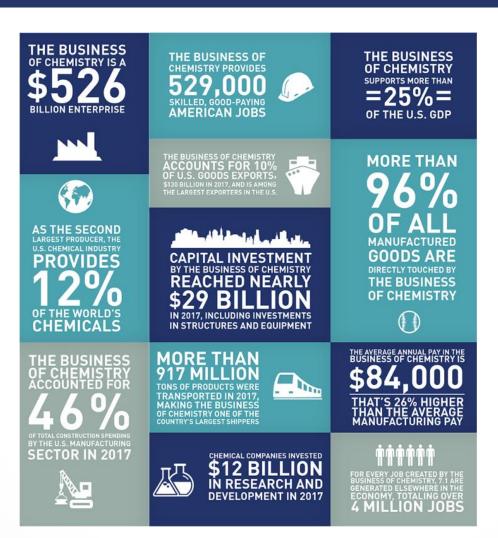


The Science of Microplastics in the World Ocean - WHOI


Brett Howard

10.18.2019



# American<sup>®</sup> Chemistry Council

# **American Chemistry Council**



## ACC - Responsible Care

#### SAFER. HEALTHIER. MORE SECURE.

COMPETITIVE ADVANTAGE.

Responsible Care is the chemical industry's world-class environmental, health, safety & security (EHS&S) performance initiative. Practiced in more than 60 economies around the world, it means performance that operates at a higher level, and enhancements to facilities, products, processes, and relationships. Simply put, it is a better way of doing business. It is our commitment to ensuring that the business of chemistry is safe, secure and sustainable.

#### Responsible Care companies have: Decreased distribution Reduced process incidents by A worker safety greenhouse gas safety incidents by 64 percent rate more than intensity by 53 percent since 2000. 5 times better 28 percent since 1995. than that of the U.S. since 1992. Reduced manufacturing sector hazardous as a whole, and almost Reduced releases to air. 3 times safer recordable injury land and water by than the business of and illness rates by 75 percent chemistry overall. 78 percent from 1988 since 1990. to 2013.

## ACC - Health Product & Science Policy

#### Mission

To provide leadership on health and science policy issues of importance to the chemical industry by managing programs which:

- •Stimulate balanced discussions on existing and emerging human health and related ecosystem issues;
- •Minimize duplicative testing and maximize industry input in the implementation of various government testing initiatives on emerging public health issues

#### **Objectives**

- •Public policy that is: risk-based, cost-effective and that will safeguard public health and the environment and set public health priorities so that resources are focused on credible risks
- •Recognition of industry as a:
  - •Responsible corporate citizen, actively engaged in protecting health and the environment
  - Manufacturer of products which have societal benefits
- Enhance relationships with the scientific community



## Standards Development



**ASTM D19.06** 

**ASTM D20.61** 

Methods for Analysis for Organic

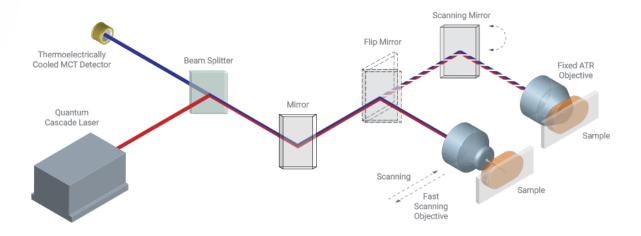
Substances in Water

Biodegradability, biobased plastics,

carbon and environmental footprint,

microplastics and ocean/terrestrial

environments, recycling, waste


management, and circular economy

## ASTM Standards - D19.06

|                          | Standards in  Development  Name | Title                                                                                                                                                             | Status   |
|--------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| WW<br>Sampling<br>Fibers | ASTM WK67565                    | Standard Test Method for the Spectroscopic Identification and Quantification of Microplastic Particles in Water Using Raman and IR Spectroscopy                   | Draft    |
|                          | ASTM WK67563                    | Collection of Wastewater Samples for the Identification and Quantification of Microplastic Particle Preparation of Wastewater Samples Allowing the Identification | Draft    |
|                          | ASTM WK67564                    | and Quantification of Microplastic Particles using Raman and FTIR Microscopy                                                                                      | Draft    |
|                          | ASTM WK67788                    | Identification of Microplastic Particles and fibers in Municipal Wastewater using Pyrolysis-GC/MS                                                                 | Draft    |
|                          | ASTM WK62604                    | New Test Method for Qualitative and Quantitative Fiber Release of Fabrics - Dry Method                                                                            | Proposed |
|                          | ASTM D7841 - 13                 | Standard Practice for Sustainable Laundry Best Management Practices                                                                                               | Active   |

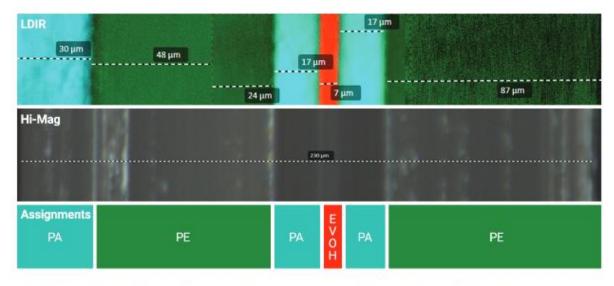


## Agilent 8700 Laser Direct Infrared System



 Ability to survey and image large sample areas and then interrogate smaller areas of interest in more detail without changing any optics

#### Bonner Denton


PROFESSOR, GALILEO CIRCLE FELLOW

#### DEGREES AND APPOINTMENTS

- B.S. 1967, Lamar State College of Technology
- . B.A. 1967, Lamar State College of Technology
- . Ph.D. 1972, University of Illinois



# Agilent 8700 Laser Direct Infrared System



**Figure 6.** (Top) LDIR chemical image obtained using a multi-peak analysis of the laminate sample showing different layers and thickness. (Middle) High-magnification visible light image of the laminate. (Bottom) Identities of each layer: Polyamide (PA), Polyethylene (PE), and Ethylene Vinyl Alcohol (EVOH).

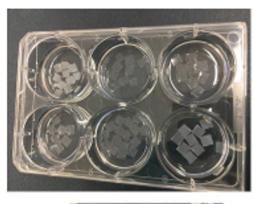


## Plastic Fate



Figure 1. The photograph on the left shows an example experimental setup to simulate the highenergy wave environment in Woods Hole. Natural Vineyard Sound seawater is being incubated in glass dishes using 6 treatments with 3 replicates each. The polymers being tested include PVC, HDPE, PP and PET. The 6 treatments include: (1) UV plus sand plus mechanical agitation; (2) UV alone plus mechanical agitation; (3) no UV plus mechanical agitation; (4) UV plus sand no mechanical agitation; (5) UV alone no mechanical agitation; (6) no UV no mechanical agitation. Note the dishes with a milky appearance have been running for two weeks and PP has broken down from ESD 180 µm to ESD 90 µm. The lid of the box has the UV lights mounted in it such that each dish has its own 80W UVB lamp. Rotation rate is 4  $Hz = 240 \text{ rpm} = \text{shear of } \sim 60,000 \text{ s-1}.$ 

## **Plastic Fate**





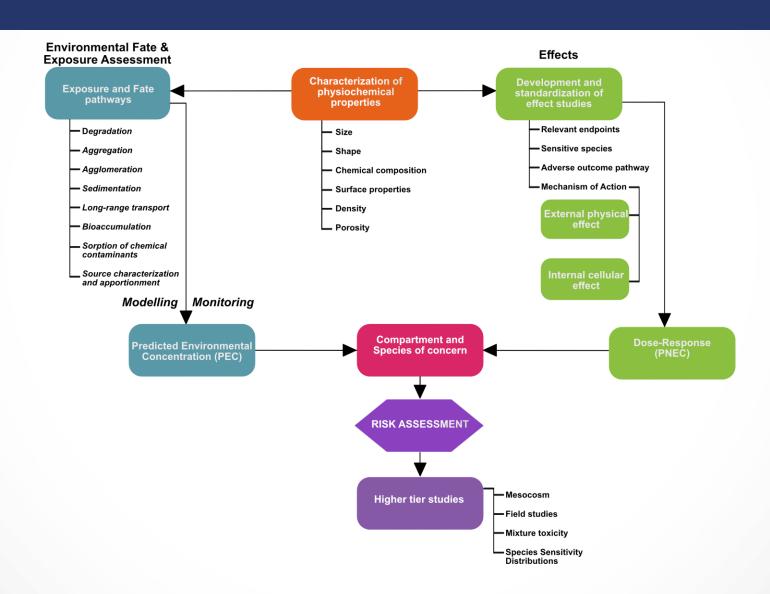
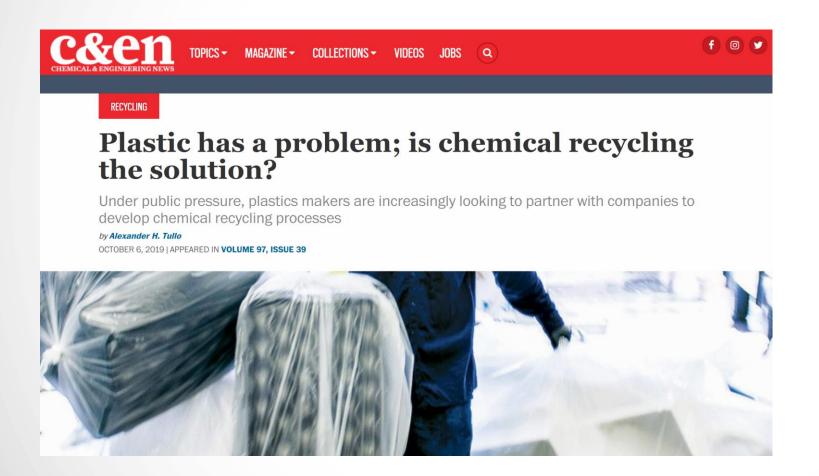





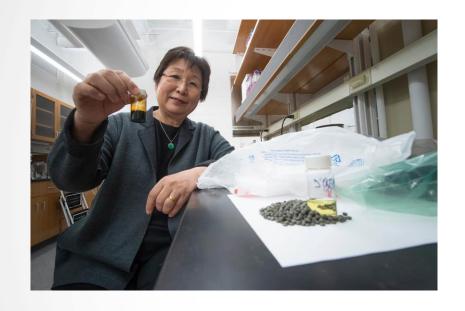

Figure 5. Density Experiment #2. Similar experiment as Experiment #1 but now with 5x5 mm pieces of PE film rather than pellets. Note that both the 0.02 mm thick film became colonized and sank to the bottom of the flask, while the 0.20 mm thick film did not.




## Environmental Risk Framework






# Chemical Recycling



## Decomposition of mixed plastics into fuels, including naphtha, via pyrolysis and other processes

| COMPANY                          | HEADQUARTERS                |  |  |  |
|----------------------------------|-----------------------------|--|--|--|
| Agile Process Chemicals          | Mumbai, India               |  |  |  |
| Agilyx                           | Tigard, Oregon              |  |  |  |
| Anhui Oursun Resource Technology | Hefei, China                |  |  |  |
| Blest                            | Kanagawa, Japan             |  |  |  |
| Brightmark Energy                | San Francisco               |  |  |  |
| Climax Global Energy             | Allendale, South Carolina   |  |  |  |
| EcoFuel Technologies             | Livonia, Michigan           |  |  |  |
| Enval                            | London                      |  |  |  |
| Fuenix Ecogy                     | Weert, Netherlands          |  |  |  |
| Golden Renewable Energy          | Yonkers, New York           |  |  |  |
| JBI                              | Niagara Falls, New York     |  |  |  |
| Jeplan                           | Tokyo                       |  |  |  |
| Klean Industries                 | Vancouver, British Columbia |  |  |  |
| New Hope Energy                  | Tyler, Texas                |  |  |  |
| Nexus Fuels                      | Atlanta                     |  |  |  |
| Plastic Energy                   | London                      |  |  |  |
| PolyCycl                         | Kalka, India                |  |  |  |
| Recycling Technologies           | Swindon, England            |  |  |  |
| ReNew ELP                        | Redcar, England             |  |  |  |
| Renewlogy                        | Salt Lake City              |  |  |  |
| Resynergi                        | Rohnert Park, California    |  |  |  |
| Vadxx                            | Cleveland                   |  |  |  |
|                                  |                             |  |  |  |

# Chemical Recycling





# Chemical Recycling Alliance

 Advocating on behalf of technologies that convert post-use plastics to monomers, chemical feedstocks, transportation fuels and other valuable products of advanced plastics recycling and recovery technologies























# Company Highlight - Agilyx

#### Overview:

Agilyx uses a <u>Mixed Plastics-to-Crude</u> system to produce lower-carbon crude oil for fuel production and a <u>Polystyrene-to-Styrene</u> <u>Monomer</u> system which produces styrene oil.

#### Feedstock:

All forms of polystyrene (#6), e.g. coffee cups, block packaging, meat trays, to-go containers, etc.

#### **End-Products:**

Styrene oil, naphtha feedstock

#### Partners:

Delta Airlines/Monroe Energy, Americas Styrenics, INEOS Styrolution



#### Location:

Tigard, Oregon

#### Technology Type:

Conversion (thermal)

**Decomposition (thermal)** 

#### Stage of Maturity:

Early commercial



# New: Plastics Division Sustainability Goals

### ✓ 2040 Goal

- 100% of plastics packaging is reused, recycled or recovered
- ✓ Interim Goal (2030)
  - 100% of plastics packaging is recyclable/recoverable
- ✓ Best practice goal
  - 100% of Division's U.S. manufacturing sites participate in Operation Clean Sweep Blue by 2020, with all North American sites by 2022

# Achieving the 2040 Goal

100% of plastic packaging is recycled or recovered by 2040



Design & Invent new circular business models



**Expand access** 



Educate consumers and change behavior



Invest in new infrastructure and transformational technology



Create Partnerships with Prominent Orgs and Other Leaders

# Policy

Save Our Seas Act

Signed into law

Supported Microbeads Free Waters Act of 2015

Straw on request



## **Alliance to End Plastic Waste**

#### FOUR PART STRATEGY









Infrastructure Development to collect and manage plastic waste, and increase recycling in areas of greatest need. Innovation to advance and bring to scale new technologies that make recycling and recovering plastics easier and create value from all post-use plastics.

Education and Engagement of governments, businesses, and communities to mobilize action.

Clean Up to help stop plastic waste at its source, focusing on cities and major rivers that carry significant amounts of plastic waste to the ocean.

