Wind-Current Coupling in the Context of **Mesoscale and Frontal-Scale Air-Sea Interaction**

Hyodae Seo (hseo@whoi.edu) June 6, 2023

Thanks to O'Neill & the Working Group, also Sauvage, Cho & Song

US CLIVAR ASI Working Group https://usclivar.org/working-groups/air-sea-interactions-working-group

Ocean Mesoscale and Frontal-Scale Ocean–Atmosphere Interactions and Influence on Large-Scale Climate: A Review

Hyodae Seo 💿, Larry W. O'Neill 💿, Mark A. Bourassa 💿, Arnaud Czaja 💿, Kyla Drushka 💿, James B. Edson 💿, Baylor Fox-Kemper 💿, Ivy Frenger 💿, Sarah T. Gille 💿, Benjamin P. Kirtman 💿, Shoshiro Minobe 💿, Angeline G. Pendergrass (D), Lionel Renault (D), Malcolm J. Roberts (D), Niklas Schneider (1), R. Justin Small, Ad Stoffelen (1), and Qing Wang

https://doi.org/10.1175/JCLI-D-21-0982.1

At mesoscale, ocean-driven atmospheric variability. Via air-sea heat flux

Satellite daily correlation bet'n SST and wind speed

A positive wind-SST correlation indicates where the ocean influences the atmosphere. The $O \rightarrow A$ influence is via turbulent heat flux response. Yet, no satellite-based heat flux estimates exist.

QuikSCAT wind and NOAA OI SST (AVHRR, 2000-2009) 10 degree zonal filtering: Seo (2017), Gentemann et al. (2020); Small et al. (2008)

ERA5 correlation bet'n SST and latent heat flux

ERA5 (1991-2020), 1000 km zonal filtering Seo, O'Neill et al. (2023)

Atmospheric baroclinicity maintained by SST fronts

$$|\boldsymbol{\sigma}_{\mathrm{BI}}| = 0.31 \left(\frac{g}{N\theta}\right) \left|-\frac{\partial\theta}{\partial y}, \frac{\partial\theta}{\partial x}\right|$$

Hoskins and Valdes (1990); Nakamura and Shimpo (2004)

Seo et al. (2023)

1.2 -0.60.6 1.8

-6-5-4-3-2-10123456

Not so simple: extratropical atmospheric dynamics are highly nonlinear

Seo et al. (2017)

Precipitation

Asymmetric (nonlinear) response $= \frac{1}{2} \times [(POS - CLIM) + (NEG - CLIM)]$

Symmetric response: direct and local response to diabatic forcing

Asymmetric response: nonlinear eddy-mean flow interactions in the upper levels

 \rightarrow Climate impacts of the GS variability remains difficult due to the fundamental stochastic character (Czaja et al. 2019; "the Quantum Cafe").

The Butterfly concept

weather & climate

R

WHAT

Butterfly is the first satellite mission to **simultaneously** measure sea surface temperature, wind, & near-surface air temperature & humidity in order to estimate air-sea turbulent heat and moisture fluxes at a spatial resolution and accuracy sufficient to resolve the impact of small-scale ocean features on large-scale weather and climate.

WHY

The ocean supplies the atmosphere with heat and moisture, dominating the global water and energy cycles while fueling weather and climate variability. Butterfly measures this air-sea exchange at spatial scales never before observed to unlock how the small-scale ocean "drives" the largescale atmosphere, transforming predictability from mere days to weeks.

HOW

Butterfly's passive microwave instrument is specially designed to measure air-sea turbulent heat and moisture flux at <25-km resolution.

https://nasa-butterfly.github.io/

Winds and currents: The ODYSEA concept

momentum flux and ocean currents at fine spatial scales.

AVISO current and ERA-interim relative wind stress (1993-2015 JJAS)

Can it *alone* help better understand the surface current impacts on the atmosphere?

Thermal and mechanical coupling inherently intertwined at mesoscale

Tropical Instability Waves Combined EOF1 SST and Wind stress (WS)

Warm TIW SSTA accelerates wind via upward surface heat flux. The resulting wind anomaly is in the opposite direction to TIW currents.

→ Negative wind work via current-wind coupling is enhanced by SST-wind coupling

Seo et al. (2007a,b)

Ocean currents affect both the momentum and turbulent heat flux

Ajin Cho et al. (in prep)

Understanding the impacts of ocean current on wind

Snapshots @ 12 hours after the initialization

Seo et al. (in prep)

High-resolution SCOAR regional coupled model simulations: RW vs. AW

is likely be important.

RW effect damps the eddy energy and mean currents

Big question: Can the relative wind effect influence the storm track in the western boundary current regions?

Agulhas Current

westerly wind

storm track (v'T' 850hPa)

- Increased baroclinicity over the AC retroflection region.
- The downstream response is NOT significant.
- Nearly equal contribution from temperature gradient and static stability

Seo et al. (2021)

Seo et al. (2021)

Thermal and mechanical coupling inherently intertwined at small-scales

Two highly complementary and synergistic satellite mission concepts will help understand this coupling better.

- fine spatial scales
- Further understanding of the multi-scale nature of the ocean current impacts in the climate system requires dedicated and process-oriented high-resolution coupled model simulations.

• These two satellites together will likely stimulate a new pulse in research on surface momentum and heat fluxes at

Thanks! hseo@whoi.edu