Micro-Plastic Particle Analysis of Hudson River Surface Water Using Flow-Through Imaging Raman Spectroscopy

Scott M. Gallager Woods Hole Oceanographic Institution

Microplastics Workshop October 16, 2019

Microplastics: A 10,000,000-fold size range

Field Experiment: Surface to Sediment-Scott Gallager and whole MP team

Raman Spectroscopy to Detect, Classify and Quantify Plastics in the Ocean

Characteristics of Raman Scattering

- Very week effect
- Only 1 in 10⁷ photons in Raman scattered
- Virtual state in a short-lived distortion of the electron cloud which creates molecular vibrations $\tau < 10^{-14}$ s ~10 femtoseconds
- Strong Raman scatterers have distributed and overlapping electron clouds

C=C π - bonds

Fluorescence: The Nemesis of Raman

Here's the Problem......Fluorescence contaminates the Raman Signal

Time-Resolved Flow-Through Imaging Raman Spectrometer

Albany 42.65

Hudson 42.25

Saugerties -

Poughkeepsie 41.70

Kingston 41.92

41.6 Wappingers Falls[→] Newburg Bridge 41.51

Peekskill 41.28

Tappan Zee Bridge 41.07

- East River

Data SIO, NOAA, U.S. Navy, NGA, GEBCC Image Landsat / Copernicus Image U.S. Geological Survey Riverkeeper.org

Full river cruises Monthly April-November

ATT AN OF

This trip May 10-18, 2017

RIVERKEEPE

Capt. John Lipscomb

Water intake 1m below hull

Only a few polymers concentrated throughout river

An aside issue:

Microcystis aeruginosa also in Raman library

Contains neurotoxin, microcystin

Abv.	Polymer	mean #/L	Total	den g/cc	Location
AB	Acrylonitrile Butadiene	872	1,577	1.080	L
ABS	Poly(Acrylonitrile Butadiene Styrene)	109	197	1.058	L
EVA	Ethylene Vinyl Acetate Copolymer	4	8	0.951	U
HDPE	High Density Polyethylene	Na	1	0.970	U
LDPE	Low Density Polyethylene	Na	2	0.940	U
NY	Nylon 66	2,753	4,977	1.150	L
PAN	Polyacrylonitrile Creslan 61 resin	9,825	17,75 6	1.184	UL
РВ	Polybutene-1	48	87	0.910	L
PBTE	Polybutylene Terephthalate	70	127	1.316	L
РС	Polycarbonate	149	271	1.223	L
PES	Polyethersulfone	42	76	1.376	L
PET	Polyethylene terephthalate	22	41	1.386	L
PEO	Polyethylene oxide			1.211	UL
ΡΜΜΑ	Polymethylmethacrylate (acrylic, plexiglass)	87	159	1.183	L
РР	Polypropylene	813	1,471	0.855	L
PS	Polystyrene	1	3	1.040	L
PTFE	Polytetrafluoroethylene (Teflon)	35	65	2.211	L
PVAL	Poly(Vinyl Alcohol)	4	9	1.192	L
PVC	Polyvinyl Chloride	1,121	2,027	1.452	L
SAN	Poly(Styrene Acrylonitrile)	2	Λ	1 0 8 2	

What's in the river?

Lower river: L Upper river : U Both: UL

Two Layer Estuarine Flow and Concentration of MPs on Density Front

Adapted from Ralston et al. 2015

Hudson River Salinity Front in Spring and Summer

C10013

C1001

Strong stratification extends well beyond the Tappan Zee Bridge on Spring tides depending on season.

Dense microplastics could be tidally pumped on the salinity front in all parts of the water column.

Conclusions

Based on density, MPs were concentrated at density fronts near and below the Tappan Zee Bridge where the salt wedge is known to extend bringing salt water along the river bed.

Some polymers (e.g., Polyacrylonitrile and Polyvinyl Chloride) were scattered in the northern sections of the river. Upriver source?

These results suggest that MPs become distributed as a function of salinity/density in the river.

Next Step: We need to complete rapid vertical profiles while conducting spatial survey along the river.

Density fronts may provide a concentration point where clean up efforts could be focused