

ResilientWoodsHole

What is it? What do we know? Where are we going?

Joe Famely, Climate & Sustainability Team Lead Woods Hole Group

A record of sea level rise in Woods Hole

The relative sea level trend is 2.95 millimeters/year with a 95% confidence interval of +/- 0.17 mm/yr based on monthly mean sea level data from 1932 to 2020 which is equivalent to a change of 0.97 feet in 100 years.

1938

The thundering surf mounting the sea wall near the Bureau of Fisheries residence

Wreckage in Great Harbor at the entrance to Eel Pond, note the damaged foundation of the drawbridge

1944

Wreckage of seawall facing Marine Biological Laboratory (Falmouth Enterprise)

Flooded yards on Millfield Street (West Falmouth Library)

1954

Flooded Water Street, Fisheries Lab in background

B-11 The Basement of Lillie was flooded again during Hurricane "Carol" Aug, 31, 1954

"Water was up to the bar at the Captain Kidd"

Iselin and Water St.

Post-storm flooding along Millfield Street

Wave overtopping at Waterfront Park

ResilientWoodsHole Phase 1

What are the potential impacts of climate change on scientific operations and research in Woods Hole?

Climate Change Vulnerability Assessment (WHOI/MBL/NOAA)

What does the future hold? ResilientWoodsHole Phase 1

WOODS HOLE OF FOR EARTH

Woods Hole Village Climate Change Vulnerability Assessment and Adaptation Plan

October 2020

PREPARED FOR: Woods Hole Oceanographic Institution Marine Biological Laboratory NOAA Northeast Fisheries Science Center PREPARED BY: Woods Hole Group, Inc. A CLS Company 107 Waterhouse Road Bourne, MA 02532 USA

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Why Hydrodynamic Modeling? Why Probabilistic?

Why Hydrodynamic Modeling? Why Probabilistic?

Using MC-FRM to prioritize investments in adaptation over time

Inventory Assets

- Location
- Critical Elevation

Vulnerability / Risk Assessment

- Asset inundation probability
 - Present/2030/2050/2070
- Mission-based consequence scoring
- Asset Risk = Probability * Consequence

Adaptation Planning

- > Prioritize High Risk Assets
- Develop Adaptation Strategies

WOODS HOL

GROUF

Phase 1 – WHOI/MBL/NOAA Assets CCVA

WOODS HOLE

Iselin Asset Type: Buildings Critical Elevation (CE): 6.08 FT. NAVD88 Threshold Description: North Alvin high bay 130D Door - systems at grade Room 138 (prior survey) Climate Vulnerability Assessment - Asset Profile

Probability of Exceedance Summary Table

	Present		20	2030		50	2070	
Probability	Flood Elevation	Depth Over CE						
*	FT. NAVD88	FT.	FT. NAVD88	FT.	FT. NAVD88	FT.	FT. NAVD88	FI
0.1	10.7	4.62	11.8	5.72	14.5	8.42	16.6	10.52
0.2	10	3.92	11.1	5.02	13.7	7.62	15.7	9.62
0.5	8.8	2.72	10	3.92	12.6	6.52	14.6	8.52
1	8.1	2.02	9.3	3.22	11.8	5.72	13.8	7.72
2	7.4	1.32	8.6	2.52	10.9	4.82	12.9	6.82
5	6.5	0.42	7.7	1.62	9.8	3.72	11.8	5.72
10	5.8	-	7	0.92	9	2.92	10.9	4.82
20	5	5	6.2	0.12	8	1.92	9.9	3.82
25	4.7	. e	5.9	3	7.7	1.62	9.6	3.52
30	4.5	19	5.7	2	7.4	1.32	9.3	3.22
50	3.7		4.8		6.4	0.32	8.3	2.22
100	21	2 2	33	1 2 3	4.6	- 22	6.4	0.32

Consequence of Exceedance

	Direct Impacts			Mission Impairment					
	Service Loss Extent	Service Loss Duration	Cost of Damage	Research & Applied Science	Operations & Economic Activity	Education & Outreach	Sum	Consequence Score	
Scores	4	4	3	3	4	2	20	83	

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Risk Rank
Present	5		417	8/36
2030	20		1667	4/36
2050	50	83	4167	-
2070	100		8333	20

х

0.2° 0.2° 0.5° 2° 2° 2° 5° 50° 25° 55° 35° 35°

0' 10 10 30 10 50 0' 10' 10' 10' 10' 10' 60 10 40 90 (0) (0) (0) 100

Phase 1 – WHOI/MBL/NOAA Assets CCVA

WOODS HOLE

Lillie Laboratory

Asset Type: Buildings Critical Elevation (CE): 5.17 FT. NAVD88 Threshold Description: Loading dock slab entry from 2017 ELV CERT

Additional CEs:

Lillie Fuel Tank (5.30 FT. NAVD88), Lillie/MRC Junction Box (9.33 FT. NAVD88), Lillie Transformer (9.89 FT. NAVD88), Lillie/MRC Meter Box (11.37 FT. NAVD88)

Probability of Exceedance Summary Table

	Present		20	2030		50	2070	
Probability	Flood Elevation FT. NAVD88	Depth Over CE FT.	Flood Elevation FT. NAVD88	Depth Over CE FT.	Flood Elevation FT. NAVD88	Depth Over CE	Flood Elevation FT. NAVD88	Depth Over CE FT.
0.1	10.6	5.4	11.7	6.5	14.3	9.2	16.6	11.4
0.2	9.8	4.6	11.0	5.8	13.5	8.4	15.7	10.5
0.5	8.9	3.7	10.0	4.8	12.5	7.3	14.6	9.4
1	8.2	3.0	9.3	4.1	11.6	6.5	13.8	8.6
2	7.5	2.3	8.6	3.4	10.8	5.7	12.9	7.7
5	6.5	1.3	7.7	2.5	9.7	4.5	11.8	6.6
10	5.8	0.6	7.0	1.8	8.9	3.7	10.9	5.7
20	5.0	2	6.2	1.0	7.9	2.8	9.9	4.7
25	4.7		5.9	0.7	7.6	2.4	9.6	4.4
30	4.5	24	S.7	0.5	7.3	2.1	9.3	4.1
50	3.7		4.8		6.3	1.2	8.3	3.1
100	2.1	64	3.3		4.6		6.4	1.2

Consequence of Exceedance

	-	Direct Impacts		Mi	ssion Impairm			
	Service Loss Extent	Service Loss Duration	Cost of Damage	Research & Applied Science	Operations & Economic Activity	Education & Outreach	Sum	Consequence Score
Scores	4	4	4	4	4	3	23	96

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Risk Rank
Present	10		958	6/54
2030	30	1144	2875	3/54
2050	50	96	4792	2/54
2070	100		9583	1/54

Phase 1 – WHOI/MBL/NOAA Assets CCVA

WOODS HOLE

Gear Shed Asset Type: Buildings Critical Elevation (CE): 5.09 FT. NAVD88 Threshold Description: Grade at bay door (LiDAR) Climate Vulnerability Assessment – Asset Profile

	Present		20	2030		50	2070	
Probability	Flood Elevation FT. NAVD88	Depth Over CE FT.	Flood Elevation FT. NAVD88	Depth Over CE FT.	Flood Elevation FT. NAVD88	Depth Over CE	Flood Elevation FT. NAVD88	Depth Over CE FT.
0.1	10.7	5.61	11.8	6.71	14.5	9.41	16.6	11.51
0.2	10	4.91	11.1	6.01	13.7	8.61	15.7	10.61
0.5	8.8	3.71	10	4.91	12.6	7.51	14.6	9.51
1	8.1	3.01	9.3	4.21	11.8	6.71	13.8	8.71
2	7.4	2.31	8.6	3.51	10.9	5.81	12.9	7.81
5	6.5	1.41	7.7	2.61	9.8	4.71	11.8	6.71
10	5.8	0.71	7	1.91	9	3.91	10.9	5.81
20	5		6.2	1.11	8	2.91	9.9	4.81
25	4.7	19	5.9	0.81	7.7	2.61	9.6	4.51
30	4.5	- Gr - 2	5.7	0.61	7.4	2.31	9.3	4.21
50	3.7	-	4.8		6.4	1.31	8.3	3.21
100	21		3.3		4.6		6.4	1 31

Consequence of Exceedance

		Direct Impacts		Mi	ssion Impairm			
	Service Loss Extent	Service Loss Duration	Cost of Damage	Research & Applied Science	Operations & Economic Activity	Education & Outreach	Sum	Consequence Score
Scores	2	4	4	3	3	1	17	71

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Risk Rank
Present	10	2010000	708	3/27
2030	30		2125	2/27
2050	50	/1	3542	3/27
2070	100		7083	2/27

0.2° 0.2° 0.5° 2° 2° 5° 5° 50° 55° 55° 55° 55° 55°

ASSET CONSEQUENCE SCORES

0' 4' 10' 30' 10' 40' 40' 60' 10' 40' 40' 10'

Phase 1 – WHOI/MBL/NOAA District Adaptations

Phase 1 – WHOI/MBL/NOAA District Adaptations

WOODS HOLE C

Phase 1 – WHOI/MBL/NOAA District Adaptations

ResilientWoodsHole Phase 2

What are the potential impacts of climate change on the broader Woods Hole community?

Extended Climate Change Vulnerability Assessment (Woods Hole residential community, businesses, roadways, lifelines), supplemental adaptation planning (WHOI/MBL/NOAA) and initial outreach.

Phase 2 – Extended CCVA review of Town infrastructure

Woods Hole Drawbridge Hut

<u>Critical Elevation</u>: 4.8 ft NAVD88 <u>Threshold Description</u>: Rear bulkhead; the critical elevation was obtained through a field-survey conducted by the Town.

Probability of Exceedance Summary Table

	Present		2	030	2070		
% Probability	Flood Elevation	Depth Above Critical Elev.	Flood Elevation	Depth Above Critical Elev.	Flood Elevation	Depth Above Critical Elev.	
0.1	11.5	6.8	12.2	7.4	17.1	12.3	
0.2	10.7	5.9	11.4	6.6	16.2	11.4	
0.5	10.0	5.3	10.8	6.0	15.4	10.6	
1	9.1	4.3	9.9	5.1	14.3	9.6	
2	8.4	3.6	9.2	4.5	13.5	8.7	
5	7.7	2.9	8.6	3.8	12.7	7.9	
10	6.7	1.9	7.6	2.9	11.6	6.8	
20	5.8	1.1	6.9	2.1	10.7	5.9	
25	5.0	0.2	6.1	1.3	9.7	5.0	
30	4.7	dry	5.8	1.0	9.4	4.6	
50	4.5	dry	5.6	0.8	9.1	4.3	
100	3.6	dry	4.8	dry	8.1	3.3	

Woods Hole Sewer Lift Station

Wet Well

<u>Critical Elevation</u>: 8.3 ft NAVD88 <u>Threshold Description</u>: Top of tank; the critical elevation was obtained through a field-survey conducted by the Town.

Probability of Exceedance Summary Table

	Pre	esent	2	030	2070		
% Probability	Flood Elevation	Depth Above Critical Elev.	Flood Elevation	Depth Above Critical Elev.	Flood Elevation	Depth Above Critical Elev.	
0.1	11.5	3.1	11.9	3.6	17.0	8.7	
0.2	10.7	2.3	11.2	2.9	16.1	7.7	
0.5	10.0	1.6	10.6	2.3	15.3	7.0	
1	9.0	0.7	9.7	1.4	14.3	5.9	
2	8.3	dry	9.1	0.8	13.4	5.1	
5	7.6	dry	8.4	0.1	12.6	4.3	
10	6.6	dry	7.5	dry	11.5	3.2	
20	5.8	dry	6.8	dry	10.6	2.3	
25	5.0	dry	6.1	dry	9.7	1.4	
30	4.7	dry	5.8	dry	9.4	1.0	
50	4.5	dry	5.6	dry	9.1	0.7	
100	3.6	dry	4.8	dry	8.1	dry	

Park Road Sewer Lift Station

<u>Critical Elevation</u>: 4.6 ft NAVD88 <u>Threshold Description</u>: Top of raised tank; the critical elevation was obtained through a field-survey conducted by the Town.

Probability of Exceedance Summary Table

Pro		sent	20	30	2070		
% Probability	Flood Elevation	Depth Above Critical Elev.	Flood Elevation	Depth Above Critical Elev.	Flood Elevation	Depth Above Critical Elev.	
0.1	14.1	9.5	15.4	10.7	20.4	15.8	
0.2	13.1	8.5	14.4	9.8	19.2	14.6	
0.5	12.4	7.7	13.6	9.0	18.3	13.7	
1	11.3	6.7	12.5	7.9	16.9	12.3	
2	10.5	5.8	11.7	7.0	15.9	11.3	
5	9.6	5.0	10.8	6.2	14.9	10.2	
10	8.5	3.9	9.7	5.0	13.5	8.8	
20	7.6	3.0	8.8	4.1	12.4	7.7	
25	6.6	2.0	7.8	3.2	11.2	6.5	
30	6.3	1.7	7.4	2.8	10.7	6.1	
50	6.0	1.4	7.1	2.5	10.4	5.7	
100	4.9	0.3	6.1	1.4	9.1	4.5	

Consequence of Exceedance

	Area of Service Loss	Duration of Service Loss	Cost of Damage	Impacts to Public Safety	Impacts to Economic Activities	Impacts to Public Health & Environ.	Consequence Score
Scores	3	3	3	3	4	1	57

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Weight	Composite Risk Score	Composite Risk Rank
Present	25	57	1417	0.5		
2030	50	57	2833	0.3	2692	78; 45
2070	100	57	5667	0.2		(w/o roads)

Consequence of Exceedance

	Area of Service Loss	Duration of Service Loss	Cost of Damage	Impacts to Public Safety	Impacts to Economic Activities	Impacts to Public Health & Environ.	Consequenc Score
Scores	3	2	2	1	2	4	47

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Weight	Composite Risk Score	Composite Risk Rank
Present	1	47	47	0.5	560	126; 89 (w/o roads)
2030	5	47	233	0.3		
2070	50	47	2333	0.2		

Consequence of Exceedance

	Area of Service Loss	Duration of Service Loss	Cost of Damage	Impacts to Public Safety	Impacts to Economic Activities	Impacts to Public Health & Environ.	Consequence Score
Scores	2	2	2	1	1	3	37

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Weight	Composite Risk Score	Composite Risk Rank
Present	100	37	3667	0.5		32; 13 (w/o roads)
2030	100	37	3667	0.3	3667	
2070	100	37	3667	0.2		

Vulnerable at Present 1% 3.5/20.6 miles

Vulnerable at 2030 1% 4.0/20.6 miles

WOODS HOLE

GROUP

Vulnerable at 2070 1% 5.4/20.6 miles

Phase 2 – Flood Pathways Analysis

NOTE: ALL PIPING ON THIS PLAN TO BE INSTALLED CONTRACTOR, EXCEPT C.W. SERVICE FROM -ALL GRADES FROM DATA PLANE WHICH IS MEA

3 drain lines to Iselin Dock bulkhead <MLLW

Install check valves or backflow preventers

Keep surge from backing up into boiler/chiller room, lab, and corridor

https://drain-net.com/shop-by-product/spill-floodingcontainment/product/drain-backflow-preventer-3

open

https://www.jerman.com/backflowpreventers/lchkva1.htm

MBL Seawater Pumphouse

Door to below grade pumps 48" high door barrier and exterior façade sealing 0.5%>0% / 2%>0% / 10%>0.5% / 50%>2%

floodproofing.com

floodproofing.com

NOAA Fisheries Aquarium

Vent from Aquarium basement 14" above Gear Shed floor 36" high deployable barrier or masonry wall in Gear Shed 5%>1%/10%>2%/50%>10%/100%>50%

https://emilms.fema.gov/is_0279a/groups/60.html

floodproofing.com

Redfield Laboratory alternative a

tie-in to high ground >

7.3 FT NAVD88

Deployable barriers (~275 ft.)

100

THE R.

core i

Top of existing wall = 11.3 FT NAVD88

		Water Surface Elevation (FT NAVD88)							
	%	Present	2030	2050	2070				
	0.1	10.6	11.7	14.3	16.6				
	0.2	9.8	11.0	13.5	15.7				
	0.5	8.9	10.0	12.5	14.6				
	1	8.2	9.3	11.6	13.8				
	2	7.5	8.6	10.8	12.9				
	5	6.5	7.7	9.7	11.8				
	10	5.8	7.0	8.9	10.9				
	20	5.0	6.2	7.9	9.9				
	25	4.7	5.9	7.6	9.6				
7	30	4.5	5.7	7.3	9.3				
0	50	3.7	4.8	6.3	8.3				
	100	21	33	46	64				

Redfield Laboratory alternative b

~4 ft wall to match existing

floodproofing.com

		a distant in the			C. C. C.
		Water S	Surface Elev	ation (FT N	AVD88)
	%	Present	2030	2050	2070
	0.1	10.6	11.7	14.3	16.6
	0.2	9.8	11.0	13.5	15.7
	0.5	8.9	10.0	12.5	14.6
	1	8.2	9.3	11.6	13.8
	2	7.5	8.6	10.8	12.9
	5	6.5	7.7	9.7	11.8
	10	5.8	7.0	8.9	10.9
	20	5.0	6.2	7.9	9.9
	25	4.7	5.9	7.6	9.6
2	30	4.5	5.7	7.3	9.3
0	50	3.7	4.8	6.3	8.3
	100	2.1	3.3	4.6	6.4

	Wate	r Surface Ele	evation (FT	NAVD88)
%	Present	t 2030	2050	2070
0.:	1 10.6	11.7	14.3	16.6
0.:	2 9.8	11.0	13.5	15.7
0.	5 8.9	10.0	12.5	14.6
1	8.2	9.3	11.6	13.8
2	7.5	8.6	10.8	12.9
5	6.5	7.7	9.7	11.8
10) 5.8	7.0	8.9	10.9
20) 5.0	6.2	7.9	9.9
25	5 4.7	5.9	7.6	9.6
30) 4.5	5.7	7.3	9.3
50) 3.7	4.8	6.3	8.3
10	0 2.1	3.3	4.6	6.4
		the second s		100 million (100 m

5.3 FT NAVD88

Elevate sidewalk to Swope grade

walkovers

Swope/Ebert alternative a

~4 ft parapet wall

1 1 2 4 mm

<tie-in to high ground

7.6 FT NAVD88

11.6 FT NAVD88 berm walkway

11.6 FT NAVD88 terraced area

and the second se				
	Water S	urface Elev	ation (FT N	AVD88)
%	Present	2030	2050	2070
0.1	10.6	11.7	14.3	16.6
0.2	9.8	11.0	13.5	15.7
0.5	8.9	10.0	12.5	14.6
1	8.2	9.3	11.6	13.8
2	7.5	8.6	10.8	12.9
5	6.5	7.7	9.7	11.8
10	5.8	7.0	8.9	10.9
20	5.0	6.2	7.9	9.9
25	4.7	5.9	7.6	9.6
30	4.5	5.7	7.3	9.3
50	3.7	4.8	6.3	8.3
100	2.1	3.3	4.6	6.4

5.3 FT NAVD88

Swope/Ebert alternative b

7.6 FT NAVD88

0...

<tie-in to high ground

> terraced harborwalk to 11.6 FT NAVD88 tapered back to Swope grade

11.6 FT NAVD88 berm walkway

800 +/ EXISTING HARBORWALK CRADE

12.00 1% ST

11.6 FT NAVD88 terraced area

Climate Ready South Boston

ResilientWoodsHole Phase 3

How can we work together to ensure the future of our vibrant and productive seaside community?

Comprehensive phased strategy for Woods Hole Village that integrates resilient design concepts and community visioning.

Phase 3 - Goals

- 1. Develop community-wide understanding of local climate impacts.
- 2. Build effective partnerships for Village planning and visioning.
- 3. Develop short-, mid-, and long-term climate adaptation actions across strategic themes.
- 4. Identify key thresholds and transition points, based on adaptive management
- 5. Chart dynamic adaptation pathways that optimize community outcomes over time, based on community preferences and scientific projections.

WOODS HOLE

GROUP

Phase 3 – Process

Phase 3 - Stakeholder Interviews/Survey

How should we respond coastal flooding in the Village? What does a Resilient Woods Hole look like to you?

What makes Woods Hole Woods Hole?

places, activities, functions, uses

Where in Woods Hole is coastal flooding already an issue?

Which important aspects of Woods Hole are place-specific, which can shift over time and maintain their importance?

What isn't in Woods Hole now that should be?

Goal of Stakeholder Interviews

Gauge community preferences to inform thematic adaptation designs and transfer points in dynamic adaptation pathways

Stakeholder survey coming soon!

Thank you

Joseph Famely

Climate & Sustainability Team Lead Woods Hole Group jfamely@woodsholegroup.com 508-495-6220

woodsholegroup.com