The known and unknowns about the effects of plastic pollution on wildlife

Chelsea M. Rochman Assistant Professor, University of Toronto

Ocean

Conservanc

Trash Team

Effects can be physical

Effects can be chemical

Rochman 2015 Chapter in Marine Anthropogenic Litter

Bucci et al., Unpublished work

Adams et al. 1989

Multiple Scales

Assemblage 14

Species 13

Population 12

Organism 11

Organ System 10

Organ 9

Tissue 8

> 7 Cell

Organelle 6

Molecular Assemblies 5

> Macromolecules 4

> Small Molecules 3

> > Atoms 2

Subatomic Particles

Impacts described were grouped by size of debris and level of biological organization.

Rochman et al., 2016 Ecology

Size of plastic debris

Law, Ann. Rev. Mar. Sci. 2017, adapted from Rochman et al. Ecology 2016

0

1-5

6-10

Correlative

evidence

Update with the literature through November 26th, 2017

Kennedy Bucci

Matthew Tulio

The Evidence Demonstrating Impacts to aquatic biota is Growing

Level of biological organization

Bucci, Tulio & Rochman, et al. in review Ecological Applications

Through 2013

Through 2017

Effect Detected vs Not Detected

What makes an effect detected vs not detected?

- dose
- shape of microplastic
- type of microplastic
- taxa
- size of microplastic
 experimental design

Concentration (particles/mL; log transformed)

Meta-anlaysis:

- specific to one taxa

- about one effect

- had to have at least three studies.

$$g = \frac{Mean_T - Mean_C}{\sqrt{\frac{(n_T - 1) * SD_T^2 + (n_C - 1) * SD_C^2}{n_T + n_C - 2}}} * (1 - \frac{3}{4 * (n_T + n_C - 9)})$$

PE O PET O PP O PS O Unknown

PE O PET O PP O PS O Unknown

The known and unknowns about the effects of plastic pollution on wildlife

Concentration (particles/mL)

Study	Organism	Effect	Plastic	Size	Length of	Shape	LC50
			Туре		Exposure		Concentration
Ogonowski	Daphnia	Death	Unknown	4 μm	14 d	Sphere	1 M
et al., 2016	Magna		(from			-	particles/mL
-	C .		Cospheric)				•
Au	Hyalella azteca	Death	PP	20-	10 d	Fiber	46,400
et al., 2015				74µm			particles/mL
	Hyalella azteca	Death	PE	10-	10 d	Fragment	71.43
				27µm		-	particle/mL
Frydkejar	Daphnia	Immobilization	PE	10-	48 h	Fragment	65 mg/L
et al., 2017	magna			75µm		-	-
Ziajahromi	Ceriodaphnia	Death	PE	1-4µm	48 h	Sphere	2.2 mg/L
et al., 2017	dubia			-			-
	Ceriodaphnia	Death	PE	1-4µm	48 h	Fiber	1.5 mg/L
	dubia			-			-
Rehse	Daphnia	Immobilization	PE	1µm	96 h	Sphere	57.42 mg/L
et al., 2016	magna			-		_	-
Kim	Daphnia	Immobilization	PS	200nm	48 h	Sphere	0.04 mg/L
et al., 2017	magna						

In Summary:

- There are a lot more studies testing hypotheses about the effects of plastics on organisms.
 - This includes studies testing effects at higher levels of organization.
- For large plastic debris, there is no doubt that plastic harms wildlife. For microplastics, there is evidence that it can cause harm, but when and how is complicated and further work is needed to understand this.
- We need more studies testing hypotheses about microplastics:
 - That recognize their complexity
 - In freshwater and terrestrial environments
 - That help us understand the environmentally relevant effects: more field studies, using relevant concentrations and sizes (includes better measurement in nature)

Thank you!

Detected and non-detected impacts due to debris									
Type of study		Effect Detected		Effect Not					
			Detec	cted					
No. of cases	341		236						
Size of debris	Micro	Macro	Micro	Macro					
Size (mm)	(<5)	(>5)	(<5)	(>5)					
%	58	42	94	6					
No. of cases	199	142	222	14					
No. of cases at each level of biological organization									
Suborganismal									
Subatomic (e.g., oxidative stress)	8	0	6	0					
Atomic (e.g., greater concentrations of intracellular Calcium)	3	0	7	0					
Small Molecules (e.g., toxic metabolites)		0	0	0					
Macromolecules (e.g., protein, DNA damage)		0	38	0					
Molecular assemblies (e.g., formation of protein-chains)		0	0	0					
Organelles (e.g., more micronuclei)	0	0	0	0					
Cells (e.g., necrosis, less viable cells)	29	0	17	0					
Tissues (e.g., inflammation, laceration)	3	32	6	0					
Organs (e.g., change in size, lesions)	10	4	5	0					
Organ System (e.g., poorly functioning digestive system)	0	1	0	0					
Organismal									
Organism (e.g., reduced growth, death to an individual)	75	59	96	8					
Ecological									
Populations (e.g., increase or decrease in size of population)	28	24	44	1					
Assemblages (e.g., change in abundance or diversity of biota)	4	14	0	3					
Ecosystem (e.g., change in ecosystem function)	3	8	3	2					

>800 species

Secretariat of the Convention on Biological Diversity, 2016

>220 species

FAO Report 2017

What are the effects?