post-doctoral program

Diversified Funding Sources

Governments

WHOI Research

Industry Funding

- Sponsored Research
- IP Revenues
- OCIA

Private Funding

- Private Individuals
- Foundations
- Endowment

Developing a \$300M horizontal offshore laboratory

Proposed Barge Mast and Sensor Orientation

Wind Forecast Improvement Project-3

WHOI (lead) UC Boulder, NCAR, UT Dallas, Tufts, DNV, 4 DOE labs, 3 NOAA labs, & user advisory board

Offshore Wind requires accurate characterization of the resource and realistic, high resolution energy forecasts on time scales of minutes.

Goals:

Improve understanding of mesoscale and smaller meteorological and oceanographic processes that affect the wind resource.

Improve understanding of the atmospheric and oceanic boundary layers and their interactions through the wave-mediated surface

Evaluate fully coupled wave, wind, and ocean models, and improved model parameterizations of small-scale processes, and industry-specific applications.

https://www2.whoi.edu/site/wfip3/

WFIP3 focus: The New England Shelf including MA/RI wind energy lease areas

WFIP3 Field Deployment Plan (2024)

22

WHOI's Air-Sea Interaction Tower (ASIT)

DOE lidar buoy

purpose deployed large barge

WFIP3 Modeling Elements

Observations \rightarrow Modeling Improvements \rightarrow Industry Products

Modeling goals:

- Improve the planetary boundary layer (PBL) and surface-layer parameterizations used in mesoscale WRF and WRF-LES.
- Incorporate ocean dynamics via a fully coupled atmospheric/wave/ocean modeling system.
- Coupled mesoscale-microscale simulations, wind plant parameterizations, etc.

Industry product goals:

- Quantify which modeling developments (coupled modeling, improved PBL, improved surface layer, etc.) yield the largest impact on reducing the LCOE for offshore wind in the U.S.
- Use observational and modeling results to hone resource characterization efforts
- Industry application development and testing.

https://www2.whoi.edu/site/wfip3/

Ocean mesoscale air-sea-wave interactions

Wind-driven SST variability

North Atlantic Oscillation

Pacific Decadal Oscillation

Kushnir et al. 2002. JCLI

Daily correlation between wind speed and SST

2000-2009 daily QuikSCAT WS NOAA-OI SST

Higher (lower) wind speed \rightarrow colder (warmer) SST Negative correlation: Oceanic response to the atmosphere

The ocean is filled with energetic eddies and fronts

Average life time of 32 wks, radius scales of O(100km), & propagating over 550 km (Chelton et al. 2011)

Daily correlation between high-pass filtered wind speeds and SSTs

MABL stratification and turbulent mixing

- 1-D turbulent boundary layer process •
- A shallow and rapid adjustment (~hrs) •

Wallace et al. (1998)

High-wind occurrence climatology

Imprints of warm SST in high wind frequency

Sampe and Xie (2007)

Climatological impacts of SST fronts on extratropical storm tracks

The growth rate of the extratropical cyclones scales with low-level baroclinicity

Atmospheric baroclinicity is maintained by the large-scale oceanic fronts near the WBCs

Synoptic-scale air-sea interactions: atmospheric fronts over SST fronts

Length scale: atmospheric fronts \approx ocean fronts (10-100 km)

many 1000 km scales

Wave roughness length (z0) parameterization in COARE3.5 (Edson et al. 2013)

$$C_D \cong \left[\frac{\kappa}{\ln(z(z_0) - \psi_m(z/L))}\right]^2$$

1. Wind Speed Dependent Formulation (WSDF)

$$z_0^{\text{rough}} = \alpha \frac{u_*^2}{g}$$
 $\alpha = f_1(U_{10N})$
Charnock coefficient

- **Assumption #1**: Wind-wave equilibrium (wave age~1.2):
 - Wind seas under high wind and swell under low wind.
- **Assumption #2:** Waves al
- Violated near strong densit limited oceans, under rapic

Parameterizing surface wave impacts on wind stress

$$C_D(W - U)^2$$

$$z_0 = z_0^{\text{smooth}} + z_0^{\text{rough}}$$

spectral peak

- Still assumes $\theta = 0$.
- MIRE often DOEC NOT would better firmer

ullet

https://hseo.whoi.edu/scoar-model

Seo et al. 2007, 2014; Sauvage et al. 2023

SCOAR ocean-wave-atmosphere coupled modeling system

- A modeling tool to study the multi-scale nature of the oceanulletatmosphere interactions and their climate implications
- The wave-coupling procedure is documented in Sauvage et al. (2023)

Experiments	Coupling	z0 in COARE3.5
WSDF	WRF-ROMS	wind speed only
WBF	WRF-ROMS-WW3 with default WBF	wave-based (T _p , H _s
WBF_0	WRF-ROMS-WW3 with <i>modified</i> WBF	vector wave stress (θ
WBF_T _m		with T_m instead of T

10 km resolutions with matching grids. All runs include tides, current-wind and SST-wind interactions, and breaking wave induced vertical mixing.

z0 and τ responses to surface waves and sea state in COARE3.5

Comparison to the directly measured wind stress

Comparison to the directly measured wind stress

Improving the wave-based formulation for the mixed sea conditions

winds in mixed seas:

The spatial variability in ocean currents affects the wave properties and thus air-sea flux (Ardhuin et al. 2017) Even the most advanced bulk formula do not take into account this effect.

Wave-current interaction

Multi-scale O-W-A interactions

Air-sea interaction research and the of WHOI

- ullet

Ocean mesoscale air-sea interaction is a multi-scale phenomenon, and is important for determining the air-sea flux impacts on boundary layer processes, ocean circulation, and high-impact weather events.

 Because of the multi-scale nature, there are many challenges in developing observing and modeling strategies

 In-situ measurements are extremely sparse. But there are many emerging technologies that enable fine-scale sampling of the ocean and air-sea interaction. WHOI is the leading institution in many efforts.

• Efforts like WFIP-3 will develop the RI/MA lease areas into an ocean **test bed** for energy and climate research and development.

 An ambitious (\$100M) project is being developed led by WHOI scientists to provide better global observations of mesoscale air-sea coupling.

A NASA Earth Venture Mission - EVM3 - Proposed Mission EVMs are science driven, competitively selected, low cost satellite missions

BUTTERFLY

a satellite mission to reveal the oceans' impact on our weather and climate.

https://nasa-butterfly.github.io/

Principal Investigator: Dr. Chelle Gentemann Deputy Principal Investigator: Dr. Carol Anne Clayson **Project Scientist:** Dr. Tony Lee **Deputy Project Scientist:** Dr. Shannon Brown

Science Team: Aneesh Subramanian, Mark Bourassa, Hyodae Seo, Kelly Lombardo, Sarah Gille, Tom Farrar, Rhys Parfitt, Brian Argrow

PENNSTATE SCRIPPS INSTITUTION OF OCEANOGRAPHY UC San Diego

Helpful reading:

Offshore wind energy

Shaw et al. 2022: Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer. *Wind Energ. Sci.*, <u>https://doi.org/10.5194/wes-7-2307-2022</u>.

Veers et al. 2019: Grand challenges in the science of wind energy, *Science*, <u>https://doi.org/</u> <u>10.1126/science.aau2027</u>

Air-sea interaction

Seo et al. 2023: Ocean Mesoscale and Frontal-scale Ocean-Atmosphere Interactions and Influence on Large-scale Climate: A Review. *J. Climate*, <u>https://doi.org/10.1175/JCLI-D-21-0982</u>.

Small et al. 2008: Air-Sea Interaction over Ocean Fronts and Eddies. *Dyn. Atmos. Oceans.*, <u>https://doi.org/10.1016/j.dynatmoce.2008.01.001</u>