ResilientWoodsHole Community Visioning Workshop

FEBRUARY 9, 2022

RESILIEN

Welcome

A

Leslie-Ann McGee Director of Special Projects/ResilientWoodsHole Manager Woods Hole Oceanographic Institution

SA BOBOOBS BB

LIDELT

mun callismerard

AGENDA

Introductory Remarks Climate Change and Woods Hole Presentation Question & Answer

Flood Risk Reduction at the Property Scale

Falmouth Sewer Resiliency Project

ResilientWoodsHole Breakout Rooms:

- Important Features in Woods Hole
- Flooding in Woods Hole: Past, Present, Future
- Adaptation Strategies and Vision for Woods Hole

Optional Discussion Rooms:

- Flood Risk Reduction at the Property Scale
- Falmouth Sewer Resiliency Project

RESILIENT

Climate Change and Woods Hole

mun callismerally

Joe Famely Woods Hole Group

STA BORDES BA

A

创 語 9 名

ResilientWoodsHole Study Area

Extreme Water Levels in Woods Hole (Station 8447930)

Woods Hole, MA

1938

surge +8.5 FT MHHW

Credit: Virginia Overy, courtesy Marine Biological Laboratory

surge +7.9 FT MHHW

Credit: Giles W. Mead, courtesy Woods Hole Historical Museum

surge +4.6 FT MHHW

Credit: Ann Stuart, courtesy Marine Biological Laboratory

2018

2.74 FT NAVD88

+1.90 FT MHHW

Credit: Catherine Bumpus

3.72 FT NAVD88

andurt

+2.88 FT MHHW

GALLERY

2018

_

Historical Sea Level Rise

Woods Hole Tide Gauge, Station 8447930

MA EOEEA Downscaled Climate Change Projections

https://resilientma.org/data/documents

WHAT MASSACHUSETTS MODELED

CURRENT TRAJECTORY (POST COP26)

https://climateactiontracker.org/

MA EOEEA Probabilistic Sea Level Rise Projections

Woods Hole Tide Gauge, Station 8447930 (DeConto & Kopp, 2017)

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Great H

Bar Neck p

ance Ro

slan

Woods Hole Ball Park

Millfield st. Woods Hole of

Woods Hole Rd

Voods Hole Golf Club

https://www.mass.gov/service-details/sea-level-affecting-marshes-model-slamm

Model Inputs

Existing vegetation and topography

Sea level rise projections

Tidal range and attenuation

Marsh accretion and erosion factors

https://www.mass.gov/service-details/sea-level-affecting-marshes-model-slamm

Model Inputs

Existing vegetation and topography

Sea level rise projections

Tidal range and attenuation

Marsh accretion and erosion factors

https://www.mass.gov/service-details/sea-level-affecting-marshes-model-slamm

Model Inputs

Existing vegetation and topography

Sea level rise projections

Tidal range and attenuation

Marsh accretion and erosion factors

https://www.mass.gov/service-details/sea-level-affecting-marshes-model-slamm

Model Inputs

Existing vegetation and topography

Sea level rise projections

Tidal range and attenuation

Marsh accretion and erosion factors

https://www.mass.gov/service-details/sea-level-affecting-marshes-model-slamm

Model Inputs

Existing vegetation and topography

Sea level rise projections

Tidal range and attenuation

Marsh accretion and erosion factors

How to communities typically assess flood risk? FEMA Flood Maps

Future-facing, Hydrodynamic, and Probabilistic

Future-facing, Hydrodynamic, and Probabilistic

Massachusetts Coast Flood Risk Model (MC-FRM)

Massachusetts Coast Flood Risk Model (MC-FRM) Resolution

Woods Hole Village Climate Change Vulnerability Assessment and Adaptation Plan

October 202

Woods Hole Oceanographic Institution Marine Biological Laboratory NOAA Northeast Fisheries Science Center EPARED BY: lods Hole Group, Inc. LS Company / Waterhouse Road

ResilientWoodsHole Phase 1

What are the potential impacts of climate change on scientific operations and research in Woods Hole?

Climate Change Vulnerability Assessment (WHOI/MBL/NOAA)

https://resilientwoodshole.org/news-and-events/#reports

WOODS HOLE C

Using MC-FRM to prioritize investments in adaptation over time

WHOI/MBL/NOAA Climate Change Vulnerability Assessment

MC-FRM PROBABILITY - 2070

Iselin Asset Type: Buildings Critical Elevation (CE): 6.08 FT. NAVD88 Threshold Description: North Alvin high bay 130D Door - systems at grade Room 138 (prior survey) Climate Vulnerability Assessment - Asset Profile

WOODS HOLE

Probability of Exceedance Summary Table

	Pres	sent	20	30	20	50	20	70
Probability	Flood Elevation	Depth Over CE						
. 16	FT. NAVD88	FT.	FT. NAVD88	FE	FT. NAVDS8	FT.	FT.NAVD88	FT.
0.1	10.7	4.62	11.8	5.72	14.5	8.42	16.6	10.52
0.2	10	3.92	11.1	5.02	13.7	7.62	15.7	9.62
0.5	8.8	2.72	10	3.92	12.6	6.52	14.6	8.52
1	8.1	2.02	9.3	3.22	11.8	5.72	13.8	7.72
2	7.4	1.32	8.6	2.52	10.9	4.82	12.9	6.82
5	6.5	0.42	7.7	1.62	9.8	3.72	11.8	5.72
10	5.8	-	7	0.92	9	2.92	10.9	4.82
20	5		6.2	0.12	8	1.92	9.9	3.82
25	4.7	2 (2) 2	5.9	1.1.21	7.7	1.62	9.6	3.52
30	4.5	12	5.7	2	7.4	1.32	9.3	3.22
50	3.7		4.8		6.4	0.32	8.3	2.22
100	2.1	e e	3.3	2 - 2 - 3	4.6	2	6.4	0.32

Consequence of Exceedance

		Direct Impacts		Mi	ssion Impairm	ent		
	Service Loss Extent	Service Loss Duration	Cost of Damage	Research & Applied Science	Operations & Economic Activity	Education & Outreach	Sum	Consequence Score
Scores	4	4	3	3	4	2	20	83

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Risk Rank
Present	5		417	8/36
2030	20	02	1667	4/36
2050	50	63	4167	-
2070	100		8333	2.

х

22° 22° 55° 2° 2° 5° 5° 50° 25° 30° 30° 50°

WHOI/MBL/NOAA Climate Change Vulnerability Assessment

Lillie Laboratory Asset Type: Buildings Critical Elevation (CE): 5.17 FT. NAVD88 Threshold Description: Loading dock slab entry from 2017 ELV CERT Additional CEs:

> Lillie Fuel Tank (5.30 FT. NAVD88), Lillie/MRC Junction Box (9.33 FT. NAVD88), Lillie Transformer (9.89 FT. NAVD88), Lillie/MRC Meter Box (11.37 FT. NAVD88)

Probability of Exceedance Summary Table

	Pres	sent	20	30	20	50	20	70
Probability	Flood Elevation FT. NAVD88	Depth Over CE FT.	Flood Elevation FT. NAVD88	Depth Over CE FT.	Flood Elevation FT. NAVD88	Depth Over CE	Flood Elevation FT. NAVD88	Depth Over CE FT.
0.1	10.6	5.4	11.7	6.5	14.3	9.2	16.6	11.4
0.2	9.8	4.6	11.0	5.8	13.5	8.4	15.7	10.5
0.5	8.9	3.7	10.0	4.8	12.5	7.3	14.6	9.4
1	8.2	3.0	9.3	4.1	11.6	6.5	13.8	8.6
2	7.5	2.3	8.6	3.4	10.8	5.7	12.9	7.7
5	6.5	1.3	7.7	2.5	9.7	4.5	11.8	6.6
10	5.8	0.6	7.0	1.8	8.9	3.7	10.9	5.7
20	5.0	- 24	6.2	1.0	7.9	2.8	9.9	4.7
25	4.7	·	5.9	0.7	7.6	2.4	9.6	4.4
30	4.5	- 34	S.7	0.5	7.3	2.1	9.3	4.1
50	3.7		4.8		6.3	1.2	8.3	3.1
100	2.1	64	3.3	-	4.6		6.4	1.2

Consequence of Exceedance

		Direct Impacts		Mi	ission Impairm	ent		
	Service Loss Extent	Service Loss Duration	Cost of Damage	Research & Applied Science	Operations & Economic Activity	Education & Outreach	Sum	Consequence Score
Scores	4	4	4	4	4	3	23	96

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Risk Rank
Present	10		958	6/54
2030	30		2875	3/54
2050	50	90	4792	2/54
2070	100		9583	1/54

Climate Vulnerability Assessment - Asset Profile

WOODS HOLE

WHOI/MBL/NOAA Climate Change Vulnerability Assessment

Gear Shed Asset Type: Buildings Critical Elevation (CE): 5.09 FT. NAVD88 Threshold Description: Grade at bay door (LiDAR) Climate Vulnerability Assessment – Asset Profile

	Pres	ient	20	30	20	50	20	70
Probability	Flood Elevation FT. NAVD88	Depth Over CE FT.	Flood Elevation FT. NAVD88	Depth Over CE FT.	Flood Elevation FT. NAVD88	Depth Over CE	Flood Elevation FT. NAVD88	Depth Over CE FT.
0.1	10.7	5.61	11.8	6.71	14.5	9.41	16.6	11.51
0.2	10	4.91	11.1	6.01	13.7	8.61	15.7	10.61
0.5	8.8	3.71	10	4.91	12.6	7.51	14.6	9.51
1	8.1	3.01	9.3	4.21	11.8	6.71	13.8	8.71
2	7.4	2.31	8.6	3.51	10.9	5.81	12.9	7.81
5	6.5	1.41	7.7	2.61	9.8	4.71	11.8	6.71
10	5.8	0.71	7	1.91	9	3.91	10.9	5.81
20	5		6.2	1.11	8	2.91	9.9	4.81
25	4.7	- 10 - I	5.9	0.81	7.7	2.61	9.6	4.51
30	4.5		5.7	0.61	7.4	2.31	9.3	4.21
50	3.7	14	4.8		6.4	1.31	8.3	3.21
100	2.1		3.3	-	4.6		6.4	1.31

Consequence of Exceedance

	-	Direct Impacts		Mi	ssion Impairm	ent		
	Service Loss Extent	Service Loss Duration	Cost of Damage	Research & Applied Science	Operations & Economic Activity	Education & Outreach	Sum	Consequence Score
Scores	2	4	4	3	3	1	17	71

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Risk Rank
Present	10	10000000	708	3/27
2030	30		2125	2/27
2050	50	/1	3542	3/27
2070	100		7083	2/27

WOODS HOLE

=

ResilientWoodsHole Phase 2 Report

January 202

PREPARED FOR: Woods Hole Oceanographic Institution Marine Biological Laboratory NOAA Northeast Fisheries Science Center EPARED BY: ods Hole Group, Inc. LS Company 7 Waterhouse Road urne MA 02532 LSA

ResilientWoodsHole Phase 2

What are the potential impacts of climate change on the broader Woods Hole community?

Extended Climate Change Vulnerability Assessment (Woods Hole residential community, businesses, roadways, lifelines), supplemental adaptation planning (WHOI/MBL/NOAA) and initial outreach.

https://resilientwoodshole.org/news-and-events/#reports

WOODS HOLE C

Counts of Buildings Exposed to Projected Flooding

1% annual chance event has a 9.6% chance of occurring in a 10-year period
10% annual chance event has a 65.1% chance of occurring in a 10-year period
25% annual chance event has a 94.4% chance of occurring in a 10-year period

ALL REAL PROPERTY.			Р	reser	nt				2030)				2050)				2070)		
		WHOI-MBL-NOAA	Lifelines	Business	Residential	Non-Profit	WHOI-MBL-NOAA	Lifelines	Business	Residential	Non-Profit	WHOI-MBL-NOAA	Lifelines	Business	Residential	Non-Profit	WHOI-MBL-NOAA	Lifelines	Business	Residential	Non-Profit	
	0%	117	3	6	634	12	110	3	6	616	12	107	1	6	604	12	104	0	5	590	12	
	0.1%	36	11	18	245	7	43	11	18	263	7	46	13	18	275	7	49	14	19	289	7	
	0.2%	33	10	16	237	7	41	11	17	253	7	44	12	18	270	7	48	14	19	286	7	
	0.5%	28	10	15	230	7	36	10	15	251	7	44	11	18	265	7	46	13	19	285	7	
and a second second	1%	27	10	14	220	6	31	10	15	238	7	44	11	17	257	7	44	12	18	281	7	
	2%	25	7	14	211	6	28	10	15	225	7	37	11	17	256	7	44	11	18	273	7	
	5%	19	6	12	205	5	25	8	14	217	6	32	10	15	243	7	44	11	17	265	7	
	10%	8	5	12	178	4	23	7	12	203	5	29	10	15	219	7	37	11	17	250	7	
	20%	1	4	10	162	4	10	6	12	178	4	24	9	14	206	5	32	10	15	232	7	
	25%	1	2	8	137	4	8	4	9	151	4	24	8	12	180	4	30	10	15	210	6	
	30%	1	1	7	120	4	8	4	9	143	4	24	7	11	170	4	30	10	15	200	5	- Balance
	50%	1	1	6	110	4	1	3	7	132	4	15	6	11	158	4	26	10	13	190	5	
	100%	1	0	6	55	3	1	0	6	94	4	1	3	8	122	4	19	6	12	153	4	

Road Miles Exposed to Projected Flooding

1% annual chance event has a 9.6% chance of occurring in a 10-year period 10% annual chance event has a 65.1% chance of occurring in a 10-year period 25% annual chance event has a 94.4% chance of occurring in a 10-year period

1		Present	2030	2050	2070
	0.1%	4.5	4.8	5.4	5.8
	0.2%	4.2	4.6	5.2	5.7
	0.5%	3.8	4.3	5.1	5.5
1	1%	3.5	4.0	4.9	5.4
	2%	3.2	3.7	4.6	5.2
	5%	2.7	3.3	4.2	5.0
	10%	2.0	2.9	3.8	4.6
	20%	1.3	2.3	3.4	4.2
(1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	25%	1.1	1.9	3.2	4.0
	30%	0.9	1.7	3.0	3.8
	50%	0.6	1.1	2.4	3.5
and the second	100%	0.0	0.7	1.1	2.3

ResilientWoodsHole Phase 3

How can we work together to ensure the future of our vibrant and productive seaside community?

Comprehensive phased strategy for Woods Hole Village that integrates resilient design concepts and community visioning.

ResilientWoodsHole Phase 3 - Goals

- 1. Develop community-wide understanding of local climate impacts.
- 2. Build effective partnerships for Village planning and visioning.
- 3. Develop short-, mid-, and long-term climate adaptation actions across strategic themes.
- 4. Identify key thresholds and transition points, based on adaptive management
- 5. Chart dynamic adaptation pathways that optimize community outcomes over time, based on community preferences and scientific projections.

Adaptation Strategies – Building Scale

(Credit: Modified from Boston Planning & Development Agency, Coastal Flood Resilience Design Guidelines)

WOODS HOLE

GROUP

Adaptation Strategies – Landscape Scale

Waterfront Parks

Multi-purpose Levees

Relocate/Retreat

(Credit: Modified from NYCPlanning, Coastal Climate Resilience Urban Waterfront Adaptive Strategies)

RESILIENT

A

Questions?

BOBOOBS BA

ATTON 1

RESILIEN

A

Shannon Hulst

Flood Risk Reduction At The Property Scale

Deputy Director/CRS Coordinator Cape Cod Cooperative Extension

AGECOBS RA

There

mun callismerard

Parcel-Level Flood Mitigation Options

February 9, 2022

Shannon Hulst, CFM Cape Cod Cooperative Extension/Woods Hole Sea Grant

Resilient Woods Hole

Things to Keep in Mind

- Flood insurance implications 50% Rule
- General
- Foundations
- Historic structure considerations

Structural Changes

Relocation

- > Structure/site
- Stairs/deck etc. when applicable

Elevation

Fill basement

Wet floodproofing (e.g. flood vents)

Use flood-resistant materials below Base Flood Elevation

Dry floodproofing

Non-Structural Changes

Start with Elevation Certificate • Letter of Map Amendment Regrading/positive drainage Elevate/protect mechanicals & utilities

Emergency measures (e.g. sandbagging) Barriers

Woods Hole Sea Grant

Thank You!

Shannon.hulst@barnstablecounty.org (508) 375-6952

RESILIENT

2

mar cellismerers p

Falmouth Sewer Resiliency Project

A

Amy Lowell Wastewater Superintendent Town of Falmouth

BQBCOBS BB

Settled .

Conceptual Design of Flood Resiliency Improvements for Falmouth Sewer Infrastructure

Resilient Woods Hole Forum

February 9, 2022 Amy Lowell - Wastewater Superintendent Anastasia Rudenko - GHD

Town Wastewater Infrastructure in Woods Hole

Park Road Lift Station

Water Street Lift Station

Wastewater System Operation As Sea Level Rises

- Optimum: Continuous operation, even during and immediately after flood events.
- Will not be possible under some flood conditions because:
 - Equipment will get damaged by flood water and/or
 - System will be overwhelmed (pipes full of flood water; pumps cannot keep up)
- Evaluating options to maintain operations in year 2030, 2050, 2070
- Options provide different levels of flood protection and operability at different costs (pros and cons)

Options for Park Road Lift Station

- Nature-based solutions to protect station
- New elevated lift station
- Flood-proof existing lift station
- New package submersible lift station
- Eliminate lift station convert gravity system to low pressure (grinder pump) system

Options for Water Street Lift Station

- Structural reinforcement
- Elevation of critical components
- Flood doors
- Waterproofing/sealing
- Nature-based solutions

Options for Woods Hole Force Main

Relocation

- What length to relocate?
- What new route?
- Nature-based solutions

Interested?

Please join us in the "sewer planning break out session" later during this forum

email: <u>amy.lowell@falmouthma.gov</u>

RESILIEN

A

Breakout Sessions

AGECOBE BA

- Carter

Workshop Phase: Input Breakout Rooms

Room A: Important Features
Host: Brittany Hoffnagle
What is important in Woods Hole?
https://tinyurl.com/RWHimportant

Room C: Adaptation Strategies and Vision Host: Nasser Brahim

- Which strategies do you support?
- What else would benefit Woods Hole?
 <u>https://tinyurl.com/RWHadaptation</u>

Room B: Flooding (Past, Present, Future) Host: Joe Famely

- Where have you observed flooding?
- How is it impacting Woods Hole? https://tinyurl.com/RWHflooding

RESILIENT

RESILIEN

Next Steps

THERE

BOBCOBS BB

Tage 1

1 14 haman

A

What's next for ResilientWoodsHole?

Hello, Woods Hole!

Local residents, schools, businesses, and other community members are essential partners as we plan to secure a climate-resilient future for Woods Hole. Check back here for community updates, including:

» A survey for community members about your personal experience of living and/or working in Woods Hole, and your vision of village climate resiliency. (To be posted within the next week.)

 Responses to audience questions posed during RWH events that couldn't be addressed live

Updates on volunteer opportunities

Citizen science initiatives

» Other exciting news and activitie

https://resilientwoodshole.org/

How do I engage further?

Input Map: Important Features tinyurl.com/RWHimportant Input Map: Adaptation and Vision tinyurl.com/RWHadaptation

Input Map: Flooding tinyurl.com/RWHflooding

Stakeholder Input Survey tinyurl.com/SurveyRWH

BGBCOBR

- ARTA