

Degradation and Fragmentation of Polyethylene in Seawater

Anthony Andrady

North Carolina State University Raleigh ,NC)

Degradation and Fragmentation of Polyethylene in Seawater

Anthony Andrady

North Carolina State University

Weathering of Plastics

	Incorporation of oxygen-containing groups in the polymer Associated chain-scission and crosslinking Release of water-soluble and gaseous products
DEGRADATION	Change in appearance and physical properties such as color Change in material properties such as strength or crystallinity
$\hat{\mathbf{U}}$	Loss in molecular level properties (Avg. Molecular Mass)
FRAGMENTATION	Macro-fragmentation in to meso- and microplastics Micro- nano-plastics by surface-ablation

 $\mathbf{\hat{\Gamma}}$

MINERALIZATION Conversion into inorganic carbon, biomass and water

Micro-fragmentation by Surface Ablation

FRAGMENTATION

- High extent of degradation (embrittlement)
- Energy to dislodge particles from surface

Recent work: In the 'swash zone' mechanical force alone is sufficient to generate MPs

Work on Polyethylene:

To assess the development of the highly-degraded surface layer in weathering

To compare degradation of polyethylene in air and seawater

Observe a field sample of ocean-degraded polyethylene

Exposure to UV-313 Lamps

ASTM G154-12 Test Protocol

UV 313 Lamps with higher UV-B content

Higher temperature

12 hour light/ 12 hour dark exposure

•UV-313 Lamps (2.45 ± 0.25 mW/sq.cm.)
•12 hour light/12 hour dark
•Temp. 50 C/~ 25 C
•ASTM Type IV test pieces
•Artificial sea water.

FTIR Spectroscopic Analysis

- 1. >C=O absorbance around 1700 cm⁻¹
- 2. Vinyl absorbance at 909 cm⁻¹
- 3. -O-C-O- absorbance at 1176 cm⁻¹
- 4. Splitting of peak at 1467 cm^{-1}

500 to 5000 micron depth

FTIR: Carbonyl Absorbance

Carbonyl Absorption Region LDPE 500 hrs. Air

Absorbance

In field-collected weathered polyethylene mesoplastics the layer is closer to 400-450 microns.

Layer with Spectral Signature ~700 nm

Change in –O-C- absorbance at 1176 cm⁻¹

At a depth of ~700 nm the spectral signature is unobservable.

Exposures in Seawater

Weathered in seawater for 375 hrs

1 mm

- 1. Even the small changes limited to 100 microns!
- 2. No marked **>C=O** band observed.
- 3. Extensive surface cracking not observed

Since >C=O is not present anticipate no chain-scission No surface cracking in seawater sample.

Tensile Extensibility of samples

Extensibility does not change significantly with duration

٠

- Slow decrease in Tensile strength (MPa) with durations slower than for air exposure.
- Energy to break and the tensile modulus both show no change with duration.

Question: In Seawater degradation did not occur. But did oxidation take place?

Surface Oxidation in Seawater Exposures

Surface Oxidation with Different Chemistry

A Different Chemistry?

Seawater + UV + DOM \implies [.OH] Br. Cl. oxidant radicals

1. Quenching effectiveness

 $F. > .OH > CI. > CH_3. > Br. > ROO.$

- 2. Macro-radicals do not translate and cannot freely orient in solid state. OH radicals are mobile and react faster relative to macro=radicals. [LDPE water sorption ~ 0.01 wt.%]
- 3. [.OH] is the most efficient oxidant in the system and is mobile. Chain-bound -CHO, >C=O, -C-OH will be oxidized by preferentially by [.OH] corresponding acids.

Presence of UV-initiated oxidant radical species in seawater exposures promote oxidation by pathways that avoid chain-scission.

Thank You

Kara Lavender-Law & Jessica Donohue (SEA, MA);

Giora Proskurowsky (University of Washington, WA)